Главные направления и основные пути биологической эволюции. Основные пути и направления эволюции органического мира. Биологический прогресс и регресс

Все живые организмы, которые в наше время встречаются на Земле, прошли длинный путь эволюционного развития, результатом которого было появление высокоорганизованных форм жизни. Известные русские ученые Северцов А.Н. и Шмальгаузеном И.И. провели огромную работу по теоретическому анализу этого эволюционного развития и выделили 3 основных направления эволюционного процесса:

  1. ароморфоз;
  2. идиоадаптация;
  3. дегенерация.

Ароморфоз (морфофизиологический прогресс) – это приспособительные эволюционные изменения: происходит усложнение строения организма и его функций, в результате общий уровень его организации и жизнедеятельности повышается. Появление ароморфозов – процесс очень длительный, основанный на наследственной изменчивости и естественного отбора. При дальнейшей эволюции ароморфозы сохраняются, приводя к возникновению больших систематических групп – типов и классов.


К самым важным ароморфозам на ранних этапах развития жизни на Земле можно отнести следующие: возникновение фотосинтеза, половой процесс и появление многоклеточных организмов. Позднее благодаря ароморфозам произошел выход растений на сушу, и, кроме того переход растений от размножения спорами к размножению семенами. У беспозвоночных организмов произошло появление третьего зародышевого листка (мезодермы) и двусторонней симметрии (тоже ароморфозы). Это привело к дифференциации тела на ткани и органы, которые выполняют специфические функции. У позвоночных животных также произошли прогрессивные изменения: появилось легочное дыхание, у панцирных рыб развились челюсти, произошло возникновение внутреннего оплодотворения, ороговение кожи, усложненилось строения сердца и легких и других органов.

Идиоадаптация – частные эволюционные изменения приспособительного характера. Они не затрагивают общий уровень организации. Данные изменения являются результатом приспособления к конкретным условиям окружающей среды. В качестве примеров идиоадаптации у животных могут служить защитная окраска, приспособленость земноводных к жизни на суше, разная форма крыльев и клюва у птиц и т.п.. У растений это различные приспособления цветка к опылению, у семян и плодов — к распространению, а у листьев – к уменьшению испарения.

Все описанные выше направления эволюции связаны между собой тесным образом. Как правило, ароморфозы в процессе эволюции возникают довольно редко и всегда приводят к появлению новых и более высокоорганизованных форм, которые могут приспосабливаться к другим средам обитания. Затем эволюционный процесс идет путем идиоадаптаций. Это позволяет организмам обживать новые экологические ниши. А вот дегенерация может наступить в случае глубокого частного приспособления к определенным условиям среды, т.е. в результате идиоадаптации, но в то же самое время создаются условия, при которых могут возникнуть новые идиоадаптации.

В отличие от биологического прогресса биологический регресс можно охарактеризовать снижением уровня приспособленности к условиям обитания. В результате этого численность особей вида уменьшается, его ареал сокращается, число и разнообразие популяций также уменьшается. В итоге биологический регресс приводит к вымиранию данного вида. Например, биологическому регрессу подверглись трилобиты, ракоскорпионы, динозавры, псилофиты, семенные папоротники и т.д. В настоящее время биологический регресс происходит у плаунов, хвощей, черных тараканов, черных крыс, зубров, бобров, выхухолей и т.д., список можно продолжить. В этом процессе одним из главных факторов сейчас становится деятельность человека: это как и прямое истребление (уссурийский тигр, зубры), так и сокращение численности видов и их ареалов в результате хозяйственной деятельности (различные степные растения и животные).

В трудах академиков А. Н. Северцова и И. И. Шмальгаузена выделены два направления эволюции: биологический прогресс и биологический регресс.

Направления эволюции

В процессе развития органического мира проявляется у тех систематических категорий, которые оказываются наиболее приспособленными к окружающим условиям. В связи с этим значительно увеличивается численность особей этой группы организмов и расширяется занимаемый ими ареал. Образуются новые виды, подвиды, популяции.

Следовательно, биологический прогресс проявляется у процветающих видов или более высокого ранга систематической категории. В настоящее время в состоянии биологического прогресса находятся некоторые группы покрытосеменных растений, круглых червей, насекомых, костистых рыб, птиц, млекопитающих.

Биологический регресс связан со снижением приспособленности организмов к среде, снижением численности и сокращением ареала. Таким видам грозит вымирание! В настоящее время ряду видов растений и животных грозит вымирание, нередко в связи с деятельностью человека. Такие виды занесены в Красную книгу и для многих из них опасность вымирания уже предотвращена (например, сайгак, зубр и др.).

В связи с изменениями солевого режима Азовского моря в нем грозит гибель ряду планктонных организмов, способных жить лишь в опресненной воде. Вслед за этим возникает риск вымирания тех видов рыб, которые питаются соответственными видами планктонных организмов. В связи с этим разрабатываются проекты восстановления прежнего содевого режима Азовского моря.

Способы реализации эволюции

Биологический прогресс, как показал А. Н. Северцов, может достигаться не только морфофизиологическим прогрессом, как у цветковых растений и позвоночных животных, но и другими путями, без усложнения организации. Иногда это достигается даже в результате упрощения организации (как у ленточных червей). А. Н. Северцов установил три следующих пути реализации эволюции: ароморфозы, идиоадаптации, общую дегенерацию.

Ароморфоз

К ароморфозам относят изменения, повышающие морфофизиологическую организацию, общую жизнедеятельность организмов. Это узловые моменты эволюции, ими обусловлено возникновение новых групп органического мира - классов, типов. В качестве примеров ароморфозов можно привести явление многоклеточности в органическом мире, образование тканей и органов у растений, обеспечивающие переход их из воды в новую, более сложную для существования среду - на сушу.


Превращение парных плавников кистеперых рыб в парные конечности земноводных явилось предпосылкой к выходу позвоночных на сушу. Появление зародышевых оболочек вокруг яйца обеспечило позвоночным развитие зародышей на суше. Благодаря этому сформировались настоящие наземные позвоночные, не связанные с водой в период размножения.

Развитие трех, а затем четырехкамерного сердца обеспечило им теплокровность и возможность завоевания всех сред обитания. Северцов отмечает, что ароморфозы обычно связаны со скачкообразными изменениями. Прогрессивная эволюция, таким образом, совершается как бы ступенями вверх.

Идиоадаптация

Идиоадаптации - изменения, не повышающие уровень организации, но делающие данный вид приспособленным к узким конкретным условиям жизни. Сравним строение тела у птиц: курицы, утки, орла, ласточки, дятла, пищухи и многих других. Уровень организации один, но, например, форма и величина клюва у всех различная, приспособленная к определенной пище.

У млекопитающих, обитающих в воде (китообразные) и на суше, уровень организации один (в строении, например, органов кровообращения, дыхания, выделения), но форма тела, конечности - различны.


Типичными примерами идиоадаптаций могут служить покровительственная окраска тела у животных; у растений - колючки и шипы, различные приспособления для распространения семян. Путем идиоадаптаций возникают низшие систематические категории - виды, роды, семейства.

Общая дегенерация

Для данного направления характерны изменения, связанные с упрощением организации и снижением активных функций ряда органов. Представляет ступеньку вниз в развитии организма (явление, противоположное ароморфозу), но и оно может способствовать лучшей приспособленности. Здесь упрощение организации особи приводит к биологическому прогрессу вида, его процветанию.

В истории развития органического мира различные направления эволюционного процесса взаимосвязаны. На более высокую ступень организации поднимают ароморфозы. За ароморфозами следуют идиоадаптации, а в ряде случаев возникает и общая дегенерация, но и за ней появляются идиоадаптации.

Вопросы происхождения жизни и ее развития с древних времен озадачивали ученых. Люди всегда стремились приблизиться к этим тайнам, сделав мир, таким образом, более понятным и предсказуемым. Многие века господствовала точка зрения о божественном начале Вселенной и жизни. Теория эволюции же завоевала почетное место главной и наиболее вероятной версии развития всего живого на нашей планете относительно недавно. Основные положения ее сформулировал Чарльз Дарвин в середине XIX века. Последовавшее за этим столетие подарило миру массу открытий в области генетики и биологии, которые сделали возможным доказать справедливость учения Дарвина, расширить его, объединить с новыми данными. Так появилась синтетическая теория эволюции. Она вобрала в себя все идеи знаменитого исследователя и результаты научных изысканий в различных областях от генетики до экологии.

От особи до класса

Биологическая эволюция представляет собой историческое развитие организмов, основанное на уникальных процессах функционирования генетической информации в определенных условиях окружающей среды.

Начальный этап всех преобразований, в итоге приводящий к появлению нового вида, — это микроэволюция. Такие изменения с течением времени накапливаются и заканчиваются формированием нового более высокого уровня организации живых существ: рода, семейства, класса. Образование надвидовых структур принято называть макроэволюцией.

Аналогичные процессы

Оба уровня в основе своей протекают одинаково. Движущими силами и микро-, и макроизменений являются естественный отбор, изоляция, наследственность, изменчивость. Существенное различие двух процессов в том, что между разными видами практически исключено скрещивание. В результате в основе макроэволюции лежит межвидовой отбор. Огромный вклад в микроэволюцию вносит свободный обмен генетической информацией между особями одного вида.

Схождение и расхождение признаков

Главные направления эволюции могут протекать в нескольких формах. Мощный источник разнообразия жизни — это дивергенция признаков. Она действует как внутри конкретного вида, так и на более высоких уровнях организации. Условия среды и естественный отбор приводят к разделению одной группы на две и более, отличающиеся определенными признаками. На уровне вида дивергенция может быть обратима. В этом случае образовавшиеся популяции вновь сливаются в одну. На более высоких же уровнях процесс необратим.

Еще одна форма — филетическая эволюция, предполагающая преобразование вида без выделения внутри него отдельных популяций. Каждая новая группа является потомком предыдущей и предком для последующей.

Значительный вклад в разнообразие жизни вносит и конвергенция или «схождение» признаков. В процессе развития неродственных групп организмов, находящихся под влиянием одинаковых условий среды, у особей формируются аналогичные органы. Они имеют сходное строение, но разное происхождение и выполняют практически одинаковые функции.

К конвергенции очень близок параллелизм - форма эволюции, когда первоначально дивергирующие группы развиваются похожим образом под влиянием одинаковых условий. Конвергенцию и параллелизм разделяет довольно тонкая грань, и зачастую бывает непросто отнести эволюцию конкретной группы организмов к той или иной форме.

Биологический прогресс

Главные направления эволюции впервые были изложены в трудах А.Н. Северцова. Он предложил выделить понятие биологического прогресса. В работах ученого изложены способы его достижения, а также основные пути и направления эволюции. Идеи Северцова развивал И.И. Шмальгаузен.

Главные направления эволюции органического мира, выделенные учеными, — это биологический прогресс, регресс и стабилизация. По названиям легко понять, чем эти процессы отличаются друг от друга. Прогресс приводит к формированию новых признаков, повышающих степень адаптации организма к среде. Регресс выражается в сокращении численности группы и ее разнообразия, приводя в итоге к вымиранию. Стабилизация влечет закрепление приобретенных признаков и передачи их от поколения к поколению в относительно неизменных условиях.

В более узком смысле, обозначая главные направления органической эволюции, подразумевают именно биологический прогресс и его формы.

Выделяют три основных способа достижения биологического прогресса:

  • арогенез;
  • аллогенез;
  • катагенез.

Арогенез

Данный процесс делает возможным повышение общего уровня организации в результате формирования ароморфоза. Предлагаем выяснить, что понимается под этим понятием. Так, ароморфоз — направление эволюции, приводящее к качественному изменению живых организмов, сопровождающемуся их усложнением и повышением адаптивных свойств. В результате изменения строения становится более интенсивным функционирование особей, они получают возможность использовать новые, ранее незадействованные ресурсы. Как следствие организмы становятся в некотором смысле свободными от условий среды. На более высоком уровне организации их приспособления носят в значительной степени универсальный характер, дающий способность развиваться независимо от окружающих условий.

Хорошим является преобразование кровеносной системы позвоночных: появление четырех камер в сердце и разделение двух кругов кровообращения - большого и малого. Эволюция растений характеризуется значительным скачком вперед в результате формирования пыльцевой трубки и семени. Ароморфозы приводят к появлению новых таксономических единиц: классов, отделов, типов и царств.

Ароморфоз, по Северцову, представляет собой относительно редкое эволюционное явление. Он знаменует собой который, в свою очередь, инициирует прогресс общебиологический, сопровождающийся значительным расширением адаптивной зоны.

Социальный ароморфоз

Рассматривая направления эволюции человеческого рода, некоторые ученые вводят понятие «социальный ароморфоз». Им обозначаются универсальные изменения в развитии социальных организмов и их систем, приводящие к усложнению, большей приспособленности и увеличению взаимовлияния обществ. В число подобных ароморфозов входит, например, появление государства, книгопечатания и компьютерных технологий.

Аллогенез

В ходе биологического прогресса формируются и изменения менее глобального характера. Они составляют суть аллогенеза. У этого направления эволюции (таблица приведена ниже) есть существенное отличие от ароморфоза. Оно не приводит к повышению уровня организации. Главное следствие аллогенеза — это идиоадаптация. По сути, она представляет собой частные изменения, благодаря которым организм получают возможность приспособиться к определенным условиям. Это направление эволюции органического мира позволяет близким видам жить в очень разных географических зонах.

Выразительный пример подобного процесса — семейство волчьих. Его виды встречаются в самых разных климатических зонах. Каждый обладает определенным набором приспособлений к своей среде обитания, при этом не превосходя существенно любой другой вид по уровню организации.

Ученые выделяют несколько типов идиоадаптаций:

  • по форме (например, обтекаемое тело водоплавающих);
  • по окраске (сюда относится мимикрия, предупредительная и ;
  • по размножению;
  • по передвижению (перепонки водоплавающих, воздушный мешок птиц);
  • приспособление к условиям среды.

Различия ароморфоза и идиоадаптации

Некоторые ученые не соглашаются с Северцовым и не видят достаточных причин для различения идиоадаптаций и ароморфозов. Они считают, что степень прогресса может быть оценена только спустя значительное время после появления изменения. По факту сложно осознать, к каким эволюционным процессам приведет новое качество или развитая способность.

Последователи Северцова склоняются к мысли, что под идиоадаптацией следует понимать преобразование формы тела, избыточное развитие или редукцию органов. Ароморфозы же представляют собой существенные изменения в эмбриональном развитии и образование новых структур.

Катагенез

Главные направления эволюции взаимосвязаны и в ходе исторического развития постоянно сменяют друг друга. После кардинальных преобразований в виде ароморфоза или дегенерации наступает период, когда новая группа организмов начинает расслаиваться в результате освоения отдельными ее частями разных географических зон. Начинается эволюция путем идиоадаптаций. Спустя время накопившиеся изменения приводят к новому качественному скачку.

Направление эволюции растений

Современная флора появилась не сразу. Как и все организмы, она прошла длительный путь становления. Эволюция растений включала приобретение нескольких важных ароморфозов. Первым из них было появление фотосинтеза, позволившего примитивным организмам использовать энергию солнечного света. Постепенно в результате преобразований морфологии и фотосинтетических свойств возникли водоросли.

Следующим этапом было освоение суши. Для успешного прохождения «миссии» понадобился еще один ароморфоз — дифференциация тканей. Появились мхи, споровые растения. Дальнейшее усложнение организации связано с преобразованием процесса и способов размножения. Такие ароморфозы, как семязачаток, пыльцевые зерна и, наконец, семя, характеризуют эволюционно более развитые, чем споровые.

Далее пути и направления эволюции растений двигались в сторону еще большей адаптации их к условиям среды, повышению устойчивости к неблагоприятным факторам. В результате появления пестика и зародышевого листка сформировались цветковые или покрытосеменные растения, находящиеся сегодня в состоянии биологического прогресса.

Царство животных

Эволюция эукариотов содержит оформленное ядро) с гетеротрофным типом питания (гетеротрофы не способны создавать органику с помощью хемо- или фотосинтеза) также на первых этапах сопровождалась дифференциацией тканей. Кишечнополостные обладают одним из первых значительных ароморфозов в эволюции животных: у зародышей формируются два слоя, экто- и эндодерма. У круглых и структура уже усложняется. Для них характерен третий зародышевый листок, мезодерма. Этот ароморфоз делает возможным дальнейшую дифференциацию тканей и появление органов.

Следующий этап — формирование вторичной полости тела и дальнейшее разделение его на отделы. уже имеют параподии (примитивный тип конечностей), а также кровеносную и дыхательную системы. Преобразование параподий в членистые конечности и некоторые другие изменения стало причиной появления типа Членистоногих. Уже после их выхода на сушу стали активно развиваться насекомые за счет появления зародышевых оболочек. Они сегодня более всего приспособлены к жизни на земле.

Такие крупные ароморфозы, как формирование хорды, нервной трубки, брюшной аорты и сердца, сделали возможным появление типа Хордовых. Благодаря ряду прогрессивных изменений разнообразие живых организмов пополнилось рыбами, амниотами и рептилиями. Последние из-за наличия зародышевых оболочек перестали зависеть от воды и вышли на сушу.

Далее эволюция идет по пути преобразования кровеносной системы. Возникают теплокровные животные. Адаптации к полету сделали возможным появление птиц. Такие ароморфозы, как четырехкамерное сердце и исчезновение правой дуги аорты, увеличение полушарий переднего мозга и развитие коры, формирование шерстяного покрова и молочных желез и еще ряд изменений привели к появлению млекопитающих. Среди них в процессе эволюции выделились плацентарные животные, и сегодня пребывающие в состоянии биологического прогресса.

Направления эволюции человеческого рода

Вопрос о происхождении и эволюции предков современных людей изучен пока не досконально. Благодаря открытиям палеонтологии и сравнительной генетики изменились уже сложившиеся представления о нашей «родословной». Еще 15 лет назад главенствовала точка зрения, что эволюция гоминид шла по линейному типу, то есть состояла из последовательно сменявших друг друга все более развитых форм: австралопитек, человек умелый, архантроп, неандерталец (палеоантроп), неоантроп (современный человек). Основные направления эволюции человека, как и в случае с другими организмами, приводили к формированию новых адаптаций, повышению уровня организации.

Данные, полученные в последние 10-15 лет, однако, внесли серьезные коррективы в уже сложившуюся картину. Новые находки и уточненная датировка указывают на то, что эволюция имела более сложный характер. Подсемейство Гоминины (относится к семейству Гоминиды) оказалось состоящим из практически вдвое большего числа видов, нежели считалось ранее. Эволюция его не носила линейный характер, а содержала несколько одновременно развивавшихся линий или ветвей, прогрессивных и тупиковых. В разное время вместе сосуществовали три-четыре или больше видов. Сужение этого разнообразия произошло из-за вытеснения эволюционно более развитыми группами других, менее развитых. Например, сейчас уже общепризнанно, что неандертальцы и люди современного типа жили одновременно. Первые не были нашими предками, но представляли собой параллельную ветвь, которую вытеснили более развитые представители гомининов.

Прогрессивные изменения

Несомненными остаются основные ароморфозы, приведшие к процветанию подсемейства. Это прямохождение и увеличение головного мозга. О причинах формирования первого ученые расходятся во мнениях. Долгое время считалось, что это была вынужденная мера, необходимая для освоения открытых пространств. Однако последние данные позволяют утверждать, что предки людей ходили на двух ногах еще в период жизни на деревьях. Такая способность появилась у них сразу после отделения от линии шимпанзе. По одной из версий гоминины изначально передвигались подобно современным орангутанам, стоя двумя ногами на одной ветке и держась руками за другую.

Рост мозга проходил в несколько этапов. Впервые он начался у (человека умелого), который научился изготавливать простейшие орудия. Рост объема головного мозга совпал с увеличением доли мяса в рационе гомининов. Хабилисы, по-видимому, были падальщиками. Следующее увеличение мозга также сопровождалось возрастанием количества мясной пищи и расселением наших предков за пределы родного африканского континента. Ученые предполагают, что рост доли мяса в рационе связан с необходимостью восполнять затраты энергии, уходящей на поддержание работы увеличившегося головного мозга. Предположительно, следующий этап этого процесса совпал с освоением огня: приготовленная пища отличается не только качеством, но и калорийностью, кроме того, существенно уменьшается время, необходимое для пережевывания.

Главные направления эволюции органического мира, действуя на протяжении многих веков, сформировали современную флору и фауну. Движение процесса в сторону адаптации к меняющимся условиям среды привело к огромному разнообразию форм жизни. Главные направления эволюции действуют одинаково на всех уровнях организации, о чем свидетельствуют данные биологии, экологии и генетики.

Для понимания сложной картины функциональной эволюции растений важно выяснить ее направления.

Это даст возможность сопоставить данные об их изменении с направлением морфологической эволюции. Направления эволюционного процесса связаны или с повышением организации и обшей энергии жизнедеятельности организма, приводящего к расширению ареала группы с выходом в новую адаптивную зону (орогенез ), или с развитием ее в прежней зоне (аллогенез ), но с резким расширением территории и увеличением многообразия форм при сохранении общих особенностей строения и функции.

К приобретениям типа арогенеза у растений следует отнести механизмы фотосинтеза и аэробного дыхания, формирование ядра и многоклеточности, дифференциацию тела на органы, развитие проводящей системы, покровов тела и устьичного аппарата в наземных условиях, переход к гормональной регуляции процессов роста и развития и т. д. Каждое из указанных приобретений способствовало выходу растений р новую адаптивную зону и процветанию эволюционирующей группы.

Вслед за подобными изменениями возникали и функциональные аллогенезы: возникновение разных экологических типов растений по использованию механизмов фотосинтеза и дыхания, различие растений в транспирации, по строению и числу хлоропластов и митохондрий, изменение типа листорасположения и формы листовой пластинки, отличия видов по строению устьичного аппарата и проводящей системы, специфические формы движения и питания растений, изменение фотопериодической реакции и т. п. Вследствие перечисленных приобретений растения могут полно и разносторонне использовать адаптивную зону, сохраняя метаболические механизмы. Крайнее выражение аллогенеза - специализация, которая широко распространена на функциональном уровне (С 4 — и CAM-типы ассимиляции углерода, насекомоядность, суккуленты, галофиты, эфемеры и т. п.). После каждого функционального арогенеза шел поиск возможностей для наиболее полного и разнообразного его испытания в борьбе за существование (аллогенез). Так что значение обоих направлений для возникновения разнообразия растений нельзя умалять, хотя они и не равнозначны в эволюционных масштабах.

Функциональная эволюция растений, как и морфологическая, проявляется в различных формах. Так, когда говорят о филетической эволюции, имеют в виду постепенное изменение и превращение одного вида в другой. Одним из ее примеров на функциональном уровне следует признать возникновение аэробного дыхания, а также преобразования в ряду хлорофилл - цитохром - ферредоксин.

Широко распространены на функциональном уровне и такие формы эволюции, как дивергенция, конвергенция и параллелизм.

Дивергенция - это формирование многообразия в живой природе под действием отбора. Дивергенция хорошо изучена на примере морфологических признаков. В отношении физиологических особенностей она также проявляется, хотя есть и кажущиеся противоречия. Например, с момента возникновения фотосинтеза не отмечены существенные изменения в его основных реакциях. Точно так же мало изменились механизмы аэробного дыхания и ряда других процессов. Дивергенция растений по фототрофному питанию идет в двух основных направлениях: усовершенствование аппарата фотосинтеза и поиск экологических возможностей для большего накопления ассимилятов. Отбор в указанных направлениях привел к дивергенции видов по эффективному сочетанию ростовых процессов и способов фиксации CO 2 (А. А. Ничипорович, 1980). Такие последующие изменения, как различия в числе устьиц и строении пучков, в величине и плоидности клеток палисадной ткани и размерах листовой пластинки (W. Gottschalk, 1976), также имели непосредственное отношение к дивергенции видов по интенсивности фотосинтеза и аэробного дыхания. Кроме того, используются и другие возможности для стабилизации механизмов энергетики, возникших на начальных этапах развития растений. Таким путем движущий отбор действовал в сторону усиления экологической дивергенции растений по эффективному использованию процессов. Поэтому на основе одних и тех же биохимических механизмов достигаются различия в их физиологической эффективности (М. Флоркен, 1947).

В отношении отдельных свойств можно даже вычислить темпы дивергенции видов. Так, устойчивость подсолнечника к заразихе и агрессивность последней заметно изменились за истекшие 80 лет. Ныне наблюдается широкая дивергенция видов и популяций растений по устойчивости к промышленным выбросам. Вокруг промышленных городов происходит смена растительности и выживают преимущественно низкорослые кустарники или деревья с мелкими листьями.

Параллелизм - независимое возникновение одинаковых признаков и свойству генетически близких видов. Н. И. Вавилов (1967) подчеркивал, что чем ближе друг к другу виды, тем чаще проявляется параллелизм у растений; речь идет о сходстве их изменчивости и эволюции. Примеры параллелизма, связанные со сходной устойчивостью к грибным заболеваниям (иммунитет), были описаны Н. И. Вавиловым для хлебных злаков. Теперь они широко известны и для других культур.

Напомним, что скороспелые формы встречаются в пределах разных сортов и видов. Часто один и тот же результат - скороспелость и засухоустойчивость -может быть обусловлен мутациями, затрагивающими разные этапы онтогенеза. Представляют интерес примеры параллелизма у разных органов одного и того же растения. Так, антоцианы, определяющие окраску цветков (Р. Вагнер, Г. Митчел, 1958; Б. М. Медников, 1980), образуются благодаря сложным биохимическим превращениям. Оказывается, такие же превращения происходят в листьях, клубнях, плодах и побегах. Параллелизм в изменении окраски перечисленных органов возникает независимо и на разных этапах онтогенеза в силу их генетической общности.

Параллелизм в пределах вида, рода и семейства установлен по таким признакам, как озимость и яровость, гидрофильность и ксерофильность, устойчивость к холоду, содержание белка, продуктивность фотосинтеза и т. д. Н. И. Вавилов выявил параллелизм даже между семействами и типами по «изменчивости как морфологических, так и физиологических признаков».

Напомним, что древовидные формы встречаются в пределах разных семейств покрытосеменных. Сходный ряд наследственной изменчивости у генетически далеких форм Н. И. Вавилов назвал аналогичным.

Конвергенция - это явление схождения признаков у далеких форм. Вопрос о конвергенции (схождении) функциональных особенностей растений изучен слабо. Определенно можно сказать, что биохимия и физиология дают не меньше фактов о конвергенции видов, чем морфология растений. На примере изучения состава алкалоидов, эфирных масел, гормонов и т. д. выявлена конвергенция систематически далеких видов растений.

Заслуживает вниманий, что насекомоядные растения и животные обнаруживают одинаковые способности к расщеплению белков животного происхождения (Л. С. Берг, 1977). Установлены также черты сходства в энергетическом обмене у болотных растений и ныряющих животных (Р. М. Кроуфорд, 1981). Близок по строению и функции сократительный белок мышцы животных и подушки листа мимозы. Концентрацией данного белка определяется способность листьев мимозы к раздражимости. В подушках листьев мимозы локализованы Са 2+ — и Mg 2+ -АТФазы, сходные с АТФазами мышц и немышечных подвижных клеток животных (М. Н. Любимова-Энгельгард и др., 1981). Актиноподобный белок встречается в проводящих пучках и во флоэме высших растений, в цитоплазме у простейших и в плазмодии миксомицет. В немышечных клетках актиноподобный белок принимает участие в создании сети микрофиламентов, которая, взаимодействуя с миозинподобными белками, обеспечивает подвижность клеточных структур и цитоплазмы, светозависимое перемещение хлоропластов.

Изучение роли белков в защитных реакциях растений против фитовирусов показало их сходство с интерферонами животных по вирусоспецифичности, молекулярной массе, способности существовать в мономерных и полимерных формах. Причем индукторы интерферонов животных в тканях растений вызывают образование антивирусного белка, равно как фитовирусы, введенные в ткани животных, индуцируют синтез интерферона. Здесь наглядна конвергенция механизмов защитных функций на основе далекой общности происхождения животных и растений.

Одним из примеров конвергенции может служить сходство защитных веществ у растений и животных. Так, грибные полисахариды с β-связями играют индукторную роль в защитных реакциях не только растений, но и теплокровных животных и человека (Л. В. Метлицкий, О. Л. Озерецковская, 1985). Грибные циклические пептиды (Циклоспорионы) подавляют защитные реакции у высших животных.

Бесспорные факты функциональной конвергенции у растений описаны на примере С 4 -пути фотосинтеза у представителей далеких таксонов в пределах одно- и двудольных растений. Дивергенция С 4 -растений проявляется по строению обкладки пучка и первичным продуктам запасания CO 2 . Однако принцип пространственного разделения механизма первичного запасания CO 2 и его дальнейшего вовлечения в фотосинтетический метаболизм остается общим при конвергенции видов по С 4 -пути как результат отбора растений в определенных экологических условиях.

Есть и другие примеры. Так, Г. Балтчевским (см.: Г. Деборин и др., 1975) показана общность электрон-транспортных белков у животных и растений. Сходны строение и функция зрительного ретинала (родопсина) и бактериородопсина с каротиноидами. В частности, благодаря бактериородопсину Halobacterium halobium, живущая в условиях соленой рапы, осуществляет «бесхлорофилльный» фотосинтез. У растений встречаются ацетилхолин и гамма-аминомасляная кислота - вещества, выполняющие у животных роль нервных регуляторов.

Можно привести и другие примеры функциональной конвергенции. Так, устойчивость к неблагоприятным условиям (засуха, затопление, заморозки и т. д.) характерна для представителей низших и высших, голосеменных и покрытосеменных, однодольных и двудольных растений. В ряде случаев конвергенция наблюдается даже в отношении одинаковых реакций, обусловливающих устойчивость к недостатку воды в почве: сосущей силы, осмотического давления, интенсивности транспирации. Конвергенцию ошибочно пытались объяснить вопреки механизму действия естественного отбора (Л. С. Берг, 1977). Однако только направленность отбора в близких условиях способствует конвергенции видов (Ч. Дарвин, 1939). Экологическая экспансия видов приводит к захвату сходных ниш представителями систематически далеких форм. Это и способствует их функциональной конвергенции.

Все еще делаются попытки объяснить явления конвергенции и параллелизмов вне механизма действия естественного отбора, опираясь на палеонтологические, сравнительно-морфологические (А. Б. Иваницкий, 1977; В. А. Кордюм, 1982; А. А. Любышев, С. В. Мейен, 1979, 1988) и молекулярно-генетические данные (Л. И. Корочкин, 1985, 1991). В этом же плане следует рассматривать и гипотезу автоэволюции (А. Лима де Фариа, 1991), где факты конвергентного и параллельного развития формы и функции представлены как результат реализации общих закономерностей неживой природы. В принципе нельзя отрицать наличие аналогии между организацией строения стебля растений и минералов (А. Лима де Фариа, 1991), проявление общих закономерностей развития неживой природы, как в случае накопления и синтеза веществ вторичного метаболизма (М. Н. Запрометов, 1988, 1993; М. Е. Лоткова, 1981; М. Лукнер, 1979; В. А Пасешниченко, 1991; К. Mothes, 1981), при схождении физиологических особенностей у генетически неродственных форм (Т. К. Горышина, 1989; W. Larcher, 1980; W. V. Zucher, 1983) и пигментов у растений и животных (D. Fox, 1979). В то же время подобные факты нельзя понять вне механизма действия естественного отбора или при ограничении его роли «доработкой» новшеств. Явления конвергенции и параллелизмов в дарвинизме получили свое объяснение (К. М. Завадский и Э. И. Колчинский, 1977; А. С. Северцов, 1990; Т. Я. Сутт, 1977; Л. П. Татаринов, 1988), что в равной степени относится и к функциональному уровню.

Можно проследить следующие главные направления эволю­ции этой структуры:

1. От большого и нефиксированного числа частей к малому и четко определенному.

2. От четырех типов частей до трех, двух, а иногда и до одного у более продвинутых эволюционно групп. Побег укорачивается и их исходное спиральное расположение частей перестает замечаться. Части цветка срастаются - приспособление к опылению насекомы­ми.

3. От верхней завязи к нижней. Лучшая защита семяпочки.

4. От актиноморфности к зигоморфности.

5. Переход от одиночных цветков к соцветиям, размеры, яр­кость привлекают насекомых.

6. Приспособление к опылению ветром обусловило редукцию околоцветника и образование голых цветков.

7. Появление однодомности и двудомности у ветроопыляемых растений обеспечило перекрестное опыление.

Сочетание всех этих признаков у разных групп неодинаково. Цветки одних могут быть более сложными по одним признакам, а по другим примитивные. Семейство Крестоцветные - 4-х членный цветок имеет один пестик - признак высокой организации, завязь всегда верхняя - признак простой организации.

Судить об эволюционной продвинутости нужно по несколь­ким признакам.

Эволюционный успех цветковых растений в значительной степени был обусловлен их параллельным развитием с различными животными. Они оказывали друг на друга давление и во многом оп­ределили эволюцию своих партнеров. Яркая окраска цветков, души­стый аромат, съедобная пыльца и нектар - все это средства для при­влечения животных. Адаптация цветка была направлена на макси­мальное увеличение шансов для переноса пыльцы насекомыми. Это опыление было надежно.

Важным признаком успеха эволюции покрытосеменных явля­ется биохимическая эволюция. В некоторых группах выработа­лась способность образовывать вторичные метаболиты (алколоиды, хитоны, эфирные масла, флавоноиды и др.) - ядовитые для живот­ных вещества, защищающие растения от большинства фитофагов (вредители).

К группам с наиболее специализировавшимися в ходе эво­люции цветками принадлежат сложноцветные (Compozitae) среди двудольных (Dicotyledones) и орхидные (Orchidaceae) из однодоль­ных (Monocotyledones).

Рис. 184 Стадии эволюции тычинок (микроспорофиллов) (1-6) от примитивного микроспорофилла дегенерии фиджийской (Dеgеneria vitiensis) (1)до высоко-специализированного типа (6)

Рис. 185 Стадии эволюции плодолистика (1-6)от примитивного кондупликатного плодолистика типа дегенерии фиджийской (Dеgеneria vitiensis) (1) до специали­зированного типа с резко дифференцированным столбиком и головчатым рыльцем (6)

Рис. 186 Схема эволюции основных типов гинецея. Паракарпный и лизикарпный типы изображены в двух стадиях эволюции, что дает представление о двух разных путях их про­исхождения от исходного от апо­карпного типа. По многих случаях паракарпный гинецей происходит непосредственно от апо­карпного.

3. Отличительные признаки классов двудольных и однодольных

Таблица 18. Отличительные признаки классов цветковых растений

Признак Однодольные Двудольные
Строение семени Одна семядоля. Две, редко 3,4 семядоли.
Строение цветка. Число частей 3 или крат­ное 3. Число частей по 4-5 или кратное 4.
Форма лис­та. Простые, цельнокрайние, обычно сидячие. Простые или сложные, края рассеченные.
Жилкова­ние листа. Параллельное или дуговое. Сетчатое, перистое, паль­чатое.
Стебель. Травянистый. Травянистые или деревя­нистые.
Проводящие пучки. Проводящие пучки разбросаны по стеблю и не имеют кам­бия. Закрытые. Проводящие пучки в центре стебля распо­ложены по кругу, имеют камбий. Открытые.
Корневая Система. Мочковатая. Стержневая. У некоторых мочковатая.

По данным палеонтологии предки покрытосеменных появи­лись в начале мелового периода и очень быстро заселили большие пространства суши. В этот период на земном шаре произошло рез­кое изменение климата: уменьшилась влажность, увеличилось ос­вещенность и сухость воздуха. Большая часть голосеменных, гос­подствовавших в то время, не смогла приспособиться к новым усло­виям (к сухости) и вымерла за исключением хвойных, которые со­хранились благодаря небольшой площади листовой поверхности. Покрытосеменные оказались лучше приспособленными к новым ус­ловиям, более пластичными. Они начали бурно развиваться, дали огромное разнообразие форм и заняли господствующее положение.

Самые древние покрытосеменные были, вероятно, древесны­ми растениями с небольшими моноподиально ветвящимися ствола­ми и немногочисленными толстыми ветвями. От них произошли бо­лее крупные формы с сильно разветвленной кроной и симподиальным ветвлением, позже появились кустарники, кустарнички, много­летние травы, и наконец, однолетние травы.

4. Причина процветания покрытосеменных растений

При сравнении жизненных циклов высших растений наиболее эволюционно продвинут у покрытосеменных. Сложно устроен спо­рофит (бесполое поколение). Гаметофит представляет несколько клеток. Женское половое поколение полностью развивается на бес­полом поколении под защитой пестика. Опыление ветром и насеко­мыми еще более надежно обеспечивает перенос пыльцы, а следова­тельно, и оплодотворение яйцеклетки. Разнообразие в строении ве­гетативных органов, образовании семян и плодов способствовали расселению покрытосеменных в самые различные условия обита­ния.



5. Филогенети­ческая система покрытосеменных

Все семейства и порядки покрытосеменных растений нахо­дятся между собой в более или менее близком родстве. Филогенети­ческие системы растительного мира обычно изображают схематич­но в виде родословного дерева, на котором отдельные направления эволюции растений показаны как его боковые ветви. Система по­крытосеменных А.А.Гроссгейма изображена на схеме (прилагается) в виде родословного дерева, но в плане, как проекция сверху. На этой схеме самые древние порядки, являющиеся родоначальниками остальных покрытосеменных, находятся в центре. Таковы порядок Лютикоцветные, представленный главным образом травянистыми растениями, и порядок Магнолиецветные, представленный только древесными растениями.

На схеме порядки изображены кружками, величина которых приближенно отражает число видов в порядке. Порядки, в которые входят древесные породы, отмечены черным кружком. Академик А.А.Гроссгейм различает три ступени в развитии цветка покрыто­семенных и границы этих ступеней отмечает на схеме двумя окруж­ностями. К первой ступени развития отнесены порядки с наиболее просто устроенными цветками: с неопределенным числом частей цветка, со спиральным их расположением, с многочисленными пес­тиками, с верхней завязью. Эти порядки помещены внутри меньшей окружности, что подчеркивает их близость к древним формам.

Ко второй ступени развития отнесены порядки с более слож­ным строением цветка. Число частей в цветке уменьшается до 3-5, расположены они чаще кругами. Эти порядки в схеме расположены между внутренней и внешней окружностью.

К третьей ступени развития отнесены порядки с ярко выра­женной приспособленностью цветков к опылению определенного типа, что усложнило их строение. Растения группы насекомоопыляемых имеют сросшийся неправильный венчик, нижнюю завязь. Ветроопыляемые растения отличаются вторичным упрощением цветка - редукцией венчика, верхней завязью. Эти порядки в схеме расположены за пределами второй окружности.

От порядка Лютикоцветные берет начало несколько направле­ний эволюции. Влево ведет линия развития к порядку розоцветные. В порядке наблюдается усложнение строения цветка в виде перехода к одному пестику и нижней завязи. Порядок Розоцветные очень раз­нообразен, и разные его представители дают начало нескольким направлениям эволюции. Одно из них ведет к крупному порядку Бобовоцветные, другое - к порядку Зонтикоцветные. У них усложнение цветка выразилось в переходе к нижней завязи, уменьшении числа частей цветка и в сильной рассеченности пластинки простого листа.

Развитие древесных форм от порядка розоцветные привело к образованию порядка Букоцветные с переходом у них к простому листу, ветроопыляемости, полной редукции околоцветника.

От розоцветных родственные связи ведут к большому порядку Трубкоцветные, у которых наблюдается переход к супротивному листорасположению, неправильному околоцветнику, срастанию венчика, уменьшению числа тычинок до двух, но завязь всегда оста­ется верхней.

От Лютикоцветных берет начало отдельная линия эволюции, которая привела к порядку Макоцветные. У них произошло умень­шение числа тычинок от неопределенного и большого к определен­ному и небольшому, уменьшение числа частей околоцветника и об­разование одного пестика.

По этому же пути пошло развитие более высокоорганизован­ного порядка Верескоцветные, которые характеризуются простыми листьями, переходом к сросшемуся венчику, к нижней завязи и 4-5-членному цветку.

Заканчивает эту линию развития большой порядок сложно­цветные. Этот порядок отличается типом соцветия - корзинкой. В цветке наблюдается редукция чашечки, срастание венчика и пыль­ников пяти тычинок, образование одного пестика, появление ниж­ней завязи.

Линия развития от Лютикоцветных привела к порядкам Центросеменные и Гречихоцветные, которые характеризуются перехо­дом к супротивным листьям и срастанию частей околоцветника, числом тычинок, равным числу частей околоцветника или удвоен­ным, 3-5-членным цветком. Наряду с насекомоопыляемыми появ­ляются и ветроопыляемые виды.

В порядки Лилиецветные, Осокоцветные, Злакоцветные отно­сятся травы, отличающиеся строением вегетативных органов. Ли­стья линейные или ланцетные, с паралельным или дуговидным жил­кованием, цветки трехчленные, с двойным простым или редуциро­ванным околоцветником, тычинок 3-6, пестик 1. В этом ряду на­блюдается переход от насекомоопыления к ветроопылению.

Система А.А.Гроссгейма дает наглядное представление о род­ственных связях и путях эволюции различных порядков цветковых растений.