Мнимые парадоксы СТО. Парадокс близнецов. Загадки и парадоксы теории относительности - портал научно-практических публикаций Кинематические парадоксы сто

Путенихин Петр Васильевич

исследователь

Аннотация:

Рассмотрены статьи, опубликованные в "Эйнштейновском сборнике", посвященном тахионам. Утверждается, что сверхсветовые связь, движение и тахион несовместимы со специальной теорией относительности. Инструменты, обосновывающие сверхсветовую применимость СТО – тахионная механика, принцип реинтерпретации или принцип переключения являются ненаучными, поскольку обосновывают события, никогда не имевшие места, приводят к сверхсветовым парадоксам, парадоксам причинности.

Superluminal communication, movement and tachyon incompatible with the special theory of relativity. Introduction to the special theory of relativity superluminal signals leads to the movement in the past, time loops and violation of causality.

Ключевые слова:

сверхсветовой; тахион; квантино; нарушение причинности; синхронизация часов; преобразования Лоренца; специальная теория относительности.

superluminal; tachyon; qantino; violation of causality; clock synchronization; the Lorentz transformation; special theory of relativity.

УДК 539.12.01; 53.01; 530.12; 530.16

Введение

Статья является логическим продолжением, третьей, завершающей частью работы, опубликованной в научном журнале «SCI - ARTICLE.RU» и .

Актуальность работы состоит в критике устоявшихся представлений о нелокальности, о принципе реинтерпретации, имеющих заметную мистическую окраску. Цели и задачи работы состоят в раскрытии необоснованности применения формализма СТО к сверхсветовым частицам - тахионам, приводящего к парадоксальным результатам. Научная новизна заключена в критических доводах, до настоящего времени не встречающихся в литературе. В частности, подвергнуты анализу и критике выкладки, приведенные в "Эйнштейновском сборнике" статей о тахионах.

Сверхсветовые парадоксы СТО

Все авторы, как видим, явным образом признают возникновение в СТО парадоксов при рассмотрении сверхсветовых сигналов. Главным и очевидным парадоксом признается движение в прошлое. Следствием этого является образование петель времени и причинно-следственные парадоксы, нарушение причинности.

Вместе с тем в литературе не встречается описание парадоксов самого формализма теории относительности. Это нарушение уравнений Лоренца. В первую очередь вследствие регистрации сверхсветовых сигналов обнаруживается, что движущиеся часы идут синхронно .

Действительно, рассмотрим две ИСО A и B, удаляющиеся друг от друга, и часы в которых были синхронизированы в момент начала движения. Через некоторое время из ИСО А испускается сверхсветовой сигнал в ИСО B с бесконечно большой скоростью. Очевидно, что с точки зрения симметричной лабораторной ИСО C показания часов A и B тождественны вследствие симметрии движения. Симметричная ИСО C - это такая ИСО, по отношению к которой ИСО A и B движутся с одинаковыми, но противоположно направленными скоростями. Следовательно, показания часов A, когда испущен сигнал, и показания часов B, когда он получен, тождественно равны, сколько бы времени ни прошло от начала движения. Если предположить, что сигнал информационный, то оба наблюдателя A и B смогут разговаривать друг с другом, в результате чего они обнаружат, что их часы идут синхронно.

Однако, сигнал может быть и не информационным, а лишь меткой. Каждый из наблюдателей A и B просто фиксирует момент испускания сигнала и момент его получения. С точки зрения симметричной лабораторной ИСО С оба эти момента происходят при одинаковых показаниях часов A и B. Пусть эти наблюдатели будут записывать моменты активации сигналов (испускания или получения). Очевидно, что в их записях эти моменты всегда будут иметь одинаковые значения времени по собственным часам. Вернувшись в исходную точку, наблюдатели обнаружат этот факт, что интервалы между сигналами и время их регистрации тождественно равны в обоих ИСО.

Это и означает, что часы в обоих ИСО все время шли синхронно.

Более того, мы можем использовать для тестирования еще более тонкий сигнал - квантовую корреляцию запутанных фотонов. Пусть два наблюдателя - Алиса и Боб получают по одной частице из запутанной пары. Очевидно, что с точки зрения лабораторной ИСО эти фотоны, из-за симметрии системы, прибывают к Алисе и Бобу в одинаковые моменты времени по их часам. Но согласно релятивистским законам Алиса считает, что Боб еще не получил своего фотона, а Боб, соответственно, считает что свой фотон еще не получила Алиса, поскольку с их точек зрения удаляющиеся часы идут медленнее и время получения фотона по ним не наступило.

Но это не так. С точки зрения лабораторной ИСО C измеренные Алисой и Бобом фотоны перешли в собственные состояния одновременно и показания часов Алисы и Боба в этот момент были равны. Следовательно, измерив свою частицу, Алиса должна сразу же сделать вывод, что именно в этот же момент свою частицу измерил и Боб. Казалось бы, частица еще только где-то на полпути к Бобу. Но Алиса точно знает, что частица Боба перешла в свое собственное коррелированное состояние. Частица больше не находится в запутанном состоянии. И это состояние частица Боба приобрела мгновенно, в момент измерения Алисой своей частицы. Хотя Алиса и считает, что частица находится далеко от измерителя Боба, она, тем не менее, обязана признать, что это ошибочное мнение. Частица Боба приобрела мгновенно свое собственное состояние не на удалении от Боба, а строго в его измерительном приборе. Это так, поскольку с точки зрения лабораторной ИСО C, являющейся объективной, частица Боба приобрела свое состояние именно в поляризаторе Боба. Одно и то же событие, хотя и может иметь разное время наступления с точки зрения разных ИСО, но оно ни при каких условиях не может иметь разные места наступления. Если метеорит упал на Луну, то не существует в природе ни одной ИСО, с точки зрения которой метеорит упал на Марс.

Таким образом, и Алиса и Боб вынуждены признать, что их измерения были абсолютно одновременны, точно так же, как они одновременны и с точки зрения лабораторной ИСО C. Проведя несколько измерений подряд, они в последующем анализе обнаружат, что интервалы между этими измерениями у них одинаковые, а время регистрации событий по их собственным часам равны.

Конечно, этот мысленный эксперимент прямо опирается на предположение, что эффект запутанности и нелокальности имеет силу независимо от расстояния, времени и скорости движения ИСО. Пока нет свидетельств нарушения этого эффекта до расстояний порядка нескольких сотен километров. Проведены опыты, подтверждающие его сохранение и между относительно движущимися ИСО.

Прямым следствием синхронности хода часов является то, что перестает действовать лоренцево сокращение отрезков и знаменитая относительность одновременности.

Изохронный тахион

Согласно теореме об изохронном тахионе всегда существует такая ИСО, в которой любой тахион имеет бесконечно большую скорость. Этот эффект вынуждает СТО делать взаимоисключающие предсказания. Рассмотрим две ИСО Алисы и Боба, находящиеся на противоположных концах видимой Вселенной. Пусть Алиса отправляет Бобу сверхсветовой сигнал (тахион) со скоростью 2с - двойная скорость света. Очевидно, что Боб, согласно специальной теории относительности, за всю свою жизнь так и не получит этот сигнал. Пусть все-таки он также отправит Алисе свой сигнал со скоростью 2с. Алиса тоже не получит в своей жизни этого сигнала.

Рассмотрим ситуацию с точки зрения некоторой третьей ИСО C, которая движется относительно ИСО Алисы со скоростью в половину скорости света. Согласно правилам сложения скоростей специальной теории относительности, наблюдатель ИСО C обнаружит, что тахион Алисы движется с бесконечно большой скоростью. Следовательно, в его ИСО Боб сразу же получит послание Алисы. Возникает парадоксальная ситуация: одна и та же теория - СТО делает два взаимоисключающих предсказания: "сигнал получен" и "сигнал не получен".

Более того, с точки зрения третьей ИСО C, движущейся с половинной скоростью между Алисой и Бобом, тахионы между ними будут изохронными. Это значит, что возникает класс тахионов Алисы и Боба, которые будут двигаться относительно ИСО C с бесконечно большой скоростью, согласно теореме об изохронном тахионе. Следовательно, сеансы связи будут с точки зрения ИСО C мгновенными в любой момент времени. Алиса и Боб с его точки зрения будут проводить непрерывные сеансы связи какой угодно продолжительности. И вместе с тем, с точки зрения Алисы и Боба, как отмечено, они не получат сигналов друг от друга за все время своей жизни.

"Парадокс дедушки" и принцип реинтерпретации

Давайте теперь применим принцип реинтерпретации к аналогу "парадокса дедушки", в котором две ИСО обмениваются тахионами. Из ИСО А отправляется тахион в ИСО B, из которой обратно в ИСО А отправляется ответный тахион. Этот ответный тахион "включает" взрыватель и уничтожает источник тахионов в системе А. Согласно СТО, ответный тахион прибудет в ИСО А раньше, чем был отправлен исходный, инициирующий тахион. Следовательно, этот инициирующий тахион не мог быть отправлен, поскольку до его отправки источник тахионов был уничтожен.

Согласно принципу реинтерпретации, ответный тахион на самом деле это не тахион, а антитахион, который не прибыл из ИСО В, а был инициирован, испущен самой ИСО A. Но это очевидный абсурд, поскольку, во-первых, излучая свой инициирующий тахион, наблюдатель A ничего не знал о том, что в прошлом он излучил антитахион. Во-вторых, по условиям задачи, возвратный тахион должен был включить взрыватель и уничтожить ИСО A. Однако, никакого тахиона получено не было, уничтожать систему было некому. То есть, это уже другая задача, подмененная. В этой новой задаче произошло событие, которого в ИСО A в "нормальной", исходной задаче никогда не было.

Таким образом, вместо решения проблемы причинности в задаче с некоторыми начальными условиями на самом деле принцип реинтерпретации приводит к изменению условий задачи. К решению оказываются привлечены несуществующие события, которые в реальности не происходили. Это не является решением проблемы "путешествия в прошлое".

Сигнализация в прошлое

В заключение следует добавить, что во всех случаях, когда говорится о "сигналах в прошлое", на самом деле речь идет о сигналах в "чужое прошлое". Но формально движением в прошлое это считаться не может. Если часы моего собеседника отстали, это не значит, что я попал в прошлое. С другой стороны, принцип реинтерпретации - это не принадлежность специальной относительности, а искусственно привнесенный в нее механизм, сформулированный исходя из общефизических принципов.

Для самой специальной относительности соответствует прямое и непосредственное сверхсветовое перемещение в прошлое объекта или сигнала в его неизменной форме. А из этого прямо следует возможность возвращения в физику вечного двигателя. Достаточно просто перемещать со склада и обратно небольшое количество топлива. Оно всегда будет возвращаться в прошлое вдобавок к имеющемуся там топливу. Такому вечному двигателю будет нужно, разве что, только техническое обслуживание, хотя и это не обязательно: сам двигатель можно тоже отправлять в прошлое. И он всегда будет новым.

Понятно, что при этом законы сохранения и возрастания энтропии по факту отвергаются. Но такое опровержение ничуть не хуже, а, вообще-то, с практической точки зрения намного привлекательнее, полезнее недоступных для наблюдения космологических инфляционных мультиверсов Линде и альтерверсов многомировой интерпретации Эверетта.

Квантовая механика разрушает специальную теорию относительности

Квантовая нелокальность, как признано, не позволяет передавать информацию, что рассматривается как ее непротиворечивость специальной теории относительности. Существует даже формула о "мирном сосуществовании квантовой механики и специальной теории относительности". Действительно, запутанные частицы приобретают свои состояния абсолютно случайно, нет никакой возможности принудить частицу получить нужное состояние. Хотя удаленная частица при этом и переходит синхронно, корреляционно в строго однозначное состояние, но это состояние оказывается таким же случайным, стохастическим, как и состояние исходной частицы.

Прямым следствием этого, как принято считать, является и то, что их невозможно использовать для синхронизации часов. Однако, при всем при этом, как выше показано, квантовая нелокальность все-таки позволяет до предела "осложнить жизнь" специальной теории относительности. Синхронизация часов запутанными квантовыми частицами, как оказалось, вполне даже возможна. Конечно, протокол такой синхронизации пока не совсем очевиден, трудно догадаться, каким образом можно установить удаленные часы в некоторые конкретные показания времени.

Рассмотрим эту процедуру с использованием так называемых квантовых нелокальных кубиков, своеобразных "игральных костей". Описание их устройства и принципа действия в деталях можно найти в интернете . Вкратце они "работают" следующим образом. Между двумя наблюдателями, Алисой и Бобом организуется канал, по которому каждому из них передаются последовательно пачки, например, из 8 фотонов. Конечно, пачки могут быть и однофотонными (аналог подбрасывания монеты), и из трех фотонов (кубик с восемью гранями, октаэдр), а также любого другого количества. Восемь фотонов - это байт информации. При измерении фотонов Алиса и Боб получают 8 скоррелированных состояний, которые с помощью дешифраторов выводятся на индикатор. Очевидно, что индикатор может показать любое число от 0 до 255. Этот индикатор мы и назовем квантовым нелокальным кубиком с 256 гранями.

Главная особенность этих кубиков состоит в том, что они оба всегда показывают одно и то же число. Примем как постулат, что квантовая нелокальность действует как угодно далеко, при любых скоростях ИСО и сколь угодно долго, что вообще-то вполне допустимо.

Пусть ИСО Алисы и Боба находятся на разных концах видимой Вселенной и движутся друг относительно друга с субсветовой скоростью, чтобы показать синхронизацию часов в движущихся системах в самом общем случае специальной теории относительности.

Очевидно, что для некоторой средней, симметричной лабораторной ИСО, по отношению к которой системы Алисы и Боба движутся с одинаковыми скоростями и в разных направлениях, все процессы в этих системах полностью тождественны, симметричны. В частности, пачки запутанных фотонов приходят к ним в одно и то же время по их собственным часам. Измерения происходят в обеих системах в один и тот же момент времени и выпадающие при этом числа на квантовых нелокальных кубиках всегда одинаковые.

Однако, все эти числа абсолютно случайны, нет никакой возможности создать какую-либо разумную их последовательность. Но это нам и не требуется. Пусть Алиса и Боб просто фиксируют эти числа в своих журналах. Неважно, какое летоисчисление и показания часов в этих системах, они просто заносятся в журнал парами: число на кубике, дата и время в системе. На самом деле их летоисчисления и часы изначально могут быть не синхронизированы.

Очевидно, что вследствие симметрии, реальный темп хода времени в обеих системах с точки зрения лабораторной ИСО согласно специальной теории относительности оказывается одинаковым. Поэтому все исторические события в двух относительно движущихся системах, находящихся на большом расстоянии друг от друга, при отсутствии их синхронизации могут быть при необходимости синхронизированы путем сопоставления календарных дат и времени по кодам квантовых кубиков. Отметим, что все это - в пределах срока жизни участников.

Совершенно ясно - последовательности чисел, квантовых кодов будут строго скоррелированы. Например, в записях каждой из ИСО могут быть обнаружены последовательности квантовых кодов, образующих случайно одинаковые тексты, например, "специальная теория относительности". То, что такая последовательность рано или поздно может возникнуть, несомненно. Вспомним хотя бы работы Панина над так называемым "кодом библии". Однако, указанный текст - просто образец, поскольку при анализе последовательностей всегда обязательно будут обнаружены совпадающие строки. И каждой такой последовательности соответствует эпоха и время в каждой из ИСО Алисы и Боба. То есть, мы имеет точное соответствие эпох и времени в этих двух ИСО.

Понятно, что это задача для будущих Космологических Археологов. Но ведь здесь мы рассматриваем мысленный эксперимент и для него это не проблема. Главное состоит в том, что даже совершенно стохастическая, абсолютно случайная квантовая информация позволяет, во-первых, синхронизировать длинные временные отрезки и, во-вторых, с неизбежностью показывает: наличие сверхсветовой корреляции уничтожает главные положения СТО - замедление темпа хода часов и относительность одновременности. Квантовая корреляция возвращает в физику чистое ньютоново время, которое во всей Вселенной течет с одинаковой скоростью.

Тахион и детерминизм

В заключение следует вспомнить о некоторых философских проблемах физики.

Многие ведущие физики современности относятся к философии с откровенным скептицизмом. Делаются заявления чуть ли не о вреде, который философия наносит физике. Или, как минимум, что философия неприменима в физических исследованиях. Философия мертва. Там где начинается философия, физика заканчивается. И тому подобное.

Но насколько справедливы эти претензии? Если внимательно присмотреться к этим же скептическим философам - физикам, можно заметить, тем не менее, их явную, очевидную приверженность материализму, который в их отношении просто имеет несколько наивный вид. Критикуя философию, например, Хокинг, фактически дает прямой ответ на Основной Вопрос Философии, похоже, даже не осознавая этого: что первично: дух или материя. При этом он допускает уже давно известную ошибку: нет и быть не может никаких доказательств как наличия бога, так и его отсутствия. Есть только одна возможность: принять это на веру, как данность, как постулат, как догму.

Каким бы сильно верующим ни был ученый, в своих исследованиях он, тем не менее, никогда не использует "гипотезу о боге". Все явления в его рассуждениях имеют определенно естественный характер, не связанный ни с каким Высшим Разумом. И здесь возникает противоречие. Отказывая философии в праве быть фундаментом мировоззрения, ученый рискует впасть в мистику. Или, в лучшем случае, в религиозный догматизм.

Множество научных явлений, экспериментальных данных оказываются сложными в логическом объяснении, описании. Например, та же нелокальность. Содержание ее прямо означает: между частицами нет и быть не может взаимодействия, поскольку это противоречит теории относительности. Однако, сверхсильная корреляция - это экспериментально установленный факт. Частицы как бы передают друг другу информацию. Как компромисс, как способ спасти теорию от парадокса, делается заключение, что между частицами нет материального взаимодействия, поэтому теория здесь ни при чем. Хорошо, тогда что здесь "при чем"? Нелокальность - это просто формула, позволяющая избежать объяснения этого явления. Однако, куда более разумным следовало бы считать, что здесь происходит обмен тахионами, которые просто пока еще не обнаружены.

И все было бы хорошо, но тахион явно плохо вписывается в формализм СТО. Видимо, это главная, если не единственная причина многочисленных попыток распространить на тахион формализм специальной теории относительности. Множество статей на эту тему имеют форму окончательного решения вопроса: тахион - это релятивистская частица, к ней применимы все положения специальной теории относительности. Но тщательный анализ их вызывает множество возражений.

Вот здесь и следует вспомнить о философском мировоззрении. Одним из важнейших законов, можно даже сказать, постулатов и даже догм философии, безусловно , является Закон детерминизма. Не будет чрезмерным провести параллель: это формально абсолютно то же самое, что и литературные фатализм, судьба, фатум. Да, ничто в Природе не происходит Случайно. Есть только один неизбежный и неотменимый закон всеобщего детерминизма.

Здесь, как можно предположить, появится множество несогласных критиков, классиков теперь уже философии, убежденных и прекрасно владеющих ее формализмом. Вполне вероятно, будут приводиться потоки философских категорий и законов, в том числе и экспериментально обнаруженные физические явления. Но в рамках моей статьи, закон всеобщего детерминизма является главным, фундаментальным доводом. Ни доказать, ни опровергнуть его невозможно по определению. Он проистекает из другого, еще более фундаментального закона природы о первооснове, в каком-то смысле материалистической формулировки ответа на основной вопрос философии. Звучит он так: "Материя существует". Все, что мы наблюдаем, можем наблюдать в принципе или в принципе наблюдать не можем - все это без исключения есть формы Материи как первоосновы всего сущего. Здесь следует различать Материю, как первооснову, и Вещество, как наблюдаемое её проявление. Главным, самым фундаментальным свойством Материи является ее существование. Можно сказать так: все, что существует - это Материя. Все, что Материя - существует. Все, что не Материя - не существует. И все, что не существует - не Материя.

Из этой краткой формулы происходят множество следствий. Во-первых, к Материи неприменимо такое понятие как "конечна". То есть, Материя не имеет пределов и границ ни во времени, ни в пространстве. Правда, нужно уточнить, что то время и то пространство, которое мы регистрируем нашими органами чувств, это вещественные пространство и время, это те пространство и время, которые Эйнштейн с Минковским соединили в единое "пространство-время". Для Материи эти понятия производны от ее бесчисленных свойств.

Непосредственно из свойств бесконечности Материи следует отсутствие у нее первопричины. Нет и быть не может самой первой причины, поскольку у вечности нет начала. Но что же тогда означает Большой Взрыв? Все просто: это не взрыв Материи, это одно из ее рядовых преобразований, приведшее в некоторый вполне определенный момент ее, материального времени, в некотором вполне определенном месте ее материального объема к возникновению ее вполне характерного материального состояния , которое мы и называем - Вселенная. Никаких возникновений из Ничего Нигде и Никогда.

А из этого прямо и следует, что любое событие имеет бесконечно длинную цепочку причин, описать которую невозможно в принципе . Вот эту невозможность описания и следует считать действительной Случайностью. Как следствие, в науке мы можем наблюдать множество подобных случайностей. Тем не менее, все они являются исключительно следствием нашей неспособности описать, обнаружить всю цепочку их причин. Случайность - это незнание полного набора причин события.

Отсюда можно вывести главное следствие закона детерминизма - строго обязательный закон причинно-следственных связей. Не существует ни явлений, ни событий, возникающих без причины. Любое событие имеет причину, которая нам в данный момент может быть просто неизвестна.

Но как же тогда быть с так называемой квантовой вероятностью, которая в научном мире признана самым ярким, явным примером абсолютной случайности, предсказать которую невозможно в принципе ? Здесь весьма уместно присоединиться к мнению Эйнштейна. Он интуитивно абсолютно прав: бог не играет в кости. Кстати, следует заметить, что принцип неопределенности Гейзенберга никакого отношения к нарушению причинности не имеет. Это абсолютно детерминистический принцип, не нарушающий причинно-следственных отношений.

Отсюда мы обязаны сделать логический вывод: любые законы, теории, выкладки, следствием которых является нарушение причинности, как явное, так и потенциальное - являются ненаучными, нефизичными, анти-философскими. Такие теории ведут в тупик, а то и прямо в мистику.

Заключение, выводы

Приведенные выкладки не являются гипотетическими или абстрактными. Они строго логически, на основе имеющегося формализма и результатов экспериментов с полной определенностью показывают, что специальная теория относительности неприменима к сверхсветовым сигналам.

Внесение в формализм специальной теории относительности сверхсветовых сигналов вынуждают ее делать противоречивые, взаимоисключающие предсказания. Все выкладки и теории, использующие сверхсветовую применимость специальной теории относительности, следует признать ненаучными. Любое расширение специальной теории относительности на основе введения в нее сверхсветового формализма, например, тахионная механика или принцип реинтерпретации, не является научным.

Парадоксы причинности и движения в прошлое вследствие сверхсветовой коммуникации являются исключительными свойствами, особенностью именно специальной теории относительности. Любая другая теория, не содержащая в себе постулатов об инвариантности скорости света (физика ньютона, например), свободна от сверхсветовых парадоксов причинности.

Любой мысленный эксперимент с участием тахионов, сверхсветовых сигналов неизбежно приводит в СТО к движению в прошлое. Маскировка таких движений вряд ли возможна даже специальным искажением начальных условий.

Любое движение в прошлое на основе сверхсветового формализма СТО определенно является движением в "чужое прошлое". Никакими формулировками и ухищрениями невозможно отправить прямой сигнал или прямо переместиться в собственное прошлое, то есть, встретить в прошлом себя самого. Параллельные миры сверхсветовым формализмом специальной теории относительности не предусмотрены и не рассматриваются.

Принцип реинтерпретации или принцип переключения, являются ненаучными принципами, поскольку вводят в решение задач события, не имевшие места в реальности. Механизм реинтерпретации - это искусственный механизм, который, строго говоря, не следует из формализма специальной теории относительности, а базируется на так называемых общефизических принципах. Непосредственно из формализма СТО в этом случае следует возможность реализации вечного двигателя как строго научного механизма.

Существует только одно толкование причинности без каких либо "опережающих" или "запаздывающих" формулировок - это причинно-следственные отношения; их нарушение является ненаучным.

Любые парадоксы времени подразумевают нарушения в логике теории. Кротовые норы и черные дыры не могут изменить последовательность событий во времени.

Принцип неопределенности Гейзенберга не является примером анти-детерминизма и нарушения причинности.

Не существует абсолютно случайных событий, есть только события, полную цепь причин которого не удается описать. Бог не играет в кости (Эйнштейн).

Вместе с тем, не следует считать вредными исследования тахионов с позиции СТО разных авторов. Допущенные ими логические ошибки привлекают повышенное внимание к СТО, требуя четко очертить границы ее применимости, лишний раз напомнить, что "мирное существование СТО и квантовой механики" иллюзорно.

Библиографический список:


1. Путенихин П.В., О логических противоречиях, возникающих в СТО при исследовании сверхсветовых сигналов и тахионов. Электронный периодическом рецензируемый научный журнал «SCI - ARTICLE.RU», N35 (июль) 2016, c..php?i=1467653398 (дата обращения 13.01.2017)
2. Путенихин П.В., О логических противоречиях, возникающих в СТО при исследовании сверхсветовых сигналов и тахионов. Эйнштейновский сборник о тахионах, ч.2. Электронный периодический рецензируемый научный журнал «SCI - ARTICLE.RU», N37 (сентябрь) 2016, c..php?i=1473835211 (дата обращения 13.01.2017)
3. Путенихин П.В., СТО неприменима к сверхсветовым сигналам, 2014, URL: http://econf.rae.ru/article/9157 (дата обращения 13.01.2017)
4. Путенихин П.В., Теорема об изохронном тахионе, 2014, URL: http://econf.rae.ru/article/9635 (дата обращения 13.01.2017)
5. «Эйнштейновский сборник. 1973», М., Наука, 1974.

Рецензии:

4.01.2017, 11:35 Полищук Игорь Николаевич
Рецензия : Работа интересная. Много новых идей, например, кубик с 256 гранями - оригинально и убедительно. Смелая критика устоявшихся в физике полумистических представлений. Работа оформлена в соответствии с требованиями издательства и рекомендуется к публикации.


4.01.2017, 17:38
Рецензия : Заслуженному автору этого журнала рассуждения по самым фундаментальным проблемам мироздания здесь публиковать не впервой. Всем наверное тривиально известен такой сборник о тахионах. Но хотя бы для рецензентов ссылку на него надо было дать. "Эйнштейновский сборник" - это авторитетное издание, но в каком из них помещены статьи о сверхсветовых объектах рецензент (кроме автора статей на эту тему). В среде могут распространяться частицы "инородные", из материала другой среды и квазичастицы из сгущений, вихреобразований той же среды. Ни одна из них в обычных условиях не может распространяться со скоростью, большей характеристической для данной среды (для воздушной среды - это скорость звука, для ближнего Космоса - скорость света). Далее, идут гипотезы более высокого статуса. Т.ч. тахионы и СТО в антиподе - это тривиально. Кстати и о самой СТО - выдержка из текста о присуждении Нобелевской премии А.Эйнштейну: "... по физике, учитывая работы по теоретической физике и в особенности открытие закона фотоэлектрического эффекта, ОДНАКО НЕ ПРИНИМАЯ ВО ВНИМАНИЕ ТО ЗНАЧЕНИЕ, которое приобретут теории относительности и гравитации, если они будут подтверждены". ЕСЛИ. Что означает предложение: "Для самой специальной относительности соответствует прямое и непосредственное сверхсветовое перемещение в прошлое объекта или сигнала в его неизменной форме". И таких фраз много. Список литературы оформлен не по требованиям, хотя в других работах автор требования соблюдает. Радуясь, что это, по словам автора, последняя работа здесь по таким космологическим амбициям, рецензент после правки и корректуры, не возражает против её публикации.

13.01.2017 15:15 Ответ на рецензию автора Путенихин Петр Васильевич :
Уважаемый Эдуард Григорьевич! :-) Благодарю Вас как самого заинтересованноего моего рецензента за изучение и оценку моей работы!
1. Список литературы я подправил и добавил в него ссылку на сборник.
2. Что означает предложение: "Для самой специальной относительности соответствует прямое и непосредственное сверхсветовое перемещение в прошлое объекта или сигнала в его неизменной форме". С учетом предыдущей фразы в статье: это не условное перемещение в прошлое, в ЧУЖОЕ прошлое. Это самое непосредственное перемещение МОЕГО сигнала в МОЕ прошлое, в котором я САМ же его и зарегистрирую.


14.01.2017, 2:41 Мирмович-Тихомиров Эдуард Григорьевич
Рецензия : Ни в коей мере. Когда нет других рецензий, а вашему визави продолжают присылать требования о рецензировании той или иной работы, после этого он ещё ожидает других рецензентов. И только при "пустоте" что-то пишет, чтобы ни редакция, ни автор не имели к нему претензий. По крайней мере, пытается это делать. А вот Вы, действительно, самый активный учёный-исследователь и писатель фантастических экзерсисов про "чёрные дыры" в СТО, ОТО и пр. И отклонять их рецензиями как-то неудобно, и нет желания рецензировать. Где выход? А работы всё сыпятся и сыпятся как из рога изобилия. Литература всё равно оформлена не по требованиям (запятые не там). Никакого смысла в приведенную фразу, ЧУЖОЕ какое-то это или МОЁ, не добавило. В отличие от уважаемого Игоря Николаевича, в этой работе оригинальности и убедительности не так много. И полумистическими представлениями как раз является декларирование каких-то мысленных бесконечных скоростей от А к Б и наоборот, пренебрегая запретами среды на скорости, в которой распространяются эти сигналы или возмущения среды. Но в последний раз (и больше мне не отвечайте) рецензент НЕ ВОЗРАЖАЕТ против публикации без всяких благодарностей, т.к. это третья и последняя в череде работ на эту тему.

ПАРАДОКСЫ СПЕЦИАЛЬНОЙ И ОБЩЕЙ ТЕОРИЙ ОТНОСИТЕЛЬНОСТИ

В.И. Моренко

Abstract. This article is devoted to special relativity theory, Lorentz transformations and curvature of space-time. Isotropy and flatness of space have been experimentally proved but the theory (special and general relativity theories) demands different determination of space-time properties. Reasons of such disagreement are hidden in mathematical tools and methods used by the theories

Специальная теория относительности основана на двух, считающихся экспериментально доказанными, фактах – конечности скорости света и ее постоянстве в различных инерциальных системах отсчета (независимости скорости света от его источника). Именно эти условия, по общему мнению, не позволяют использовать в механике преобразования Галилея при переходе от одной инерциальной системы отсчета к другой. И, как следствие, за основу математических принципов описания процессов движения принимается релятивистский принцип относительности, основанный на преобразованиях Лоренца. Очевидность этих преобразований кажется настолько безупречной, что не должно, казалось бы, и возникать сомнений в правомерности выводов, вытекающих из применения принципа лоренц-инвариантности в физической теории.

Действительно, в соответствии с обоими постулатами специальной теории относительности (релятивистский принцип относительности Эйнштейна и принцип инвариантности скорости света в вакууме) для двух инерциальных систем отсчета K и K , можно записать:

В этих уравнениях компоненты скорости света при условии прямолинейности его распространения:

Преобразования Лоренца сохраняют инвариантность координатного времени при переходе от одной локально-инерциальной системы отсчета к другой. Однако получены эти преобразования весьма спорным образом.

Действительно, преобразования Лоренца – есть линейные преобразования координат и времени двух прямоугольных линейных координатных систем, одна из которых является неподвижной, а вторая движется относительно первой со скоростью V . Для определения соответствия координат и времен используется модель описания движения единичного пробного фотона (сигнала) из единого в нулевой момент времени для обеих систем начала координат O и в общую для обеих систем точку M . И все было бы замечательно, если бы не то обстоятельство, что траектория движения пробного фотона l f при заданных условиях не может быть одновременно прямолинейной в обеих системах координат K и K ’ , кроме очевидного случая, когда OO M – прямая линия. Данное утверждение вытекает из сравнения направления вектора прямолинейного движения пробного фотона в системе K с направлением вектора движения того же самого фотона в системе K . Очевидно, что компоненты скорости фотона в системе K подчиняются уравнению:

Но в системе K эти компоненты определяются выражением:

В связи с этим, уравнению в системе K :

в системе K ’ может быть противопоставлено только уравнение:

В этих обстоятельствах использование метода линейных преобразований для сравнения координат и времени систем K и K является, конечно, оригинальным, но вряд ли продуктивным приемом.

Таким образом, специальная теория относительности не может быть основана на лоренц-инвариатности, но предполагает свободу выбора лабораторной системы координат, что тождественно утверждению об инвариантности математической формы определения координатного времени в различных локально-инерциальных системах координат. Сама же существующая трактовка СТО является следствием пренебрежения правилами математики (физики шутят).

В противоположность СТО в общей теории относительности математические предпочтения возобладали над физическим смыслом, хотя последствия таких предпочтений не имеют столь явного вида (математики шутят аккуратнее физиков).

В настоящее время наиболее признанным определением сущности общей теории относительности является выражение интервала:

Данное выражение трактуется как изменение свойств (мер длины) пространства в присутствии масс при сохранении величины скорости света.

Но если внимательно рассмотреть уравнение для интервала, понимая, что он не является лоренц-инвариантным, но справедлив для любой лабораторной системы координат, можно найти два способа его объяснения – математический и физический. Первый основан на геометрическом способе решения физических задач и полностью реализован в аппарате общей теории относительности и полевых теориях. А вот второй способ, основанный на возможности изменения скорости света в присутствии масс, по непонятным причинам полностью исключен из рассмотрения в физических теориях. Однако именно второй способ имеет четкое физическое обоснование, поскольку в оптике широко известно явление преломления света, вызванное уменьшением скорости распространения электромагнитных волн в физической среде; а присутствие в данном выражении члена может трактоваться и как наличие в природе масштабного фактора и как наличие у вакуума показателя преломления, величина которого в присутствии гравитационных масс отлична от величины этого параметра в отсутствии указанных масс.

Для того, чтобы сделать правильный выбор, какая из трактовок является удовлетворительной, нам необходимо разобраться, что является причиной искривления пространства – физическое явление или результат математического описания гравитационного взаимодействия.

Для этого необходимо, прежде всего, понять, о каком именно пространстве идет речь – о математическом (мысленная сущность), или о физическом (реальная сущность) гравитационном поле. То, что в уравнении поля Эйнштейна объединены физические и геометрические величины, еще не свидетельствует о физической природе искривления пространства, так как физические величины этого уравнения относятся не собственно к пространству, а к включенным в него источникам гравитационного поля. И корректным, с позиции сохранения непрерывности системы координат, на которой базируется формулировка членов из левой части уравнения поля Эйнштейна, является условие отсутствия размера у источников поля – точечная модель элементарных частиц. Отметим, что данное условие является обязательным для любого физического поля при его математическом описании известными на настоящий момент методами геометрического построения координатного пространства. Если же источник поля имеет размеры, то начало связанной с ним системы координат оказывается внутри отличной от собственно поля физической сущности – иного пространства. В этом случае возникает проблема исключения из рассмотрения внутреннего пространства и его замены на внешнее. В общей теории относительности данная проблема проявляется при возникновении в решениях уравнения поля параметра, количественно совпадающего с радиусом дырки в поле, заполненной веществом источника этого поля.

Для того, чтобы хоть как-то обеспечить соответствие математической модели (гравитационного поля) физической реальности при условии сохранения непрерывности координатной системы, можно через понятие аффинной связности ввести представление об «искривлении» пространства в присутствии гравитационных масс как способ отображения пространства с «дырками» на непрерывное пространство. Но в этом случае искривленное пространство уже не является физической сущностью, а представляет из себя некоторую адекватную математическую модель.

Таким образом, эффект искривления пространства возникает уже на этапе математического описания гравитационного взаимодействия и, в принципе, не требует дополнительно физического обоснования.

В то же время, не меняя очень удобных для математики и бытового мышления представлений о пространстве как линейной, однородной и непрерывной сущности, можно использовать наличие у элементарных частиц конечных размеров для определения показателя изменения скорости света в окрестности гравитационной массы следующим образом:

Поскольку обозначения очевидны, то необходимо лишь пояснить, что в качестве расчетного размера элементарной частицы принят радиус частицы с массой, равной массе протона, только для удобства при анализе. Безусловно, этот радиус будет зависеть от величины гравитационного поля, и мы используем некоторый усредненный размер, который еще необходимо определить, желательно на основе экспериментальных данных. Такому условию больше всего соответствуют данные о смещении перигелия Меркурия, на основании которых можно вычислить величину смещения перигелия других планет и сравнить их с опытными данными. Для сопоставимости с результатами, получаемыми методами общей теории относительности, а также ввиду сложности нахождения прямого аналитического решения, будем определять зависимость показателя преломления от расстояния между Солнцем и планетой через фокальный параметр, то есть через среднее арифметическое значение обратных радиусу величин в точках апогея и перигея:

В этом случае величина смещения перигелия определяется выражением:

Искомый средний размер условного протона будет равен:

Тогда для Земли:

Для Венеры:

Для Икаруса:

Величина отклонения света Солнцем определяется в результате следующего:

Тогда, с учетом различия показателей преломления света на поверхности Солнца и на орбите Земли имеем;

Очевидно практически полное совпадение полученных результатов с опытными данными и результатами, предсказываемыми общей теорией относительности. Более того, данные по отклонению света Солнцем в значительно большей степени совпадают с экспериментом, нежели предсказания общей теории относительности.

Преимуществом математической модели над физической моделью общей теории относительности является необходимость знания только двух экспериментальных параметров – массы тела и расстояния, в то время как для физической модели необходимо еще и значение радиуса условного протона. Однако, если объединить указанные модели, то для определения последнего можно записать выражение:

теория относительности модель математическая физическая

Полученное по данной формуле значение радиуса условного протона будет отличаться всего лишь на три процента от величины, основанной на экспериментальных данных о величине отклонения света, однако такое расхождение не слишком принципиально, поскольку обе модели (физическая и математическая) являются условными.

Таким образом, математическая модель гравитационного поля, основанная на принципе искривления геометрического места точек, и физическая модель, основанная на изменении оптических свойств вакуума, дают примерно одинаковые результаты. Но справедливость именно первой из указанных моделей, предсказывающей наличие у пространства свойств, определяемых глобальным масштабным фактором, могла бы быть доказана только в случае обнаружения так называемых Г-shaped форм. Однако, как показывают новейшие исследования (см., например, Astrophysical Journal, 591:599-622, 2003, July 10), в природе не наблюдаются объекты, которые могли бы свидетельствовать именно об искривлении пространства.

В заключение необходимо отметить, что при решении физических задач важно соблюдать аксиомы и правила сразу двух дисциплин – физики и математики. В противном случае маленькие неточности приводят к большим проблемам уже в философии.

Список литературы

1. Abers E ., Lee B . W ., Gauge Theories, Phys. Rep., 9C, 1 (1973)

2. Aharonov Y ., Casher A . , Susskind L., Phys. Rev., D5, 988 (1972)

3. Aitchison I.J.R., Relativistic Quantum Mechanics, Macmillan, London, 1972.

4. Altarelli G., Partons in Quantum Mechanics, Phys Rep., 81C, 1 (1982)

5. Arnison G. et al., Intermediate vector boson properties at the CERN super proton synchrotron collider, Geneva, CERN, 1985

6. Bernstein J., Spontaneous Symmetry Breaking, Gauge Theories and All That, Rev. Mod. Phys., 46, 7 (1974)

7. Bilenky S.M., Hosek J., Glashow-Weinberg-Salam Theory of Electro-Weak Interactions and the Neutral Currents, Phys. Rep., 90C, 73 (1982)

8. Bogush A.A., Fedorov F.I., Universal matrix form of first-order relativistic wave equations and generalized Kronecker symbols, Minsk, 1980

9. Bogush A.A., Fedorov F.I., Finite Lorentz transformations in quantum field theory // Rep. Math. Phys., 1977, Vol. 11, № 1

10. J.R.Bond et al, The Sunyaev-Zel’dovich Effect in CMB-Calibrated Theories Applied to the Cosmic Background Imager Anisotropy Power at l> 2000, Astroph.Journal, 626:12-30, 2005 June 10

12. Catrol Sean, University of Chicago, Astrophys. Journ., 01.09.00

13. Close F.E., An Introduction to Quarks and Partons, Academic Press, London, 1979

14. Cook N., Exotic Propulsion, Jane’s Defense Weekly, 24.07.02

15. Cook N., Anti-gravity propulsion comes out of the closet, Jane’s Defense Weekly, 31.07.02

16. Dokshitzer Y.L., Dyakonov D.I., Trojan S.I., Hard Processes in Quantum Chromodynamics, Phys. Rev., 58C, 269 (1980)

17. Dolgov A.D., Zeldovich Y.B., Cosmology and Elementary Particles, Rev. Mod. Phys., 53, 1 (1981)

18. Ellis J., Grand Unified Theories in Cosmology, Phys. Trans. Roy. Soc., London, A307, 21 (1982)

19. Ellis J., Gaillard M.K., Girardi G., Sorba P., Physics of Intermediate Vector Bosons, Ann. Rev. Nucl. Particle Sci., 32, 443 (1982)

20. Ellis J., Sachrajda C.T., In: Quarks and Leptons, NATO Advanced Study Series, Series B, Physics, Vol. 61, Plenum Press, New York, 1979

21. Faddeev L.D., Popov V.N., Phys. Lett., 1967, Vol. 25B, p. 30

22. Feynman R.P., The Theory of Fundamental Processes, Benjamin, New York, 1962

23. Feynman R.P., Quantum Electrodynamics, Benjamin, New York, 1962

24. Feynman R.P., The Feynman Lectures on Physics, Addison Wesley, Reading, Mass., 1963

25. Feynman R.P., Photon-Hadron Interactions, Benjamin, New York, 1972

26. Feynman R.P., In: Weak and Electromagnetic Interactions at High Energies, Les Houches Session, 29, North-Holland, Amsterdam, 1977

27. Field R.D., In: Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories, NATO Advanced Study Series, Series B, Physics, Vol. 54, Plenum Press, New York, 1979

28. Fradkin E.S., Tyutin I.V., Renormalizible theory of massive vector particles // Riv. Nuovo Cimento, 1974, Vol. 4, № 1

29. Fritzch H., Minkowski P., Flavordynamics of Quarks and Leptons, Phys. Rep., 73C, 67 (1981)

30. Georgi H., Glashow S.L., Unity of all elementary-particle forces, Phys. Rev. Lett., 1974, Vol. 32, № 8

31. Georgi H., Lie Algebras in Particle Physics, Benjamin-Cummings, Reading, Mass., 1982

32. Gilman F.J., Photoproduction and Electroproduction, Phys. Rep., 4C, 95 (1972)

33. Glashow S.L., Partial symmetries of weak interactions, Nucl. Phys., 1961, Vol. 22, № 3

34. Glashow S.L., Illiopoulos I., Maiani L., Weak interactions with lepton-hadron symmetry, Phys. Rev. Series D, 1970, Vol. 2, № 7

35. Goldstein H., Classical Mechanics, Addison Wesley, Reading, Mass., 1977

36. Goldstone I. , Field theories with “superconductor” solutions, Nuovo Cimento, 1961, Vol. 19, № 1

37. Green M.B., Surv. High Energy Physics, 3, 127 (1983)

38. Green M.B., Gross D., eds., Unified String Theories, World Scientific, Singapore, 1986

39. Green M.B., Schwarz J.H., Witten E., Superstring Theory, Vol. 1,2, Cambridge University Press, Cambridge, 1986

40. Greene B., The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for Ultimate Theory, Vintage Books, A Division of Random House, Inc., New York, 1999

41. Halzen Francis, Martin Alan D., Quarks and Leptons. An Introductory Course in Modern Particle Physics, 1983

42. Higgs P.W., Broken symmetries, massless particles and gauge fields, Phys. Lett., Series B, 1964, Vol. 12, № 2

43. Kac V., Infinite Dimensional Lie Algebras, Bierkhauser, Boston, 1983

44. Kaku M., Introduction to Superstrings, Springer-Verlag, New York, 1988

45. Kim J.E., Langacker P., Levine M., Williams H.H., A Theoretical and Experimental Review of Neutral Currents, Rev. Mod. Phys., 53, 211 (1981)

46. Kobayashi M., Maskawa T., CP-violation in the renormalizible theory of weak interactions, Progr. Theor. Phys., 1973, Vol. 49, № 2

47. Langacker P., Grand Unified Theories and Proton Decay, Phys. Rep., 72C, 185 (1981)

48. Lautrup B., In: Weak and Electromagnetic Interactions at High Energies, NATO Advanced Study Series, Series B, Physics, Vol. 13a, Plenum Press, New York, 1975

49. Leader E., Predazzi E., Gauge Theories and the New Physics, Cambridge University Press, Cambridge, 1982

50. Llewellyn Smith C.H., In: Phenomenology of Particles at High Energy, Academic Press, New York, 1974

51. Moody R.V.J., Algebra, 10, 211 (1968)

52. Mulvey J.H., The Nature of Matter, Clarendon, Oxford, 1981

53. Nambu Y., Lectures at the Copenhagen Summer Symposium, 1970

54. Okubo S., Tosa Y., Duffin-Kemmer formulation of gauge theories, Phys. Rev., 1979, Vol. D20, № 2

55. Peccei R.D., Status of the standard model, Hamburg, DESY, 1985

56. Politzer H.D., Quantum Chromodynamics, Phys. Rep., 14C, 129 (1974)

57. Polyakov A.M., Phys. Lett., 103B, 207, 211 (1981)

58. Popov V.N., Quantum vortices in the relativistic Goldstone model, Proc. of XII Winter school of theoretical physics in Karpacz, p. 397 – 403

59. Review of particle properties, Particle data group, Geneva, CERN, 1984, Phys. Lett., 1986, Vol. 170B, p. 1 – 350

60. Reya E., Perturbative Quantum Chromodynamics, Phys. Rep., 69C, 195 (1981)

61. Rose M.E., Elementary Theory of Angular Momentum, Wiley, New York, 1957

62. Salam A., Elementary particles theory, Stockholm, W.Swartholm Almquist and Weascell, 1968

63. Schwarz J.H., ed., Superstrings, Vol. 1,2, World Scientific, Singapore, 1985

64. Söding P., Wolf G., Experimental Evidence of QCD, Ann. Rev. Nucl. Particle Sci., 31, 231 (1981)

65. Steigman G., Cosmology Confronts Particle Physics, Ann. Rev. Nucl. Particle Sci., 29, 313 (1979)

66. Steinberg J., Neutrino Interactions, Proc. of the 1976 CERN School of Physics, CERN Rep. 76-20, CERN, Geneva, 1976

67. T’Hooft G., Renormalization Lagrangians for massive Yang-Mills fields, Nucl. Phys. Ser. B, 1971, Vol. 35, № 1

68. Vilenkin A., Cosmic strings and domain walls, Phys. Rep., 121, 1985

69. Weinberg S., Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, Mass., 1971

70. Weinberg S., Recent Progress in the Gauge Theories of the Weak, Electromagnetic and Strong Interactions, Rev. Mod. Phys., 46, 255 (1974)

71. Weinberg S., The First Three Minutes, A.Deutsch and Fontana, London, 1977

72. Wiik B.H., Wolf G., Electron-Positron Interactions, Springer Tracts in Mod. Phys., 86, Springer-Verlag, Berlin, 1979

73. Wilczek F., Quantum Chromodynamics, The Modern Theory of the Strong Interaction, Ann. Rev. Nucl. Particle Sci., 32, 177 (1982)

74. Wu T.T., Jang C.N., Phys. Rev., D12, 3845 (1975)

75. Wybourne B.G., Classical Groups for Physicists, Wiley, New York, 1974

76. А . И . Ахиезер , Ю . Л . Докшицер , В . А . Хозе . Глюоны//УФН, 1980, т.132.

77. В.А.Ацюковский . Критический анализ основ теории относительности. 1996.

78. Дж.Бернстейн . Спонтанное нарушение симметрии// Сб. Квантовая теория калибровочных полей. 1977.

79. НН.Боголюбов, Д.В.Ширков . Квантованные поля. 1980.

80. А.А.Богуш . Введение в калибровочную полевую теорию электрослабых взаимодействий. 2003.

81. С.Вейнберг . Гравитация и космология. 2000.

83. В.Г.Веретенников, В.А.Синицын . Теоретическая механика и дополнения к общим разделам. 1996.

84. Е.Вигнер . Теория групп и ее приложения к квантовомеханической теории атомных спектров. 2000.

85. В.И.Денисов, А.А.Логунов . Существует ли в общей теории относительности гравитационное излучение? 1980.

86. А.А.Детлаф, Б.М.Яворский . Курс физики. 2000.

87. А.Д.Долгов, Я.Б.Зельдович . Космология и элементарные частицы.// УФН, 1980, т.130.

88. В.И.Елисеев . Введение в методы теории функций пространственного комплексного переменного. 1990.

89. В.А.Ильин, В.А.Садовничий, Бл.Х.Сендов. Математический Анализ, Учебник в 2 частях, 2004

90. Э.Картан . Геометрия групп Ли и симметрические пространства. 1949.

91. Ф.Клоуз . Кварки и партоны: введение в теорию. 1982.

92. Н.П.Коноплева, В.Н.Попов . Калибровочные поля. 2000.

93. А.Лихнерович . Теория связностей в целом и группы голономии. 1960.

94. В.И.Моренко. Общая теория относительности и корпускулярно-волновой дуализм материи. М., 2004.

95. А.З.Петров . Новые методы в общей теории относительности. 1966.

96. А.М.Поляков . Калибровочные поля и струны. 1994.

97. Ю.Б.Румер . Исследование по 5-оптике. 1956.

98. В.А.Рубаков . Классические калибровочные поля. 1999.

99. В.А.Садовничий . Теория операторов. 2001.

100. А.Д.Суханов . Фундаментальный курс физики. Квантовая физика. 1999.

101. Дж.Уиллер . Гравитация, нейтрино и Вселенная. 1962.

102. Л.Д.Фаддеев . Гамильтонова форма теории тяготения// Тезисы 5-й Международной конференции по гравитации и теории относительности. 1968.

103. Р.Фейнман . Теория фундаментальных процессов. 1978.

104. В.А.Фок . Применение идей Лобачевского в физике. 1950.

105. Ф.Хелзен, А.Мартин . Кварки и лептоны. 2000.

106. А.К.Шевелев . Структура ядер, элементарных частиц, вакуума. 2003.

107. Э.Шредингер . Пространственно-временная структура Вселенной. 2000.

108. И.М.Яглом. Комплексные числа и их применение в геометрии. 2004.

Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.

Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.

Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности - это печальное недоразумение.

«Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться », - писал Макмиллан в 1927 г. «За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех - превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу ».

Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).

Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.

Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.

До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов - больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.

Допустим, что космонавт - один из близнецов - проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?



Ответ зависит от скорости движения корабля.

Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!

Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.

До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!

Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.

Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?

Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.

Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:

Юная леди по имени Кэт

Двигалась много быстрее, чем свет.

Но попадала всегда не туда:

Быстро помчишься - придешь во вчера.

Перевод А. И. Базя


Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.



Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.

Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.

Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.

Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.

В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.

Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.

Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.

Как эта разница сказывается на парадоксе?

Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.

Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.

С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве - времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.

Возражение Дингля все еще сохраняется, так как точно те же вычисления можно было бы проделать и при предположении, что неподвижная система отсчета связана с кораблем, а не с Землей. Теперь в путь отправляется Земля, затем она возвращается обратно, меняя инерциальную систему отсчета. Почему бы не проделать те же вычисления и на основе тех же уравнений не показать, что время на Земле отстало? И эти вычисления были бы справедливы, не будь одного необычайной важности факта: при движении Земли вся Вселенная двигалась бы вместе с нею. При повороте Земли поворачивалась бы и Вселенная. Это ускорение Вселенной создало бы мощное гравитационное поле. А как уже было показано, тяготение замедляет часы. Часы на Солнце, например, тикают реже, чем такие же часы на Земле, а на Земле реже, чем на Луне. После выполнения всех расчетов оказывается, что гравитационное поле, созданное ускорением космоса, замедлило бы часы в космическом корабле по сравнению с земными в точности на столько же, на сколько они замедлялись в предыдущем случае. Гравитационное поле, конечно, не повлияло на земные часы. Земля неподвижна относительно космоса, следовательно, на ней и не возникало дополнительного гравитационного поля.

Поучительно рассмотреть случай, при котором возникает точно такая же разница во времени, хотя никаких ускорений нет. Космический корабль А пролетает мимо Земли с постоянной скоростью, направляясь к планете X. В момент прохождения корабля мимо Земли часы на нем устанавливаются на ноль. Корабль А продолжает свое движение к планете X и проходит мимо космического корабля Б, движущегося с постоянной скоростью в противоположном направлении. В момент наибольшего сближения корабль А по радио сообщает кораблю Б время (измеренное по своим часам), прошедшее с момента пролета им мимо Земли. На корабле Б запоминают эти сведения и продолжают с постоянной скоростью двигаться к Земле. Проходя мимо Земли, они сообщают на Землю сведения о времени, затраченном А на путешествие с Земли до планеты X, а также время, затраченное Б (и измеренное по его часам) на путешествие от планеты X до Земли. Сумма этих двух промежутков времени будет меньше, чем время (измеренное по земным часам), протекшее с момента прохождения А мимо Земли до момента прохождения Б.

Эта разница во времени может быть вычислена по уравнениям специальной теории. Никаких ускорений здесь не было. Конечно, в данном случае нет и парадокса близнецов, поскольку нет космонавта, улетевшего и возвратившегося назад. Можно было бы предположить, что путешествующий близнец отправился на корабле А, затем пересел на корабль Б и вернулся обратно; но этого нельзя сделать без перехода от одной инерциальной системы отсчета к другой. Чтобы сделать такую пересадку, он должен был бы подвергнуться действию потрясающе мощных сил инерции. Эти силы вызывались бы тем, что изменилась его система отсчета. При желании мы могли бы сказать, что силы инерции замедлили часы близнеца. Однако если рассматривать весь эпизод с точки зрения путешествующего близнеца, связав его с неподвижной системой отсчета, то в рассуждения войдет сдвигающийся космос, создающий гравитационное поле. (Главный источник путаницы при рассмотрении парадокса близнецов заключается в том, что положение может быть описано с разных точек зрения.) Независимо от принятой точки зрения уравнения теории относительности всегда дают одну и ту же разницу во времени. Эту разницу можно получить, пользуясь одной лишь специальной теорией. И вообще для обсуждения парадокса близнецов мы привлекли общую теорию лишь для того, чтобы опровергнуть возражения Дингля.

Часто бывает невозможно установить, какая из возможностей «правильная». Путешествующий близнец летает туда и обратно или это проделывает домосед вместе с космосом? Есть факт: относительное движение близнецов. Имеется, однако, два различных способа рассказать об этом. С одной точки зрения, изменение инерциальной системы отсчета космонавта, создающее силы инерции, приводит к разнице в возрасте. С другой точки зрения, действие сил тяготения перевешивает эффект, связанный с изменением Землей инерциальной системы. С любой точки зрения домосед и космос неподвижны по отношению друг к другу. Итак, положение полностью различно с разных точек зрения, несмотря на то что относительность движения строго сохраняется. Парадоксальная разница в возрасте объясняется независимо от того, какой из близнецов считается покоящимся. Нет необходимости отбрасывать теорию относительности.

А теперь может быть задан интересный вопрос.

Что, если в космосе нет ничего, кроме двух космических кораблей, А и Б? Пусть корабль А, используя свой ракетный двигатель, ускорится, совершит длинное путешествие и вернется назад. Будут ли предварительно синхронизированные часы на обоих кораблях вести себя по-прежнему?

Ответ будет зависеть от того, чьего взгляда на инерцию вы придерживаетесь - Эддингтона или Денниса Скьяма. С точки зрения Эддингтона - «да». Корабль А ускоряется по отношению к пространственно-временной метрике космоса; корабль Б - нет. Их поведение несимметрично и приведет к обычной разнице в возрасте. С точки зрения Скьяма- «нет». Имеет смысл говорить об ускорении только по отношению к другим материальным телам. В данном случае единственными предметами являются два космических корабля. Положение полностью симметрично. И действительно, в данном случае нельзя говорить об инерциальной системе отсчета потому, что нет инерции (кроме крайне слабой инерции, созданной присутствием двух кораблей). Трудно предсказать, что случилось бы в космосе без инерции, если бы корабль включил свои ракетные двигатели! Как выразился с английской осторожностью Скьяма: «Жизнь была бы совсем другой в такой Вселенной!»

Поскольку замедление часов путешествующего близнеца можно рассматривать как гравитационное явление, любой опыт, который показывает замедление времени под действием тяжести, представляет собой косвенное подтверждение парадокса близнецов. В последние годы было получено несколько таких подтверждений с помощью нового замечательного лабораторного метода, основанного на эффекте Мёссбауэра. Молодой немецкий физик Рудольф Мёссбауэр в 1958 г. открыл способ изготовления «ядерных часов», с непостижимой точностью отмеряющих время. Представьте часы, «тикающие пять раз в секунду, и другие часы, тикающие так, что после миллиона миллионов тиканий они отстанут лишь на одну сотую тиканья. Эффект Мёссбауэра способен сразу же обнаружить, что вторые часы идут медленнее первых!

Опыты с применением эффекта Мёссбауэра показали, что время вблизи фундамента здания (где тяжесть больше) течет несколько медленнее, чем на его крыше. По замечанию Гамова: «Машинистка, работающая на первом этаже здания Эмпайр Стейт Билдинг, старится медленнее, чем ее сестра-близнец, работающая под самой крышей». Конечно, эта разница в возрасте неуловимо мала, но она есть и может быть измерена.

Английские физики, используя эффект Мёссбауэра, обнаружили, что ядерные часы, помещенные на краю быстро вращающегося диска диаметром всего в 15 см несколько замедляют свой ход. Вращающиеся часы можно рассматривать как близнеца, непрерывно изменяющего свою инерциальную систему отсчета (или как близнеца, на которого воздействует гравитационное поле, если считать диск покоящимся, а космос - вращающимся). Этот опыт является прямой проверкой парадокса близнецов. Наиболее прямой опыт будет выполнен тогда, когда ядерные часы поместят на искусственном спутнике, который будет вращаться с большой скоростью вокруг Земли.



Затем спутник возвратят и показания часов сравнят с теми часами, которые оставались на Земле. Конечно, быстро приближается то время, когда космонавт сможет сделать самую точную проверку, захватив ядерные часы с собой в далекое космическое путешествие. Никто из физиков, кроме профессора Дингля, не сомневается, что показания часов космонавта после его возвращения на Землю будут немного не совпадать с показаниями ядерных часов, оставшихся на Земле.

Тем не менее мы всегда должны быть готовы к сюрпризам. Вспомните опыт Майкельсона - Морли!

Примечания:

Здание в Нью-Йорке, имеющее 102 этажа. - Прим. перев .


Хотите удивить всех своей молодостью? Отправляйтесь в длительный космический полет! Хотя, когда вернетесь, удивляться, скорее всего, уже будет некому...

Давайте проанализируем историю двух братьев-близнецов.
Один из них - «путешественник» отправляется в космический полёт (где скорость движения ракет околосветовая), второй - «домосед» остаётся на Земле. А вопрос-то в чем? - в возрасте братьев!
После космического путешествия останутся они одного возраста, или кто-то из них (и кто именно)станет старше?

Еще в 1905 г. Альбертом Эйнштейном в Специальной Теории Относительности (СТО) был сформулирован эффект релятивистского замедления времени , согласно которому часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями. Причем заметно это замедление при околосветовых скоростях.

Именно после выдвижения Эйнштейном СТО французским физиком Полем Ланжевеном был сформулирован «парадокс близнецов» (или иначе "парадокс часов") . Парадокс близнецов (иначе "парадокс часов") – это мысленный эксперимент, с помощью которого пытались объяснить возникшие противоречия в СТО.

Итак, вернемся к братьям –близнецам!

Домоседу должно показаться, что часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа.
А с другой стороны, относительно путешественника двигается Земля, поэтому он считает, что отстать должны часы домоседа.

Но, не могут оба брата быть одновременно один старше другого!
Вот в этом и парадокс …

С точки зрения существовавшей на время возникновения «парадокса близнецов» в данной ситуации возникало противоречие.

Однако, парадокса, как такового, в действительности не существует, т.к. надо помнить, что СТО - это теория для инерциальных систем отсчёта! А, система отсчёта по крайней мере одного из близнецов не было инерциальной!

На этапах разгона, торможения или разворота путешественник испытывал ускорения, и поэтому к нему в эти моменты неприменимы положения СТО.

Здесь надо пользоваться Общей Теорией Относительности , где с помощью расчетов доказывается, что:

Вернемся , к вопросу о замедлении времени в полете!
Если свет проходит какой либо путь за время t.
Тогда продолжительность полета корабля для «домоседа» будет Т= 2vt/c

А для «путешественника» на космическом корабле по его часам (основываясь на преобразовании Лоренца) пройдет всего To=Tумноженное на корень квадратный из (1-v2/c2)
В результате, расчеты (в ОТО) величины замедления времени с позиции каждого брата покажут, что брат- путешественник окажется моложе своего брата-домоседа.




Для примера можно просчитать мысленно полёт к звёздной системе Альфа Центавра, удалённой от Земли на расстояние в 4.3 световых года (световой год – расстояние, которое проходит свет за год). Пусть время измеряется в годах, а расстояния в световых годах.

Пусть половину пути космический корабль двигается с ускорением, близким к ускорению свободного падения, а вторую половину - с таким же ускорением тормозит. Проделывая обратный путь, корабль повторяет этапы разгона и торможения.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с подобным ускорением может совершить путешествие к галактике Андромеды (туда и обратно). На Земле за время такого полёта пройдёт около 5 млн лет.

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет.

Важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Уже проведенные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода часов при их движении подтверждают теорию относительности.

Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

Из преобразований Лоренца получаются следующие основные парадоксы (эффекты) СТО: постоянство скорости света в вакууме, равной ~300000 км\с. Эта скорость является предельной скоростью передачи любых взаимодействий; />! - замедление течения времени в быстро движущемся теле (пара- доке близнецов). Физические процессы в теле, движущемся со скоро- I стью V относительно некоторой инерциальной системы отсчета (ИСО), I протекают в 1/V(1 - v2/c2) раз медленнее, чем в данной ИСО;
I - масса тела ш0 определяется скоростью движения v. С увеличе- | нием скорости масса тела возрастает и становится равной m = mQ/V(I - сокращение продольных размеров тел в направлении их движения; относительность одновременности. События одновременные в одной ИСО в общем случае могут быть не одновременны в другой ИСО и др.
Рассмотрим, результаты некоторых экспериментов, которые приводятся в качестве доказательств правильности СТО , и дадим им свою оценку. . Постоянство скорости света. В главе 4 было показано, что скорость света зависит от плотности эфирного поля в каждой точке пространства, которая тем выше, чем ближе от нее находятся небесные тела, и чем массивнее они. Ho чем выше плотность эфирного поля, тем меньше скорость распространения света. Поэтому утверждение СТО
о постоянстве скорости света в вакууме не соответствует действительности. Скорость света определяется физическими характеристиками среды распространения.
Аналогично распространению света в эфирной среде распространяется, например, звук в воздушной или любой другой среде. Представим себе следующую картину: стоит тихая безветренная погода, летит самолет и в заданной точке пространства делает выстрел из орудия. Звуковая ударная волна будет распространяться с одинаковой скоростью во все стороны от точки пространства, в которой произведен выстрел. При этом скорость самолета и направление его полета к скорости звуковой волны и равномерности ее распространения в пространстве никакого отношения не имеют. Скорость звука равна = 336 м/сек (зависит от влажности воздуха и атмосферного давления).
Аналогия в распространении света и звука говорит о том, что любое возмущение распространяется всегда в некоторой среде. Скорость распространения возмущений не зависит от скорости источника волн, а определяется только свойствами среды распространения: света - в эфирной среде, звука - в воздушной среде. Скорость света и звука есть скорость распространения возмущений в среде их распространения, которая определяется свойствами самой среды и не зависит от скорости источника возмущения.
Мощность же источника возмущения (света, звука) определяет только частоту и амплитуду волны, но не скорость ее распространения. Замедление течения времени в быстро движущемся теле. Одним из методов экспериментальной проверки замедления времени является исследование зависимости жизни ц-мезонов (мюонов) от их энергии, т.е. скорости. Опыты показывают, что время жизни движущихся мюонов растет с ростом их скорости (энергии) в соответствии с законом замедления времени. С позиции же эфирной гипотезы рост времени жизни мюонов с ро- стом их скорости объясняется следующим образом.
Мюон имеет массу 206,7те (те - масса электрона) и распадается? по схеме ц- -> е~ + v + v. Отсюда видно, что дефект массы при распаде: пиона составляет 205,7ше, т.е. мюон в основном распадается в эфир- s.,. ную материю. При распаде мюона происходит выделение из его состава в окружающее пространство частичек эфирной материи - эфитонов. j. Как и любая другая движущаяся частица, мюон испытывает сопротив- ление своему движению со стороны эфирной среды, т.е. перед движу- j щимся мюоном происходит сгущение (увеличение плотности) эфирно- : го поля, которое как бы обволакивает мюон и тем самым замедляет его распад. С ростом скорости движения мюона плотность эфирного поля вокруг него возрастает и, соответственно, скорость распада мюона " уменьшается (время жизни увеличивается).
Время, как философская категория, определяющая форму и последо- вательные смены объектов и процессов, характеризует длительность их бытия. Поэтому абсолютного времени не существует. Ho последователь- ; ность смены объектов и процессов, длительность их бытия в каждой точке пространства определяется не ее координатами и скоростью, а плотностью эфищного поля, которая напрямую связана с плотностью распределения материальных масс в каждой рассматриваемой точке пространства.
XIII Генеральная конференция по мерам и весам в 1967 году в качестве эталона времени - секундЫ - приняла 9192631770 периодов излучений атомов цезия 113 при переходе их с одного уровня энергии на другой. Ho частота колебаний атомов вещества, по-видимому, должна определяться плотностью эфирного поля атома, которая, в свою очередь, зависит от плотности эфирного поля тела.
Отсюда продолжительность секунды на Земле может быть не равна ее продолжительности, например, на Солнце. Время в реально текущих событиях и процессах, происходящих в природе, хотя есть величина относительная, но оно никак не связано с пространством и скоростью движения тел в этом пространстве.
К.Э. Циолковский в своей беседе с A.J1. Чижевским о парадоксе времени в СТО сказал: «Ни Эйнштейну, ни его последователям не удалось даже частично решить проблему времени... Замедление времени в летящих со субсветовой скоростью кораблях по сравнению с земным, временем представляет собой либо фантазию, либо одну из очередных; ошибок нефилософского ума» . 3. Зависимость массы тела от скорости его движения.
Может ли масса тела зависеть от скорости его движения? СТО от- ! вечает: да. Ho так ли это? Если это закон, то он должен выполняться для любых тел и частиц, в том числе и для фотона (представим, что он существует).
Фотон является элементарной частицей, а его энергия должна определяться знаменитой формулой Эйнштейна E = mv2, где m - масса частицы движущаяся со скоростью v: m = Ri0Ml - v2/c2). Согласно второму постулату СТО скорость фотона всегда равняется скорости света, при которой масса фотона становится равной бесконечности.
Для выхода из этого положения есть три пути: либо согласиться, что в природе фотонов не существует, либо принять массу покой фотона равной нулю, либо фотоны имеют другую природу материи. Как и при создании СТО - исключили третье. Только при этом условии для энергии фотона получается конечная величина E = me2 = hv, где h - постоянная Планка (о ней ниже), v - частота световых колебаний. Так субъективно были связаны между собой корпускулярные и волновые свойства света.
Как было сказано выше (п. 3.5), формула Эйнштейна (Е = тс2) в своей философской основе неверна: масса и энергия - две объективные стороны материального мира и одна в другую переходить не могут. He может возрастать и масса тела при возрастании скорости его движения. $
Утверждается, что в качестве доказательства зависимости массы тела от его скорости являются результаты экспериментов на современных ускорителях, в которых учитывается эта зависимость (бетатрон, фазотрон и др.). Например, период обращения электронов в синхротроне практически не зависит от их энергии, уже начиная с энергии в несколько Мэв. Этот результат якобы говорит также о том, что скорость света является предельной скоростью передачи любых взаимодействий.
Результаты данных экспериментов говорят только о том, что скорость элементарной частицы в ускорителе практически перестает возрастать, начиная с энергии в несколько Мэв. Ho какими причинами можно объяснить данное явление? Увеличением массы частицы с ростом скорости ее движения и приближением ее скорости к предельной скорости? He только. В рамках эфирной гипотезы данное явление объясняется резким возрастанием сопротивления эфирной среды на движение частицы.
В познании законов Природы большую роль играют аналогии, т.е. перенос представлений из одной области в другую. Так, в частности, эффект Вавилова-Черенкова (ЭВЧ) является аналогом околозвукового излучения (конуса Маха). В ЭВЧ проявляется физический процесс взаимодействия эфирной среды с движущейся в ней частицей. При приближении скорости частицы к скорости света (скорости распространения

возмущений в эфирной среде) со- \ противление ее движению начинает резко возрастать, аналогично тому, как начинает резко возрастать сопротивление воздушной среды на движение самолета при приближении его скорости к скорости звука.
ЭВЧ возникает при достижении частицей (например, электроном) скорости V, превышающей фазовую скорость света в рассматриваемой прозрачной среде V gt; с/п, где п - показатель преломления света в данной среде. В соответствии с принципом Гюйгенса волновой фронт образует с направлением движения частицы угол CosQ = c/nv. Если пренебречь дисперсией (зависимостью п от частоты света), то излучение будет иметь резкий фронт, образующий конус с углом раствора я - 2Q и частицей в его вершине. Этот конус аналогичен конусу Маха, характеризующему ударную волну, возникающую, например, при движении сверхзвукового самолета в воздухе.
Как пишет В.JI. Гинзбург в своей книге “О науке, о себе и о других”, ЭВЧ «проявляется не только в средах с показателем пgt; I, но и при движении заряда в каналах, щелях и вблизи среды (диэлектрика)» . Данный факт свидетельствует о том, что эфирное поле материальных тел вблизи их поверхностей, особенно в каналах, щелях и других вогнутостях, имеет повышенную плотность с показателем преломления пgt; I.
Таким образом, ЭВЧ может являться одним из доказательств существования эфирной среда. Механизм проявления волновых процессов в эфирной среде тот же самый, что и в воздушной, водной и других средах.
При достижении скорости частицы равной скорости света должна возникнуть эфирная ударная волна, которая примерно в один миллион раз может быть сильнее ударной звуковой волны (в сZv = 300000/0,3 = = IO6 pas). Поэтому создать космический корабль, способный преодолеть эфирный (световой) барьер, по-видимому, невозможно.
" 4. Связь массы и энергии. Считается, что косвенной проверкой связи массы и энергии (Е = тс2) является строго выполняемое равенство ДЕ = Amc2, которое неопровержимо доказано огромным количеством опытных фактов.

Утверждение о том, что выполняемое равенство ДЕ = Дшс2 подтверждает правильность формулы Эйнштейна о связи массы и энергии (Е = тс2) является ошибочным. Выше было показано (п. 3.5), что дефект массы Дт возникает в процессе ядерного синтеза (объединения нуклонов в составе ядра) или в процессе деления ядра в результате перестройки эфирных полей нуклонов и ядер. Ho выделяемая при этом энергия образуется не за счет перехода массы в энергию, а в результате перехода потенциальной энергии эфитонов в кинетическую энергию при их выделении из состава ядра. Сокращение продольного размера тела в направлении его движения. Этот эффект якобы подтверждается результатами опытов Майкельсона. Ho эти результаты говррят только о том, что «эфирный ветер» не был обнаружен то ли из-за его отсутствия, тр ли из-за сокращения продольных размеров тела. Сокращение размеров тела нельзя установить никакими опытами, ибо любая «линейка» должна сокращать в той же пропорции, что и тело.
Таким образом, все результаты экспериментов, которые приводятся в качестве доказательств правильности СТО, легко объясняются в рамках эфирной гипотезы.