Метеорит: Классификация, типы, определение возраста, различия. Метеориты. Происхождение, морфология и химический состав настоящих метеоритов Какие бывают метеориты

Метеориты – космические тела, падающие на Землю со 2-й косм. скоростью, следовательно испытывают нагревание плавление, взрывПоверхность планет имеет характерный облик соударений

Типы метеоритов: 1) Каменные - гл. компоненты-силикаты MgFe, примеси металлов. 2) Железные- сплав Fe+ Ni. 3) Железокаменные – промежуточные. Минералы метеоритов (главные компоненты): 1) Силикаты (оливин, пироксен). 2) Плагиоклаз –редкий. 3) Слоистые силикаты (с водой – серпентин, хлорит) – крайне редкие. 4) Металлическое железо (теннесит и камасит) различаются по содержанию Ni. 5) сульфидFeS- троилит (малораспространенные): (в среднем метеориты – у/о вещество). Апатит, магнетит алмаз, лонсдейлит важны для понимания генезиса- MgS (MgS-FeS) CaS (ольтгамит) указывают на дефицит кислорода при образовании. Карбиды – FeC,MgC. Нитриды TiN. Проблема химии сложна – нарушены пропорции:Каменные – кг, (разрушаются в атмосфере), железные - десятки тыс. т. метеориты-находки метеориты-падения. -Статистика находок – преобладают железные. -Статистика падений – каменные

7. Хондриты. Формирование планет Солнечной системы

Каменные. Главный тип М.- каменные, среди них 90% составляют хондриты. Хондры –плотность 3, образование не в планетных гравитационных полях. Шарики свидетельствуют об образовании в жидком состоянии, структура раскристаллизации – закалочная. Состав- Оливин (скелетные кристаллы), пироксен (закалочные). Хондры – результат быстрого остывания силикатного вещества в неизвестных процессах (многократное испарение и конденсация). Вещество не прошло планетной стадии развития. Типы хондритов:Энстатитовые хондритовые MgSiO3 + Fe сам. (мет. фаза) – восст обстановка. Углистые хондриты- нет самородного Fe, есть магнетит. C углерода – до 2-3%, С H2O –первые %(Sp,хл).

Метеориты-находки метеориты-падения. -Первичное вещество? – обогащены летучими компонентами. Ахондриты (лишены хондритовой структуры). -В результате мех деформаций (соударений), появляются алмазы. -Брекчированные (обломки хондр). -Базальтоидные (пироксен плагиоклаз оливин) иного происхождения, (количество ихмало).

Железные метеориты:Теннесит+камасит. Структура пластинчатая, решетчатая - балки камасита. Виндманштеттеновая температура закалки структуры 600 грС. Важно –такие структуры не удалось повторить в лабораторных условиях(конденсация Fe), такая же структура железа в интерстициях в хондритах

Желваки троилита. - редкая примесь силикатов. -Железо-каменные метеориты: -Палласиты – равномерная смесьбез дифференциации на легкую и тяжелую фазы. -Роль их нижтожно мала. -История метеоритов запечатлена в изотопном составе. -Оказалось что вещество древнее- 4,55*10*9 лет. -Это возраст Земли, Луны и метеоритного вещества. -«космический возраст» метеоритов 100-200 млн. лет определено по короткоживущим изотопам, образующимся на поверхности М. под влиянием космического облучения,. -Т.е метеориты – молодые образования, возникли в результате дробления косм. тел



Распространенность элементов в метеоритах:Основное положение, разработанное еще Гольдшмитом по хондритам. Тождество распространенности элементов в хондритах и в Солнечной системе. Распространенность элементов в метеоритах:Обоснованно считается, что хондриты являются недифференцированным первичным веществом. Но есть и отличия от Солнечной системы:1.В метеоритах очень мало распространены Н и инертные газы. 2. Обеднены Pb, Ge, Cd, Bi, Hg, но не так сильно как инертными газами. Т.е Хондриты являются лишь твердой фракцией первичного вещества (без летучего вещества). С этой фракцией связывают состав планет земной группы. Главный процесс образования планет- конденсация газово-пылевого облака.

8. Закономерности строения планет земной группы

Планеты отличаются по размеру, плотности, массе, расстоянию от Солнца и другим параметрам. Они делятся на две группы: внутренние (Меркурий, Венера, Земля, Марс) и внешние (Юпитер, Сатурн,Уран, Нептун). Их разделяет кольцо астероидов между Марсом и Юпитером. По мере удаления от Солнца планеты, вплоть до Земли, увеличиваются и становятся более плотными (3,3–3,5 г/см3), а внешние планеты уменьшаются, начиная с Юпитера, и менее плотные (0,71–2,00 г/см3). Во внутренних планетах выделяются силикатная и металлическая фаза, последняя выражена у Меркурия (62 %). Чем ближе к Солнцу планета, тем больше она содержит металлического железа. Внешние планеты сложены газовыми компонентами (Н, Не, СН4, NH3 и др.). Планеты имеют по одному и более спутнику, за исключением Меркурия и Венеры.



9. Поверхностные оболочки планет

Планетные оболочки. Строение П. по вертикали - слоистое, выделяют неск. сферических оболочек, различающихся по хим. составу, фазовому состоянию, плотности и др. физ.-хим. характеристикам. Все П. земной группы имеют твёрдые оболочки, в к-рых сосредоточена почти вся их масса. Три из них - Венера, Земля и Марс - обладают газовыми атмосферами, Меркурий практически лишён атмосферы. Только Земля имеет жидкую оболочку (прерывистую) из воды - гидросферу, а также биосферу - оболочку, состав, структура и энергетика к-рой в существенных чертах обусловлены прошлой и совр. деятельностью живых организмов. Аналогом гидросферы на Марсе явл. криосфера - лёд Н 2 О в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы - дефицит воды на Венере. Жидкой воды там нет из-за высокой темп-ры, а количество водяного пара в атмосфере эквивалентно слою жидкости толщиной ≈ 1 см.Твёрдые оболочки П. находятся в состоянии гидростатич. равновесия, поскольку предел текучести горных пород соответствует весу столба пород высотой ≈10 км (для Земли). Поэтому форма твёрдых оболочек П., имеющих значительно большую толщину, почти сферическая. Из-за различия гравитац. сил различна макс. высота гор на П. (напр., на Земле ок. 10км, а на Марсе, где гравитац. поле слабее земного, ок. 25 км). Форма небольших спутников планет и астероидов может заметно отличаться от сферической.

10. Происхождение земных оболочек

Географическая оболочка образована двумя принципиально разными типами материи: атомарно-молекулярным «неживым» веществом и атомарно-организменным «живым» веществом. Первое может участвовать только в физико-химических процессах, в результате которых могут появляться новые вещества, но из тех же химических элементов. Второе обладает способностью воспроизводить себе подобных, но различного состава и облика. Взаимодействия первых требуют внешних энергетических затрат, тогда как вторые обладают собственной энергетикой и могут ее отдать при различных взаимодействиях. Оба типа вещества возникли одновременно и функционируют с момента начала формирования земных сфер. Между частями географической оболочки наблюдается постоянный обмен веществом и энергией, проявляющийся в форме атмосферной и океанической циркуляции, движения поверхностных и подземных вод, ледников, перемещения организмов и живого вещества и др. Благодаря движению вещества и энергии все части географической оболочки оказываются взаимосвязанными и образуют целостную систему

11. Строение и состав земных оболочек

Литосфера, атмосфера и гидросфера образуют практически непрерывные оболочки. Биосфера как совокупность живых организмов в определенной среде обитания не занимает самостоятельного пространства, а осваивает вышеназванные сферы полностью (гидросферу) или частично (атмосферу и литосферу).

Для географической оболочки характерно выделение зонально-провинциальных обособлений, которые называют ландшафтами, или геосистемами. Эти комплексы возникают при определенном взаимодействии и интеграции геокомпонентов. Простейшие геосистемы формируются при взаимодействии вещества косного уровня организации.

Химические элементы в географической оболочке находятся в свободном состоянии (в воздухе), в виде ионов (в воде) и сложных соединений (живые организмы, минералы и др.).

12. Строение и состав мантии

Ма́нтия - часть Земли (геосфера), расположенная непосредственно под корой и выше ядра. В мантии находится большая часть вещества Земли. Мантия есть и на других планетах. Земная мантия находится в диапазоне от 30 до 2900 км от земной поверхности.

Границей между корой и мантией служит граница Мохоровичича или, сокращённо, Мохо. На ней происходит резкое увеличение сейсмических скоростей - от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км.

Отличие состава земной коры и мантии - следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и лёгкую часть - кору и плотную и тугоплавкую мантию.

Мантия сложена главным образом ультраосновными породами: перовскитами, перидотитами, (лерцолитами, гарцбургитами, верлитами, пироксенитами), дунитами и в меньшей степени основными породами - эклогитами.

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.

Строение мантии

Процессы, идущие в мантии, оказывают самое непосредственное влияние на земную кору и поверхность земли, являются причиной движения континентов, вулканизма,землетрясений, горообразования и формирования рудных месторождений. Всё больше свидетельств того, что на саму мантию активно влияет металлическое ядро Земли.

13. Строение и состав земной коры

Строение земного шара. Главным объектом геологических, в том числе и минералогических, исследований является земная кора *, под которой подразумевается самая верхняя оболочка земного шара, доступная непосредственному наблюдению. Сюда относятся: нижняя часть атмосферы, гидросфера и верхняя часть литосферы, т. е. твердой части Земли.

Наибольшим признанием в настоящее время пользуется гипотеза В. М. Гольдшмидта о строении земного шара. Последний, по его представлениям, состоит из трех главных концентрически расположенных зон (геосфер):

наружной - литосферы;

промежуточной - халькосферы, богатой окислами и сернистыми соединениями металлов, преимущественно железа,

центральной - сидеросферы, представленной железо-никелевым ядром.

Литосфера в свою очередь подразделяется на две части:

верхнюю оболочку - до глубины 120 км,сложенную в основном обычными силикатовыми породами,

нижнюю - эклогитовую оболочку (120-1200 км), представленную силикатовыми породами, обогащенными магнием.

Состав земной коры.

Наиболее распространенными элементами являются: О, Si, Al, Fe, Ca, Na, К, Mg, Н, Ti, С и Cl. На долю остальных 80 элементов приходится всего лишь 0,71% (по весу)

Метеоритами называют не большие железные, каменные или железокаменные космические объекты, которые регулярно падают на поверхность планет солнечной системы, в том числе и Землю. Внешне они мало чем отличаются от камней или кусков железа, но таят в себе много загадок из истории вселенной. Метеориты помогают ученым раскрывать секреты эволюции небесных тел и изучать процессы, происходящие далеко за пределами нашей планеты.

Анализируя их химический и минеральный состав, можно проследить акономерности и связи между метеоритами различных видов. Но каждый их них является уникальным, с присущими только этому телу космического происхождения качествами.


Виды метеоритов по составу:


1. Каменные:

Хондриты;

Ахондриты.

2. Железо-каменные:

Палласиты;

Мезосидериты.

3. Железные.

Октаэдриты

Атакситы

4. Планетарные

Марсианские

Происхождение метеоритов

Их структура крайне сложна и зависит от многих факторов. Изучая все известные разновидности метеоритов, ученые пришли к выводу, что все они тесно связаны на генетическом уровне. Даже учитывая значительные расхождения в структуре, минеральном и химическом составе, их объединяет одно - происхождение. Все они представляют собой обломки небесных тел (астероидов и планет), движущиеся в космическом пространстве с большой скоростью.

Морфология

Чтобы достигнуть поверхности Земли, метеориту нужно проделать длинный путь через слои атмосферы. В результате значительной аэродинамической нагрузки и абляции (высокотемпературной атмосферной эрозии) они приобретают характерные внешние признаки:

Ориентировано-конусообразную форму;

Кору плавления;

Особый рельеф поверхности.

Отличительным признаком настоящих метеоритов является кора плавления. По цвету и структуре она может отличаться весьма существенно (в зависимости от типа тела космического происхождения). У хондритов она черная и матовая, у ахондритов – блестящая. В редких случаях кора плавления может быть светлой и полупрозрачной.

При длительном нахождении на поверхности Земли, поверхность метеорита разрушается под воздействием атмосферных влияний и процессов окисления. По этой причине значительная часть тел космического происхождения через определенное время практически ничем не отличается от кусков железа или камней.

Еще одним отличительным внешним признаком, которым обладает настоящий метеорит, является наличие на поверхности углублений, называемых пьезоглиптами или регмаглиптами. Напоминают отпечатки пальцев на мягкой глине. Их размеры и структура зависят от условий движения метеорита в атмосфере.

Удельный вес

1. Железные - 7,72. Значение может варьироваться в диапазоне 7,29-7,88.

2. Палласиты – 4,74.

3. Мезосидериты – 5,06.

4. Каменные – 3,54. Значение может варьироваться в диапазоне 3,1-3,84.

Магнитные и оптические свойства

Благодаря наличию значительного количества никелистого железа, настоящий метеорит проявляет свои уникальные магнитные свойства. Это используется для проверки подлинности тела космического происхождения и позволяет косвенно судить о минеральном составе.

Оптические свойства метеоритов (цвет и отражательная способность) выражены менее ярко. Проявляются только на поверхностях свежих изломов, но со временем вследствие окисления становятся все менее заметными. Сравнивая средние значения коэффициента яркости метеоритов с альбедо небесных тел солнечной системы, ученые пришли к выводу, что некоторые планеты (Юпитер, Марс), их спутники, а также астероиды по своим оптическим свойствам схожи с метеоритами.

Химический состав метеоритов

Учитывая астероидное происхождение метеоритов, их химический состав может весьма существенно отличаться между объектами разных типов. Это оказывает значительное влияние на магнитные и оптические свойства, а также удельный вес тел космического происхождения. Наиболее распространенными химическими элементами в метеоритах являются:

1. Железо (Fe). Является основным химическим элементом. Встречается в виде никелистого железа. Даже в каменных метеоритах среднее содержание Fe составляет 15,5%.

2. Никель (Ni). Входит в состав никелистого железа, а также минералов (карбиды, фосфиды, сульфиды и хлориды). По сравнению с Fe встречается в 10 раз реже.

3. Кобальт (Co). В чистом виде не обнаружено. По сравнению с никелем встречается в 10 раз реже.

4. Сера (S). Входит в состав минерала троилита.

5. Кремний (Si). Входит в состав силикатов, образующих основную массу каменных метеоритов.

3. Ромбический пироксен. Часто встречается в каменных метеоритах, среди силикатов – второй по распространенности.

4. Моноклинный пироксен. В метеоритах встречается редко и в малых количествах, исключение – ахондриты.

5. Плагиоклаз. Распространенный породообразующий минерал, входящий в группу полевых шпатов. Его содержание в метеоритах варьируется в широких пределах.

6. Стекло. Является основной составляющей часть каменных метеоритов. Содержится в хондрах, а также встречается в виде включений в минералах.

Метеоритом называют упавшее на поверхность планеты твердое тело естественного космического происхождения размером от 2 мм. Тела, достигшие поверхности планеты и имеющие размеры от 10 мкм до 2 мм, принято именовать микрометеоритами; более мелкие частицы - это космическая пыль. Метеориты характеризуются разным составом и структурой. Эти особенности отражают условия их происхождения и позволяют ученым более уверенно судить об эволюции тел Солнечной системы.

Типы метеоритов по химическому составу и структуре

Метеоритное вещество в основном сложено минеральными и металлическими компонентами в различных пропорциях. Минеральная часть - это железо-магниевые силикаты, металлическая представлена никелистым железом. Часть метеоритов содержит примеси, определяющие некоторые важные особенности и несущие информацию о происхождении метеорита.

Как делятся метеориты по химическому составу? Традиционно выделяют три большие группы:

  • Каменные метеориты - силикатные тела. Среди них выделяют хондриты и ахондриты, имеющие важные структурные различия. Так, хондритам свойственно наличие включений - хондр - в минеральной матрице.
  • Железные метеориты, состоящие преимущественно из никелистого железа.
  • Железокаменные - тела промежуточного строения.

Помимо классификации, учитывающей химический состав метеоритов, существует также принцип подразделения «небесных камней» на две обширные группы по структурным признакам:

  • дифференцированные, к которым относятся только хондриты;
  • недифференцированные - обширная группа, включающая все остальные типы метеоритов.

Хондриты - остатки протопланетного диска

Отличительная черта этого типа метеоритов - хондры. Они представляют собой большей частью силикатные образования эллиптической или сферической формы, размером около 1 мм. Элементный состав хондритов практически идентичен составу Солнца (если исключить наиболее летучие, легкие элементы - водород и гелий). На основании этого факта ученые пришли к выводу, что хондриты образовались на заре существования Солнечной системы непосредственно из протопланетного облака.

Эти метеориты никогда не были частью крупных небесных тел, уже прошедших магматическую дифференциацию. Сформировались хондриты путем конденсации и аккреции протопланетного вещества, при этом испытав некоторое тепловое воздействие. Вещество хондритов довольно плотное - от 2,0 до 3,7 г/см 3 , - но хрупкое: метеорит можно раскрошить рукой.

Рассмотрим подробнее, какими по составу бывают метеориты этого типа, наиболее распространенного (85,7 %) из всех.

Углистые хондриты

Для углистых характерно большое содержание железа в силикатах. Их темный цвет обусловлен присутствием магнетита, а также таких примесей, как графит, сажа и органические соединения. Кроме того, углистые хондриты содержат связанную в гидросиликатах (хлорит, серпентин) воду.

По ряду признаков С-хондриты делятся на несколько групп, одна из которых - CI-хондриты - представляет исключительный интерес для ученых. Эти тела уникальны тем, что не содержат хондр. Предполагается, что вещество метеоритов этой группы вообще не подвергалось термическому воздействию, то есть осталось практически неизменным со времени конденсации протопланетного облака. Это самые древние тела Солнечной системы.

Органика в составе метеоритов

В углистых хондритах обнаруживаются такие органические соединения, как ароматические и а также карбоновые кислоты, азотистые основания (в живых организмах они входят в состав нуклеиновых кислот) и порфирины. Несмотря на высокие температуры, которым подвергается метеорит при прохождении через земную атмосферу, углеводороды сохраняются благодаря образованию коры плавления, служащей хорошим теплоизолятором.

Эти вещества, вероятнее всего, имеют абиогенное происхождение и свидетельствуют о процессах первичного органического синтеза уже в условиях протопланетного облака, учитывая возраст углистых хондритов. Так что молодая Земля уже на самых ранних этапах своего существования располагала исходным материалом для возникновения жизни.

Обыкновенные и энстатитовые хондриты

Наиболее часто встречаются обыкновенные хондриты (отсюда и их название). Эти метеориты содержат помимо силикатов никелистое железо и несут следы теплового метаморфизма при температурах 400-950 °C и ударных давлениях до 1000 атмосфер. Хондры этих тел часто имеют неправильную форму; в них присутствует обломочный материал. К обыкновенным хондритам относится, например, Челябинский метеорит.

Энстатитовые хондриты характеризуются тем, что железо в них содержится в основном в металлической форме, а силикатный компонент богат магнием (минерал энстатит). В составе метеоритов этой группы меньше летучих соединений, чем у прочих хондритов. Они подвергались тепловому метаморфизму при температурах 600-1000 °C.

Метеориты, относящиеся к обеим этим группам, часто представляют собой обломки астероидов, то есть они побывали в составе протопланетных тел небольшого размера, в которых не проходили процессы дифференциации недр.

Дифференцированные метеориты

Обратимся теперь к рассмотрению того, какие типы метеоритов выделяются по химическому составу в данной обширной группе.

Во-первых, это каменные ахондриты, во-вторых, железокаменные и, в-третьих, железные метеориты. Объединяет их то, что все представители перечисленных групп являются фрагментами массивных тел астероидного или планетного размера, недра которых подверглись дифференциации вещества.

Среди дифференцированных метеоритов встречаются как обломки астероидов, так и тела, выбитые с поверхности Луны или Марса.

Особенности дифференцированных метеоритов

Ахондрит не содержит особых включений и, будучи беден металлом, представляет собой силикатный метеорит. По составу и структуре ахондриты близки к земным и лунным базальтам. Большой интерес представляет группа метеоритов HED, предположительно происходящие из мантии Весты, которая считается сохранившейся протопланетой земной группы. Они схожи с ультраосновными породами верхней мантии Земли.

Железокаменные метеориты - палласиты и мезосидериты - характеризуются наличием силикатных включений в матрице из никелистого железа. Палласиты получили свое название в честь найденного в XVIII веке под Красноярском знаменитого Палласова железа.

Большинство железных метеоритов отличаются интересной структурой - «видманштеттеновыми фигурами», образованными никелистым железом с разным содержанием никеля. Такая структура сформировалась в условиях медленной кристаллизации никелистого железа.

История вещества «небесных камней»

Хондриты - это посланцы из древнейшей эпохи становления Солнечной системы - времени аккумуляции допланетного вещества и зарождения планетезималей - зародышей будущих планет. Радиоизотопные датировки хондритов показывают, что возраст их превышает 4,5 млрд лет.

Что касается дифференцированных метеоритов, то они демонстрируют нам формирование структуры планетных тел. Их вещество имеет отчетливые признаки плавления и перекристаллизации. Образование их могло происходить в разных частях дифференцированного родительского тела, впоследствии подвергшегося полному или частичному разрушению. Это определяет, какой химический состав метеоритов, какая структура образовались в каждом конкретном случае, и служит основой для их классификации.

Дифференцированные небесные гости также содержат информацию о последовательности процессов, протекавших в недрах родительских тел. Таковы, например, железокаменные метеориты. Состав их свидетельствует о неполном разделении легких силикатных и тяжелых металлических компонентов древней протопланеты.

В процессах столкновения и дробления астероидов разных типов и возрастов в поверхностных слоях многих из них могло происходить накопление перемешанных фрагментов различного происхождения. Затем в результате нового соударения подобный «композитный» осколок выбивался с поверхности. Примером может служить метеорит Кайдун, содержащий частицы нескольких типов хондритов и металлическое железо. Так что история метеоритного вещества зачастую весьма сложна и запутанна.

В настоящее время большое внимание уделяется исследованию астероидов и планет с помощью автоматических межпланетных станций. Безусловно, оно будет способствовать новым открытиям и более глубокому пониманию происхождения и эволюции таких свидетелей истории Солнечной системы (и нашей планеты в том числе), как метеориты.

Железные метеориты представляют собой самую большую группу находок метеоритов за пределами жарких пустынь Африки и льдов Антарктиды, поскольку неспециалисты легко могут их опознать по металлическому составу и большому весу. Кроме того, они выветриваются медленнее каменных метеоритов и, как правило, имеют значительно большие размеры в силу высокой плотности и прочности, препятствующих их разрушению при прохождении через атмосферу и падении на землю.Несмотря на этот факт, а также то, что на железные метеориты общей массой более 300 тонн приходится более 80% общей массы всех известных метеоритов, они сравнительно редки. Железные метеориты часто находят и опознают, однако на их долю приходится лишь 5,7% всех наблюдавшихся падений.С точки зрения классификации железные метеориты делятся на группы по двум совершенно разным принципам. Первый принцип - своего рода реликт классической метеоритики и подразумевает разделение железных метеоритов по структуре и доминирующему минеральному составу, а второй представляет собой современную попытку разделения метеоритов на химические классы и соотнесения их с определенными родительскими телами.Структурная классификация Железные метеориты в основном состоят из двух железо-никелевых минералов - камазита с содержанием никеля до 7,5% и тэнита с содержанием никеля от 27% до 65%. Железные метеориты имеют специфическую структуру, зависящую от содержания и распределения того или другого минерала, на основании которой классическая метеоритика делит их на три структурных класса.Октаэдриты Гексаэдриты Атакситы Октаэдриты
Октаэдриты состоят из двух фаз металла – камасита (93,1% железа, 6,7% никеля, 0,2 кобальта) и тэнита (75,3% железа, 24,4% никеля, 0,3 кобальта) которые образуют объёмную восьмигранную структуры. Если такой метеорит отполировать и обработать его поверхность азотной кислотой, на поверхности проявляется так называемая видманштеттовая структура, восхитительная игра геометрических фигур. Эти группы метеоритов различаются в зависимости от ширины полос камазита: крупно структурные бедные никелем широкополосные октаэдриты с шириной полосы более 1,3 мм, средние октаэдриты с шириной полосы от 0,5 до 1,3 мм, а также мелкозернистые богатые никелем октаэдриты с шириной полосы менее 0,5 мм.Гексаэдриты Гексаэдриты почти полностью состоят из бедного никелем камазита и при полировке и травлении не обнаруживают видманштеттовой структуры. Во многих гексаэдритах после травления проявляются тонкие параллельные линии, так называемые неймановые линии, отражающие структуру камазита и, возможно, являющиеся следствием ударного воздействия, столкновения родительского тела гексаэдритов с другим метеоритом.Атакситы После травления атакситы не обнаруживают никакой структуры, но, в отличие от гексаэдритов, они почти полностью состоят из тэнита и содержат лишь микроскопические ламеллы камазита. Они относятся к самым богатым никелем (содержание которого превышает 16%), но и самым редким метеоритам. Однако мир метеоритов - это удивительный мир: как ни парадоксально, самый большой метеорит на Земле, метеорит Гоба из Намибии, весом более 60 тонн, относится к редкому классу атакситов.
Химическая классификация
Помимо содержания железа и никеля, метеориты различаются по содержанию других минералов, а также по наличию следов редкоземельных металлов, таких как германий, галлий, иридий. Исследования соотношения содержания металлических микроэлементов и никеля показали наличие определенных химических групп железных метеоритов, причем считается, что каждая из них соответствует конкретному родительскому телу.Здесь мы кратко коснемся тринадцати установленных химических групп, причем следует отметить, что в них не попадают около 15% известных железных метеоритов, которые по химическому составу уникальны. По сравнению с железо-никелевым ядром Земли большинство железных метеоритов представляют ядра дифференцированных астероидов или планетоидов, которые должны были разрушиться вследствие катастрофического ударного воздействия, прежде чем упасть на Землю в виде метеоритов!Химические группы: IAB IC IIAB IIC IID IIE IIF IIIAB IIICD IIIE IIIF IVA IVB UNGR Группа IAB Значительная часть железных метеоритов принадлежит к этой группе, в которой представлены все структурные классы. Особенно часто среди метеоритов этой группы встречаются крупные и средние октаэдриты, а также богатые силикатами железные метеориты, т.е. содержащие более или менее крупные включения различных силикатов, химически близкородственных уинонаитам, редкой группе примитивных ахондритов. Поэтому считается, что обе группы происходят от одного и того же родительского тела. Нередко метеориты группы IAB содержат включения железосульфидного троилита бронзового цвета и черные графитовые зерна. Не только наличие этих рудиментарных форм углерода указывает на близкое родство группы IAB с каменноугольными хондритами; такой вывод позволяет сделать и распределение микроэлементов.Группа IC Значительно более редкие железные метеориты группы IC имеют большое сходство с группой IAB с той разницей, что они содержат меньше редкоземельных микроэлементов. Структурно они относятся к крупнозернистым октаэдритам, хотя известны и железные метеориты группы IC, имеющие другую структуру. Типичным для этой группы является частое наличие темных включений цементитного когенита при отсутствии силикатных включений.Группа IIAB Метеориты этой группы являются гексаэдритами, т.е. состоят из очень крупных отдельных кристаллов камазита. Распределение микроэлементов в железных метеоритах группы IIAB напоминает их распределение в некоторых каменноугольных хондритах и энстатитных хондритах, из чего можно заключить, что железные метеориты группы IIAB происходят от одного родительского тела.Группа IIC К железным метеоритам группы IIC относятся самые мелкозернистые октаэдриты с полосами камазита шириной менее 0,2 мм. Так называемый “заполняющий” плессит, продукт особенно тонкого синтеза тэнита и камазита, встречающийся также в других октаэдритах в переходной форме между тэнитом и камазитом, является основой минерального состава железных метеоритов группы IIC.Группа IID Метеориты этой группы занимают среднее положение на переходе к мелкозернистым октаэдритам, отличаясь сходным распределением микроэлементов и очень высоким содержанием галлия и германия. Большинство метеоритов группы IID содержат многочисленные включения железо-никелевого фосфата - шрайберзита, чрезвычайно твердого минерала, который часто затрудняет резку железных метеоритов группы IID.Группа IIE Структурно железные метеориты группы IIE относятся к классу среднезернистых октаэдритов и часто содержат многочисленные включения различных богатых железом силикатов. При этом, в отличие от метеоритов группы IAB, силикатные включения имеют форму не дифференцированных обломков, а затвердевших, часто четко выраженных капель, которые придают железным метеоритам группы IIE оптическую привлекательность. Химически метеориты группы IIE близкородственны Н-хондритам; возможно, обе группы метеоритов происходят от одного и того же родительского тела.Группа IIF В эту небольшую группу входят плесситовые октаэдриты и атакситы, имеющие высокое содержание никеля, а также очень высокое содержание таких микроэлементов, как германий и галлий. Существует определенное химическое сходство как с палласитами группы “Игл”, так и с каменноугольными хондритами групп СО и CV. Возможно, палласиты группы “Игл” происходят от того же родительского тела.Группа IIIAB После группы IAB самой многочисленной группой железных метеоритов является группы IIIAB. Структурно они относятся к крупно и среднезернистым октаэдритам. Иногда в этих метеоритах находят включения троилита и графита, в то время как силикатные включения крайне редки. Тем не менее существует сходство с палласитами основной группы, и сегодня считается, что обе группы происходят от одного родительского тела.
Группа IIICD Структурно метеориты группы IIICD являются самыми мелкозернистыми октаэдритами и атакситами, а по химическому составу они близкородственны метеоритам группы IAB. Как и последние, железные метеориты группы IIICD часто содержат силикатные включения, и сегодня считается, что обе группы происходят от одного родительского тела. Вследствие этого они также имеют сходство с уинонаитами, редкой группой примитивных ахондритов. Для железных метеоритов группы IIICD типичным является наличие редкого минерала гексонита (Fe,Ni) 23 C 6 , который присутствует исключительно в метеоритах.Группа IIIE Структурно и химически железные метеориты группы IIIE имеют большое сходство с метеоритами группы IIIAB, отличаясь от них уникальным распределением микроэлементов и типичными включениями гексонита, что роднит их с метеоритами группы IIICD. Поэтому не совсем ясно, образуют ли они самостоятельную группу, происходящую от отдельного родительского тела. Возможно, ответ на этот вопрос дадут дальнейшие исследования.Группа IIIF Структурно эта маленькая группа включает октаэдриты, от крупнозернистых до мелкозернистых, но отличается от других железных метеоритов как сравнительно небольшим содержанием никеля, так и очень низким содержанием и уникальным распределением некоторых микроэлементов.Группа IVA Структурно метеориты группы IVA относятся к классу мелкозернистых октаэдритов и отличаются уникальным распределением микроэлементов. Они имеют включения троилита и графита, в то время как силикатные включения крайне редки. Примечательным исключением является только аномальный метеорит Штейнбах, историческая немецкая находка, поскольку он почти наполовину состоит из красно-бурого пироксена в железо-никелевой матрице типа IVA. В настоящее время бурно обсуждается вопрос о том, является ли он продуктом ударного воздействия на IVA-родительское тело или родственником палласитов и, следовательно, железокаменным метеоритом.Группа IVB
Все железные метеориты группы IVB имеют высокое содержание никеля (около 17%) и структурно относятся к классу атакситов. Однако при наблюдении под микроскопом можно заметить, что они состоят не из чистого тэнита, а скорее имеют плесситовую природу, т.е. образовались за счет тонкого синтеза камасита и тэнита. Типичным примером метеоритов группы IVB является Гоба из Намибии, самый большой метеорит на Земле.Группа UNGR Этим сокращением, означающим “не входящие в группу”, обозначаются все метеориты, которые нельзя отнести к вышеупомянутым химическим группам. Несмотря на то, что в настоящее время исследователи делят эти метеориты на двадцать различных маленьких групп, для признания новой метеоритной группы, как правило, необходимо, чтобы в нее входили как минимум пять метеоритов, как установлено требованиями Международного номенклатурного комитета Метеоритного общества. Наличие этого требования препятствует поспешному признанию новых групп, которые в дальнейшем оказываются лишь ответвлением другой группы.