Нафталин температура плавления. Что такое нафталин. Плавление аморфных тел

Деформация твердого тела. Деформацией называется изменение формы или объема тела.

Деформация возникает в случае, когда различные части тела совершают неодинаковые перемещения. Так. например, если резиновый шнур растянуть за концы, то части шнура сместятся друг относительно друга, шнур окажется деформированным станет длиннее (и тоньше).

В § 4 было показано, что при деформации изменяются расстояния между частицами тела (атомами или молекулами), вследствие чего возникают силы упругости.

Деформации, которые полностью исчезают после прекращения действия внешних сил, называются упругими. Упругую деформацию испытывает, например, пружина, восстанавливающая свою первоначальную форму после снятия подвешенного к ее концу груза.

Деформации, которые не исчезают после прекращения действия внешних сил, называются пластическими. Пластическую деформацию уже при небольших (но не кратковременных) усилиях испытывают воск, пластилин, глииа, свинец.

Любые деформации твердых тел можно свести к двум видам: растяжению (или сжатию) и сдвигу.

Деформация растяжения (сжатия). Если к однородному стержню, закрепленному на одним конце, приложить силу Г вдоль оси стержня в направлении от него (рис. 7.8), то стержень подвергнется деформации растяжения. Деформацию растяжения характеризуют абсолютным удлинением и относительным удлинением

где - начальная длина, а - конечная длина стержня.

Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.

При малых растяжениях деформации большинства тел упругие

Если на закрепленный стержень подействовать силой направленной вдоль его оси к стержню (рис. 79), то стержень подвергнется сжатию. В этом случае относительная деформация отрицательна:

Деформацию сжатия испытывакл столбы, колонны, стены, фундаменты зданий и т. и.

При растяжении или сжатии изменяется площадь поперечного сечения тела. Это можно обнаружить, растягивая резиновую трубку, на которую предваригелыю надето металлическое кольцо. При достаточно сильном растяжении кольцо упадет. При сжатии, наоборот, плошадь поперечного сечения тела увеличивается. Впрочем, для большинства твердых тел эти эффекты малы.

Деформация сдвига. Возьмем резиновый брусок с начерченными на его поверхности горизонтальными и вертикальными линиями и закрепим на столе (рис. 80, а). Сверху к бруску прикрепим рейку и приложим к ней горизонтальную силу (рис. 80, б). Слои и т. д. бруска сдвинутся, оставаясь параллельными,

а вертикальные грани, оставаясь плоскими, наклонятся на угол у. Такого рода деформацию, при которой происходит смещение слоев тела друг относительно друга, называют деформацией сдвига.

Если силу увеличить в два раза, то и угол у увеличится в два раза. Опыты показывают, что при упругих деформациях угол сдвига у прямо пропорционален модулю приложенной силы.

Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющей собой ряд параллельных пластин, соединенных между собой пружинами (рис. 81, а). Горизонтальная сила сдвигает Пластины друг относительно друга без изменения объема тела (рис. 81, б). При деформации сдвига у реальных твердых тел объем их также не меняется.

Деформации сдвига подвержены все балки в местах опор, заклепки (рис. 82) и болты, скрепляющие детали, и т. д. Сдвиг на большие углы может привести к разрушению тела - срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы.

Деформация изгиба. Деформации изгиба подвергается стер жень, опирающийся концами на подставки и нагруженный посередине или закрепленный на одном конце и нагруженный на другом (рис. 83).

При изгибе одна сторона - выпуклая - подвергается растяжению, а другая - вогнутая - сжатию. Внутри изгибаемого тела расположен слой, не испытывающий ни растяжения, ни сжатия, называемый нейтральным (рис. 84).

Таким образом, изгиб - деформация, сводящаяся к растяжениям (сжатиям), различным в разных частях тела.

Вблизи нейтрального слоя тедо почти не испытывает деформаций. Следовательно, в этом слое малы и возникающие при деформации силы. Значит, площадь поперечного сечения изгибаемой детали в окрестности нейтрального слоя можно значительно уменьшить. В современной технике и в строительстве вместо стержней и сплошных брусьев повсеместно применяют трубы (рис. 85, а), двутавровые балки (рис. 85, б), рельсы (рис. 85, в), швеллеры (рис. 85, г), чем добиваются облегчения конструкций и экономии материала.

Деформация кручения. Если на стержень, один конец которого закреплен, действуют параллельные и противоположно направленные силы (рис. 86), лежащие в плоскости, перпендикулярной оси стержня, то возникает деформация, называемая кручением. При кручении отдельные слои тела, как и при сдвиге, остаются параллельными, но поворачиваются друг относительно друга на некоторый угол. Деформация кручения представляет собой неоднородный сдвиг.

Эта деформация возникает, например, при завинчивании гаек (рис. 87). Деформации кручения подвергаются также валы машин, сверла и т. д.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

При действии на тело внешних сил появляются деформации, размер и форма тела изменяются. В теле, которое подвергается деформации, возникают силы упругости, которые уравновешивают внешние силы.

Виды деформации. Упругие и неупругие деформации

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. Деформация перестает быть упругой, если внешняя сила становится больше определенной величины, которая носит название предела упругости. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые. Тело полностью восстанавливает свои размеры и форму после снятия нагрузки.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Закон Гука

Английский ученый Р. Гук установил, что при упругих деформациях удлинение деформированной пружины (x) прямо пропорционально приложенной к ней внешней силе (F). Этот закон можно записать как:

где - проекция силы на ось X; x- удлинение пружины по оси X; k - коэффициент упругости пружины (жесткость пружины). Если использовать понятие силы упругости () для деформированной пружины, то закон Гука записывают как:

где - проекция силы упругости на ось X. Жесткость пружины - это величина, зависящая от материала, размеров витка пружины и ее длины.

При деформировании однородных стержней растяжением или односторонним сжатием, они ведут себя как пружины. Это означает, что для них при небольших деформациях выполняется закон Гука. Упругие силы в стержне обычно описывают при помощи напряжения . Напряжение - это физическая величина равная модулю силы упругости на единицу площади сечения стержня. При этом считают, что сила распределяется равномерно по сечению и она перпендикулярна поверхности сечения.

Title="Rendered by QuickLaTeX.com" height="12" width="45" style="vertical-align: 0px;">, если происходит растяжение и при сжатии. Напряжение называют еще нормальным. Выделяют тангенциальное напряжение , которое равно:

где — сила упругости, которая действует вдоль слоя тела; S - площадь рассматриваемого слоя.

Изменение длины стержня () равно:

где E - модуль Юнга; l - длина стержня. Модуль Юнга характеризует упругие свойства материала.

Растяжение (сжатие), сдвиг, кручение

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения, например для стержня ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

И так, мы немного рассмотрели деформацию растяжения (сжатия), кроме этого выделяют сдвиг, кручение.

Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига () или величина сдвига () (смещение одного из оснований тела). Закон Гука для упругой деформации сдвига записывают как:

где G - модуль поперечной упругости (модуль сдвига), h — толщина деформируемого слоя; - угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца. Момент сил (M), который закручивает однородный круглый стержень на угол , равен:

где C - постоянная кручения.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Примеры решения задач

ПРИМЕР 1

Задание Каково напряжение, которое возникает в стальной нити круглого сечения, если к одному из ее концов подвесили груз массой кг. Диаметр подвеса равен м.

Решение Сила тяжести (), приложенная к грузу вызывает возникновение силы упругости (), которая приложена к подвесу. По модулю эти силы равны:

Площадь поперечного сечения подвеса равна площади круга:

По определению натяжение равно:

Из контекста задачи ясно, что сила упругости перпендикулярная поверхности сечения нити, используя формулы (1.1), (1.2) и (1.3), получим:

Вычислим искомую величину напряжения:

Деформация растяжения - вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:

1. воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)

2. воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)

3. разрушаться на пределе прочности

Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.

Деформация сжатия

Деформация сжатия - вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.

Деформация сдвига

Деформация сдвига - вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы - болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Деформация изгиба

Деформация изгиба - вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.


Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.

Деформация кручения

Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком. Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

В словесной форме закон звучит следующим образом:

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации . Назван в честь английского физика XIX века Томаса Юнга. В динамических задачах механики модуль Юнга рассматривается в более общем смысле - как функционал среды и процесса. В Международной системе единиц (СИ) измеряется в ньютонах на метр в квадрате или в паскалях.

Модуль Юнга рассчитывается следующим образом:

· E - модуль упругости,

· F - сила,

· S - площадь поверхности, по которой распределено действие силы,

· l - длина деформируемого стержня,

· x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l ).

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где - плотность вещества.