Доверительный интервал. Доверительные интервалы

Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

α - признак,

t - параметр из таблицы распределения Лапласа,

σ - квадратный корень дисперсии.

Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

σ2 = х2ср - (хср)2, где

х2ср - среднее значение квадратов исследуемого признака,

(хср)2 - квадрат данного признака.

Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

хср - выборочное среднее,

α - признак,

t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

sqrt(n) - квадратный корень общего объема выборки,

s - квадратный корень дисперсии.

Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

21.587 <= α <= 38.413

Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.

Цель – научить студентов алгоритмам вычисления доверительных интервалов статистических параметров.

При статистической обработке данных вычисленные средняя арифметическая, коэффициент вариации, коэффициент корреляции, критерии различия и другие точечные статистики должны получить количественные границы доверия, которые обозначают возможные колебания показателя в меньшую и большую стороны в пределах доверительного интервала.

Пример 3.1 . Распределение кальция в сыворотке крови обезьян, как было установлено ранее, характеризуется следующими выборочными показателями: = 11,94 мг%;= 0,127 мг%;n = 100. Требуется определить доверительный интервал для генеральной средней () при доверительной вероятностиP = 0,95.

Генеральная средняя находится с определенной вероятностью в интервале:

, где – выборочная средняя арифметическая;t – критерий Стьюдента; – ошибка средней арифметической.

По таблице «Значения критерия Стьюдента» находим значение при доверительной вероятности 0,95 и числе степеней свободы k = 100-1 = 99. Оно равно 1,982. Вместе со значениями среднего арифметического и статистической ошибки подставляем его в формулу:

или 11,69
12,19

Таким образом, с вероятностью 95%, можно утверждать, что генеральная средняя данного нормального распределения находится между 11,69 и 12,19 мг%.

Пример 3.2 . Определите границы 95%-ного доверительного интервала для генеральной дисперсии () распределения кальция в крови обезьян, если известно, что
= 1,60, приn = 100.

Для решения задачи можно воспользоваться следующей формулой:

Где – статистическая ошибка дисперсии.

Находим ошибку выборочной дисперсии по формуле:
. Она равна 0,11. Значениеt - критерия при доверительной вероятности 0,95 и числе степеней свободы k = 100–1 = 99 известно из предыдущего примера.

Воспользуемся формулой и получим:

или 1,38
1,82

Более точно доверительный интервал генеральной дисперсии можно построить с применением (хи-квадрат) - критерия Пирсона. Критические точки для этого критерия приводятся в специальной таблице. При использовании критериядля построения доверительного интервала применяют двусторонний уровень значимости. Для нижней границы уровень значимости рассчитывается по формуле
, для верхней –
. Например, для доверительного уровня= 0,99= 0,010,= 0,990. Соответственно по таблице распределения критических значений, при рассчитанных доверительных уровнях и числе степеней свободыk = 100 – 1= 99, найдем значения
и
. Получаем
равно 135,80, а
равно70,06.

Чтобы найти доверительные границы генеральной дисперсии с помощью воспользуемся формулами: для нижней границы
, для верхней границы
. Подставим данные задачи найденные значенияв формулы:
= 1,17;
= 2,26. Таким образом, при доверительной вероятностиP = 0,99 или 99% генеральная дисперсия будет лежать в интервале от 1,17 до 2,26 мг% включительно.

Пример 3.3 . Среди 1000 семян пшеницы из поступившей на элеватор партии обнаружено 120 семян зараженных спорыньей. Необходимо определить вероятные границы генеральной доли зараженных семян в данной партии пшеницы.

Доверительные границы для генеральной доли при всех возможных ее значениях целесообразно определять по формуле:

,

Где n – число наблюдений; m – абсолютная численность одной из групп; t – нормированное отклонение.

Выборочная доля зараженных семян равна
или 12%. При доверительной вероятностиР = 95% нормированное отклонение (t -критерий Стьюдента при k =
)t = 1,960.

Подставляем имеющиеся данные в формулу:

Отсюда границы доверительного интервала равны= 0,122–0,041 = 0,081, или 8,1%;= 0,122 + 0,041 = 0,163, или 16,3%.

Таким образом, с доверительной вероятностью 95% можно утверждать, что генеральная доля зараженных семян находится между 8,1 и 16,3%.

Пример 3.4 . Коэффициент вариации, характеризующий варьирование кальция (мг%) в сыворотке крови обезьян, оказался равным 10,6%. Объем выборки n = 100. Необходимо определить границы 95%-ного доверительного интервала для генерального параметра Cv .

Границы доверительного интервала для генерального коэффициента вариации Cv определяются по следующим формулам:

и
, гдеK промежуточная величина, вычисляемая по формуле
.

Зная, что при доверительной вероятности Р = 95% нормированное отклонение (критерий Стьюдента при k =
)t = 1,960, предварительно рассчитаем величину К:

.

или 9,3%

или 12,3%

Таким образом, генеральный коэффициент вариации с доверительной вероятностью 95% лежит в интервале от 9,3 до 12,3%. При повторных выборках коэффициент вариации не превысит 12,3% и не окажется ниже 9,3% в 95 случаях из 100.

Вопросы для самоконтроля:

Задачи для самостоятельного решения.

1. Средний процент жира в молоке за лактацию коров холмогорских помесей был следующим: 3,4; 3,6; 3,2; 3,1; 2,9; 3,7; 3,2; 3,6; 4,0; 3,4; 4,1; 3,8; 3,4; 4,0; 3,3; 3,7; 3,5; 3,6; 3,4; 3,8. Установите доверительные интервалы для генеральной средней при доверительной вероятности 95% (20 баллов).

2. На 400 растениях гибридной ржи первые цветки появились в среднем на 70,5 день после посева. Среднее квадратическое отклонение было 6,9 дня. Определите ошибку средней и доверительные интервалы для генеральной средней и дисперсии при уровне значимости W = 0,05 и W = 0,01 (25 баллов).

3. При изучении длины листьев 502 экземпляров садовой земляники были получены следующие данные: = 7,86 см; σ = 1,32 см, =± 0,06 см. Определите доверительные интервалы для средней арифметической генеральной совокупности с уровнями значимости 0,01; 0,02; 0,05. (25 баллов).

4. При обследовании 150 взрослых мужчин средний рост был равен 167 см, а σ = 6 см. В каких пределах находится генеральная средняя и генеральная дисперсия с доверительной вероятностью 0,99 и 0,95? (25 баллов).

5. Распределение кальция в сыворотке крови обезьян характеризуется следующими выборочными показателями: = 11,94 мг%, σ = 1,27, n = 100. Постройте 95%-ный доверительный интервал для генеральной средней этого распределения. Рассчитайте коэффициент вариации (25 баллов).

6. Было изучено общее содержание азота в плазме крови крыс-альбиносов в возрасте 37 и 180 дней. Результаты выражены в граммах на 100 см 3 плазмы. В возрасте 37 дней 9 крыс имели: 0,98; 0,83; 0,99; 0,86; 0,90; 0,81; 0,94; 0,92; 0,87. В возрасте 180 дней 8 крыс имели: 1,20; 1,18; 1,33; 1,21; 1,20; 1,07; 1,13; 1,12. Установите доверительные интервалы для разницы с доверительной вероятностью 0,95 (50 баллов).

7. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения кальция (мг%) в сыворотке крови обезьян, если для этого распределения объем выборки n = 100, статистическая ошибка выборочной дисперсии s σ 2 = 1,60 (40 баллов).

8. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения 40 колосков пшеницы по длине (σ 2 = 40, 87 мм 2). (25 баллов).

9. Курение считают основным фактором, предрасполагающим к обструктивным заболеваниям легких. Пассивное курение таким фактором не считается. Ученые усомнились в безвредности пассивного курения и исследовали проходимость дыхательных путей у некурящих, пассивных и активных курильщиков. Для характеристики состояния дыхательных путей взяли один из показателей функции внешнего дыхания – максимальную объемную скорость середины выдоха. Уменьшение этого показателя – признак нарушения проходимости дыхательных путей. Данные обследования приведены в таблице.

Число обследованных

Максимальная объемная скорость середины выдоха, л/с

Стандартное отклонение

Некурящие

работают в помещении, где не курят

работают в накуренном помещении

Курящие

выкуривающие небольшое число сигарет

выкуривающие среднее число сигарет

выкуривающие большое число сигарет

По данным таблицы найдите 95% доверительные интервалы для генеральной средней и генеральной дисперсии для каждой из групп. В чем заключаются различия между группами? Результаты представьте графически (25 баллов).

10. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной дисперсии численности поросят в 64 опоросах, если статистическая ошибка выборочной дисперсии s σ 2 = 8, 25 (30 баллов).

11. Известно, что средняя масса кроликов составляет 2,1 кг. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной средней и дисперсии при n = 30, σ = 0,56 кг (25 баллов).

12. У 100 колосьев измеряли озерненность колоса (Х ), длину колоса (Y ) и массу зерна в колосе (Z ). Найти доверительные интервалы для генеральной средней и дисперсии при P 1 = 0,95, P 2 = 0,99, P 3 = 0,999, если = 19, = 6,766 см, = 0,554 г; σ x 2 = 29, 153, σ y 2 = 2, 111, σ z 2 = 0, 064. (25 баллов).

13. В отобранных случайным образом 100 колосьях озимой пшеницы подсчитывалось число колосков. Выборочная совокупность характеризовалась следующими показателями: = 15 колосков и σ = 2,28 шт. Определите, с какой точностью получен средний результат () и постройте доверительный интервал для генеральной средней и дисперсии при 95% и 99% уровнях значимости (30 баллов).

14. Число ребер на раковинах ископаемого моллюска Orthambonites calligramma :

Известно, что n = 19, σ = 4,25. Определите границы доверительного интервала для генеральной средней и генеральной дисперсии при уровне значимости W = 0,01 (25 баллов).

15. Для определения удоев молока на молочно-товарной ферме ежедневно определялась продуктивность 15 коров. По данным за год каждая корова давала в среднем в сутки следующее количество молока (л): 22; 19; 25; 20; 27; 17; 30; 21; 18; 24; 26; 23; 25; 20; 24. Постройте доверительные интервалы для генеральной дисперсии и средней арифметической. Можно ли ожидать, что среднегодовой удой на каждую корову составит 10000 литров? (50 баллов).

16. С целью определения урожая пшеницы в среднем по агрохозяйству были проведены укосы на пробных участках площадью 1, 3, 2, 5, 2, 6, 1, 3, 2, 11 и 2 га. Урожайность (ц/га) с участков составила 39,4; 38; 35,8; 40; 35; 42,7; 39,3; 41,6; 33; 42; 29 соответственно. Постройте доверительные интервалы для генеральных дисперсии и средней арифметической. Можно ли ожидать, что в среднем по агрохозяйству урожай составит 42 ц/га? (50 баллов).

Доверительный интервал (ДИ; в англ, confidence interval - CI) полученный в исследовании при выборке даёт меру точности (или неопределённости) результатов исследования, для того чтобы делать выводы о популяции всех таких пациентов (генеральная совокупность). Правильное определение 95% ДИ можно сформулировать так: 95% таких интервалов будет содержать истинную величину в популяции. Несколько менее точна такая интерпретация: ДИ - диапазон величин, в пределах которого можно на 95% быть уверенным в том, что он содержит истинную величину. При использовании ДИ акцент делается на определении количественного эффекта, в противоположность величине Р, которая получается в результате проверки статистической значимости. Величина Р не оценивает никакого количества, а служит скорее мерой силы свидетельства против нулевой гипотезы «никакого эффекта». Величина Р сама по себе не говорит нам ничего ни о величине различия, ни даже о его направлении. Поэтому самостоятельные величины Р абсолютно неинформативны в статьях или рефератах. В отличие от них ДИ указывает и на количество эффекта, представляющего непосредственный интерес, например на полезность лечения, и на силу доказательств. Поэтому ДИ непосредственно имеет отношение к практике ДМ.

Подход оценки к статистическому анализу, иллюстрируемый ДИ, направлен на измерение количества интересующего нас эффекта (чувствительность диагностического теста, частота прогнозируемых случаев, сокращение относительного риска при лечении и т.д.), а также на измерение неопределённости в этом эффекте. Чаще всего ДИ - диапазон величин по обе стороны оценки, в котором, вероятно, лежит истинная величина, и можно быть уверенным в этом на 95%. Соглашение использовать 95% вероятность произвольно, также как и величину Р <0,05 для оценки статистической значимости, и авторы иногда используют 90% или 99% ДИ. Заметим, что слово «интервал» означает диапазон величин и поэтому стоит в единственном числе. Две величины, которые ограничивают интервал, называются «доверительными пределами».

ДИ основан на идее, что то же самое исследование, выполненное на других выборках пациентов, не привело бы к идентичным результатам, но что их результаты будут распределены вокруг истинной, однако неизвестной величины. Иными словами, ДИ описывает это как «вариабельность, зависящую от выборки». ДИ не отражает дополнительную неопределённости, обусловленную другими причинами; в частности, он не включает влияние селективной потери пациентов при отслеживании, плохого комплайнса или неточного измерения исхода, отсутствия «ослепления» и т.д. ДИ, таким образом, всегда недооценивает общее количество неопределённости.

Вычисление доверительного интервала

Таблица А1.1. Стандартные ошибки и доверительные интервалы для некоторых клинических измерений

Обычно ДИ вычисляют из наблюдаемой оценки количественного показателя, такого, как различие (d) между двумя пропорциями, и стандартной ошибки (SE) в оценке этого различия. Приблизительный 95% ДИ, получаемый таким образом, - d ± 1,96 SE. Формула изменяется согласно природе меры исхода и охвату ДИ. Например, в рандомизированном плацебо-контролируемом испытании бесклеточной коклюшной вакцины коклюш развивался у 72 из 1670 (4,3%) младенцев, получивших вакцину, и у 240 из 1665 (14,4%) в группе контроля. Различие в процентах, известное как абсолютное снижение риска, составляет 10,1%. SE этого различия равна 0,99%. Соответственно 95% ДИ составляет 10,1% + 1,96 х 0,99%, т.е. от 8,2 до 12,0.

Несмотря на разные философские подходы, ДИ и тесты на статистическую значимость тесно связаны математически.

Таким образом, величина Р «значимая», т.е. Р <0,05 соответствует 95% ДИ, который исключает величину эффекта, указывающую на отсутствие различия. Например, для различия между двумя средними пропорциями это ноль, а для относительного риска или отношения шансов - единица. При некоторых обстоятельствах эти два подхода могут быть не совсем эквивалентны. Преобладающая точка зрения: оценка с помощью ДИ - предпочтительный подход к суммированию результатов исследования, но ДИ и величина Р взаимодополняющи, и во многих статьях используются оба способа представления результатов.

Неопределенность (неточность) оценки, выражаемая в ДИ, в большой степени связана с квадратным корнем из размера выборки. Маленькие выборки предоставляют меньше информации, чем большие, и ДИ соответственно шире в меньшей выборке. Например, статья, сравнивающая характеристики трёх тестов, которые применяются для диагностики инфекции Helicobacter pylori , сообщила о чувствительности дыхательной пробы с мочевиной 95,8% (95% ДИ 75-100). В то время как число 95,8% выглядит внушительно, маленькая выборка из 24 взрослых пациентов с Я. pylori означает, что имеется значительная неопределенность в этой оценке, как показывает широкий ДИ. Действительно, нижний предел 75% намного ниже, чем оценка 95,8%. Если бы такая же чувствительность наблюдалась в выборке 240 человек, то 95% ДИ составлял бы 92,5-98,0, давая больше гарантий, что тест высокочувствителен.

В рандомизированных контролируемых испытаниях (РКИ) незначимые результаты (т.е. те, где Р >0,05) особенно подвержены неверному толкованию. ДИ особенно полезен здесь, поскольку он показывает, насколько совместимы результаты с клинически полезным истинным эффектом. Например, в РКИ, сравнивающем наложение анастомоза швом и скрепками на толстой кишке , раневая инфекция развилась у 10,9% и 13,5% пациентов соответственно (Р = 0,30). 95% ДИ для этого различия составляет 2,6% (от -2 до +8). Даже в этом исследовании, включавшем 652 пациента, остаётся вероятность, что существует умеренное различие в частоте инфекций, возникающих вследствие этих двух процедур. Чем меньше исследование, тем больше неуверенность. Сунг и соавт. выполнили РКИ, чтобы сравнить инфузию октреотида со срочной склеротерапией при остром кровотечении из варикозно-расширенных вен на 100 пациентах. В группе октреотида частота остановки кровотечения составила 84%; в группе склеротерапии - 90%, что даёт Р = 0,56. Заметим, что показатели продолжающегося кровотечения аналогичны таковым при раневой инфекции в упомянутом исследовании. В этом случае, однако, 95% ДИ для различия вмешательств равен 6% (от -7 до +19). Этот интервал весьма широк по сравнению с 5% различием, которое представляло бы клинический интерес. Ясно, что исследование не исключает значительной разницы в эффективности. Поэтому заключение авторов «инфузия октреотида и склеротерапия одинаково эффективны при лечении кровотечения из варикозно-расширенных вен» определённо невалидно. В подобных случаях, когда, как здесь, 95% ДИ для абсолютного снижения риска (АСР; absolute risk reduction - ARR, англ.) включает ноль, ДИ для ЧПЛП (NNT - number needed to treat, англ.) является довольно затруднительным для толкования. ЧПЛП и его ДИ получают из величин, обратных АСР (умножая их на 100, если эти величины даны в виде процентов). Здесь мы получаем ЧПЛП = 100: 6 = 16,6 с 95% ДИ от -14,3 до 5,3. Как видно из сноски «d» в табл. А1.1, этот ДИ включает величины ЧПЛП от 5,3 до бесконечности и ЧПЛВ от 14,3 до бесконечности.

ДИ можно построить для большинства обычно употребляемых статистических оценок или сравнений. Для РКИ он включает разность между средними пропорциями, относительными рисками, отношениями шансов и ЧПЛП. Аналогично ДИ можно получить для всех главных оценок, сделанных в исследованиях точности диагностических тестов - чувствительности, специфичности, прогностической значимости положительного результата (все они являются простыми пропорциями), и отношения правдоподобия - оценок, получаемых в метаанализах и исследованиях типа сравнения с контролем. Компьютерная программа для персональных компьютеров, которая покрывает многие из этих способов использования ДИ, доступна со вторым изданием «Statistics with Confidence». Макросы для вычисления ДИ для пропорций бесплатно доступны для Excel и статистических программ SPSS и Minitab на http://www.uwcm.ac.uk/study/medicine/epidemiology_ statistics/research/statistics/proportions, htm.

Множественные оценки эффекта лечения

В то время как построение ДИ желательно для первичных результатов исследования, они не обязательны для всех результатов. ДИ касается клинически важных сравнений. Например, при сравнении двух групп правилен тот ДИ, что построен для различия между группами, как показано выше в примерах, а не ДИ, который можно построить для оценки в каждой группе. Мало того, что бесполезно давать отдельные ДИ для оценок в каждой группе, это представление может вводить в заблуждение. Точно так же правильный подход при сравнении эффективности лечения в различных подгруппах - сравнение двух (или более) подгрупп непосредственно. Неправильно предполагать, что лечение эффективно только в одной подгруппе, если ее ДИ исключает величину, соответствующую отсутствию эффекта, а другие - нет . ДИ полезны также при сравнении результатов в нескольких подгруппах. На рис. А 1.1 показан относительный риск эклампсии у женщин с преэклампсией в подгруппах женщин из плацебо-контролируемого РКИ сульфата магния.

Рис. А1.2. Лесной график показывает результаты 11 рандомизированных клинических испытаний бычьей ротавирусной вакцины для профилактики диареи в сравнении с плацебо. При оценке относительного риска диареи использован 95% доверительный интервал. Размер чёрного квадрата пропорционален объёму информации. Кроме того, показана суммарная оценка эффективности лечения и 95% доверительного интервала (обозначается ромбом). В метаанализе использована модель случайных эффектов превышает некоторые предварительно установленные; например, это может быть размер, использованный при вычислении величины выборки. В соответствии с более строгим критерием весь диапазон ДИ должен показывать пользу, превышающую предустановленный минимум.

Мы уже обсуждали ошибку, когда отсутствие статистической значимости принимают как указание на то, что два способа лечения одинаково эффективны. Столь же важно не уравнивать статистическую значимость с клинической важностью. Клиническую важность можно предполагать, когда результат статистически значим и величина оценки эффективности лечения

Исследования могут показать, значимы ли результаты статистически и какие из них клинически важны, а какие - нет. На рис. А1.2 приведены результаты четырёх испытаний, для которых весь ДИ <1, т.е. их результаты статистически значимы при Р <0,05 , . После высказанного предположения о том, что клинически важным различием было бы сокращение риска диареи на 20% (ОР = 0,8), все эти испытания показали клинически значимую оценку сокращения риска, и лишь в исследовании Treanor весь 95% ДИ меньше этой величины. Два других РКИ показали клинически важные результаты, которые не были статистически значимыми. Обратите внимание, что в трёх испытаниях точечные оценки эффективности лечения были почти идентичны, но ширина ДИ различалась (отражает размер выборки). Таким образом, по отдельности доказательная сила этих РКИ различна.

Построим в MS EXCEL доверительный интервал для оценки среднего значения распределения в случае известного значения дисперсии.

Разумеется, выбор уровня доверия полностью зависит от решаемой задачи. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Формулировка задачи

Предположим, что из генеральной совокупности имеющей взята выборка размера n. Предполагается, что стандартное отклонение этого распределения известно. Необходимо на основании этой выборки оценить неизвестное среднее значение распределения (μ, ) и построить соответствующий двухсторонний доверительный интервал .

Точечная оценка

Как известно из , статистика (обозначим ее Х ср ) является несмещенной оценкой среднего этой генеральной совокупности и имеет распределение N(μ;σ 2 /n).

Примечание : Что делать, если требуется построить доверительный интервал в случае распределения, которое не является нормальным? В этом случае на помощь приходит , которая гласит, что при достаточно большом размере выборки n из распределения не являющемся нормальным , выборочное распределение статистики Х ср будет приблизительно соответствовать нормальному распределению с параметрами N(μ;σ 2 /n).

Итак, точечная оценка среднего значения распределения у нас есть – это среднее значение выборки , т.е. Х ср . Теперь займемся доверительным интервалом.

Построение доверительного интервала

Обычно, зная распределение и его параметры, мы можем вычислить вероятность того, что случайная величина примет значение из заданного нами интервала. Сейчас поступим наоборот: найдем интервал, в который случайная величина попадет с заданной вероятностью. Например, из свойств нормального распределения известно, что с вероятностью 95%, случайная величина, распределенная по нормальному закону , попадет в интервал примерно +/- 2 от среднего значения (см. статью про ). Этот интервал, послужит нам прототипом для доверительного интервала .

Теперь разберемся,знаем ли мы распределение, чтобы вычислить этот интервал? Для ответа на вопрос мы должны указать форму распределения и его параметры.

Форму распределения мы знаем – это нормальное распределение (напомним, что речь идет о выборочном распределении статистики Х ср ).

Параметр μ нам неизвестен (его как раз нужно оценить с помощью доверительного интервала ), но у нас есть его оценка Х ср, вычисленная на основе выборки, которую можно использовать.

Второй параметр – стандартное отклонение выборочного среднего будем считать известным , он равен σ/√n.

Т.к. мы не знаем μ, то будем строить интервал +/- 2 стандартных отклонения не от среднего значения , а от известной его оценки Х ср . Т.е. при расчете доверительного интервала мы НЕ будем считать, что Х ср попадет в интервал +/- 2 стандартных отклонения от μ с вероятностью 95%, а будем считать, что интервал +/- 2 стандартных отклонения от Х ср с вероятностью 95% накроет μ – среднее генеральной совокупности, из которого взята выборка . Эти два утверждения эквивалентны, но второе утверждение нам позволяет построить доверительный интервал .

Кроме того, уточним интервал: случайная величина, распределенная по нормальному закону , с вероятностью 95% попадает в интервал +/- 1,960 стандартных отклонений, а не+/- 2 стандартных отклонения . Это можно рассчитать с помощью формулы =НОРМ.СТ.ОБР((1+0,95)/2) , см. файл примера Лист Интервал .

Теперь мы можем сформулировать вероятностное утверждение, которое послужит нам для формирования доверительного интервала :
«Вероятность того, что среднее генеральной совокупности находится от среднего выборки в пределах 1,960 «стандартных отклонений выборочного среднего» , равна 95%».

Значение вероятности, упомянутое в утверждении, имеет специальное название , который связан с уровнем значимости α (альфа) простым выражением уровень доверия =1 . В нашем случае уровень значимости α=1-0,95=0,05 .

Теперь на основе этого вероятностного утверждения запишем выражение для вычисления доверительного интервала :

где Z α/2 стандартного нормального распределения (такое значение случайной величины z , что P (z >=Z α/2 )=α/2 ).

Примечание : Верхний α/2-квантиль определяет ширину доверительного интервала в стандартных отклонениях выборочного среднего. Верхний α/2-квантиль стандартного нормального распределения всегда больше 0, что очень удобно.

В нашем случае при α=0,05, верхний α/2-квантиль равен 1,960. Для других уровней значимости α (10%; 1%) верхний α/2-квантиль Z α/2 можно вычислить с помощью формулы =НОРМ.СТ.ОБР(1-α/2) или, если известен уровень доверия , =НОРМ.СТ.ОБР((1+ур.доверия)/2) .

Обычно при построении доверительных интервалов для оценки среднего используют только верхний α /2-квантиль и не используют нижний α /2-квантиль . Это возможно потому, что стандартное нормальное распределение симметрично относительно оси х (плотность его распределения симметрична относительно среднего, т.е. 0 ). Поэтому, нет нужды вычислять нижний α/2-квантиль (его называют просто α/2-квантиль ), т.к. он равен верхнему α /2-квантилю со знаком минус.

Напомним, что, не смотря на форму распределения величины х, соответствующая случайная величина Х ср распределена приблизительно нормально N(μ;σ 2 /n) (см. статью про ). Следовательно, в общем случае, вышеуказанное выражение для доверительного интервала является лишь приближенным. Если величина х распределена по нормальному закону N(μ;σ 2 /n), то выражение для доверительного интервала является точным.

Расчет доверительного интервала в MS EXCEL

Решим задачу.
Время отклика электронного компонента на входной сигнал является важной характеристикой устройства. Инженер хочет построить доверительный интервал для среднего времени отклика при уровне доверия 95%. Из предыдущего опыта инженер знает, что стандартное отклонение время отклика составляет 8 мсек. Известно, что для оценки времени отклика инженер сделал 25 измерений, среднее значение составило 78 мсек.

Решение : Инженер хочет знать время отклика электронного устройства, но он понимает, что время отклика является не фиксированной, а случайной величиной, которая имеет свое распределение. Так что, лучшее, на что он может рассчитывать, это определить параметры и форму этого распределения.

К сожалению, из условия задачи форма распределения времени отклика нам не известна (оно не обязательно должно быть нормальным ). , этого распределения также неизвестно. Известно только его стандартное отклонение σ=8. Поэтому, пока мы не можем посчитать вероятности и построить доверительный интервал .

Однако, не смотря на то, что мы не знаем распределение времени отдельного отклика , мы знаем, что согласно ЦПТ , выборочное распределение среднего времени отклика является приблизительно нормальным (будем считать, что условия ЦПТ выполняются, т.к. размер выборки достаточно велик (n=25)).

Более того, среднее этого распределения равно среднему значению распределения единичного отклика, т.е. μ. А стандартное отклонение этого распределения (σ/√n) можно вычислить по формуле =8/КОРЕНЬ(25) .

Также известно, что инженером была получена точечная оценка параметра μ равная 78 мсек (Х ср). Поэтому, теперь мы можем вычислять вероятности, т.к. нам известна форма распределения (нормальное ) и его параметры (Х ср и σ/√n).

Инженер хочет знать математическое ожидание μ распределения времени отклика. Как было сказано выше, это μ равно математическому ожиданию выборочного распределения среднего времени отклика . Если мы воспользуемся нормальным распределением N(Х ср; σ/√n), то искомое μ будет находиться в интервале +/-2*σ/√n с вероятностью примерно 95%.

Уровень значимости равен 1-0,95=0,05.

Наконец, найдем левую и правую границу доверительного интервала .
Левая граница: =78-НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)= 74,864
Правая граница: =78+НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)=81,136

Левая граница: =НОРМ.ОБР(0,05/2; 78; 8/КОРЕНЬ(25))
Правая граница: =НОРМ.ОБР(1-0,05/2; 78; 8/КОРЕНЬ(25))

Ответ : доверительный интервал при уровне доверия 95% и σ =8 мсек равен 78+/-3,136 мсек.

В файле примера на листе Сигма известна создана форма для расчета и построения двухстороннего доверительного интервала для произвольных выборок с заданным σ и уровнем значимости .

Функция ДОВЕРИТ.НОРМ()

Если значения выборки находятся в диапазоне B20:B79 , а уровень значимости равен 0,05; то формула MS EXCEL:
=СРЗНАЧ(B20:B79)-ДОВЕРИТ.НОРМ(0,05;σ; СЧЁТ(B20:B79))
вернет левую границу доверительного интервала .

Эту же границу можно вычислить с помощью формулы:
=СРЗНАЧ(B20:B79)-НОРМ.СТ.ОБР(1-0,05/2)*σ/КОРЕНЬ(СЧЁТ(B20:B79))

Примечание : Функция ДОВЕРИТ.НОРМ() появилась в MS EXCEL 2010. В более ранних версиях MS EXCEL использовалась функция ДОВЕРИТ() .

Оценка доверительных интервалов

Цели обучения

Статистика рассматривает следующие две основные задачи :

    У нас есть некоторая оценка, построенная на выборочных данных, и мы хотим сделать некоторое вероятностное утверждение относительно того, где находится истинное значение оцениваемого параметра.

    У нас есть конкретная гипотеза, которую необходимо проверить на основе выборочных данных.

В данной теме мы рассматриваем первую задачу. Введем также определение доверительного интервала.

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Изучив материал данной темы, Вы:

    узнаете, что такое доверительный интервал оценки;

    научитесь классифицировать статистические задачи;

    освоите технику построения доверительных интервалов, как по статистическим формулам, так и с помощью программного инструментария;

    научитесь определять необходимые размеры выборок для достижения определенных параметров точности статистических оценок.

Распределения выборочных характеристик

Т-распределение

Как обсуждали выше распределение случайной величины близко к стандартизованному нормальному распределению с параметрами 0 и 1. Поскольку нам не известна величина σ, мы заменяем ее на некоторую оценку s . Величина уже имеет другое распределение, а именно или Распределение Стьюдента , которое определяется параметром n -1 (число степеней свободы). Это распределение близко к нормальному распределению (чем больше n , тем распределения ближе).

На рис. 95
представлено распределение Стьюдента с 30 степенями свободы. Как видно, оно весьма близко к нормальному распределению.

Аналогично функциям для работы с нормальным распределением НОРМРАСП и НОРМОБР имеются функции для работы с t-распределением - СТЬЮДРАСП (TDIST) и СТЬЮДРАСПОБР (TINV) . Пример использования этих функций можно посмотреть в файле СТЬЮДРАСП.XLS (шаблон и решение ) и на рис. 96
.

Распределения других характеристик

Как мы уже знаем, для определения точности оценивания математического ожидания нам необходимо t-распределение. Для оценивания других параметров, например, дисперсии, требуются другие распределения. Два из них - это F-распределение и x 2 -распределение .

Доверительный интервал для среднего значения

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Построение доверительного интервала для среднего значения происходит следующим образом :

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать 40 посетителей из тех, кто уже попробовал его и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. Как это осуществить? (см. файл СЭНДВИЧ1.XLS (шаблон и решение ).

Решение

Для решения данной задачи можно воспользоваться . Результаты представлены на рис. 97
.

Доверительный интервал для суммарного значения

Иногда по выборочным данным требуется оценить не математическое ожидание, а общую сумму значений. Например, в ситуации с аудитором интерес может представлять оценка не средней величины счета, а суммы всех счетов.

Пусть N - общее количество элементов, n - размер выборки, T 3 - сумма значений в выборке, T" - оценка для суммы по всей совокупности, тогда , а доверительный интервал вычисляется по формуле , где s - оценка стандартного отклонения для выборки, - оценка среднего для выборки.

Пример

Допустим, некоторая налоговая служба хочет оценить размер суммарных налоговых возвратов для 10 000 налогоплательщиков. Налогоплательщик либо получает возврат, либо доплачивает налоги. Найдите 95%-й доверительный интервал для суммы возврата при условии, что размер выборки составляет 500 человек (см. файл СУММА ВОЗВРАТОВ.XLS (шаблон и решение ).

Решение

В StatPro нет специальной процедуры для этого случая, однако можно заметить, что границы можно получить из границ для среднего исходя из вышеприведенных формул (рис. 98
).

Доверительный интервал для пропорции

Пусть p - математическое ожидание доли клиентов, а р в - оценка этой доли, полученная по выборке размера n. Можно показать, что для достаточно больших распределение оценки будет близко к нормальному с математическим ожиданием p и стандартным отклонением . Стандартная ошибка оценки в данном случае выражается как , а доверительный интервал как .

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом выбрал 40 посетителей из тех, кто уже попробовал его и предложил им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемую долю клиентов, которые оценивают новый продукт не менее чем в 6 баллов (он ожидает, что именно эти клиенты и будут потребителями нового продукта).

Решение

Первоначально создаем новый столбец по признаку 1, если оценка клиента была больше 6 баллов и 0 иначе (см. файл СЭНДВИЧ2.XLS (шаблон и решение ).

Способ 1

Подсчитывая количество 1, оцениваем долю, а далее используем формулы.

Значение z кр берется из специальных таблиц нормального распределения (например, 1,96 для 95%-го доверительного интервала).

Используя данный подход и конкретные данные для построения 95%-го интервала, получим следующие результаты (рис. 99
). Критическое значение параметра z кр равно 1,96. Стандартная ошибка оценки - 0,077. Нижняя граница доверительного интервала - 0,475. Верхняя граница доверительного интервала - 0,775. Таким образом, менеджер вправе полагать с 95%-й долей уверенности, что процент клиентов, оценивших новый продукт на 6 баллов и выше, будет между 47,5 и 77,5.

Способ 2

Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно заметить, что доля в данном случае совпадает со средним значением столбца Тип . Далее применим StatPro/Statistical Inference/One-Sample Analysis для построения доверительного интервала среднего значения (оценки математического ожидания) для столбца Тип . Полученные в этом случае результат, будут весьма близок к результату 1-го способа (рис. 99).

Доверительный интервал для стандартного отклонения

В качестве оценки стандартного отклонения используется s (формула приведена в разделе 1). Функцией плотности распределения оценки s является функция хи-квадрат , которая, как и t-распределение, имеет n-1 степень свободы. Имеются специальные функции для работы с этим распределением ХИ2РАСП (CHIDIST) и ХИ2ОБР (CHIINV) .

Доверительный интервал в этом случае уже будет не симметричным. Условная схема границ представлена на рис. 100 .

Пример

Станок должен производить детали диаметром 10 см. Однако в силу различных обстоятельств происходят ошибки. Контролера по качеству волнуют два обстоятельства: во-первых, среднее значение должно равняться 10 см; во-вторых, даже в этом случае, если отклонения будут велики, то многие детали будут забракованы. Ежедневно он делает выборку из 50 деталей (см. файл КОНТРОЛЬ КАЧЕСТВА.XLS (шаблон и решение ). Какие выводы может дать такая выборка?

Решение

Построим 95%-й доверительные интервалы для среднего и для стандартного отклонения с помощью StatPro/Statistical Inference/ One-Sample Analysis (рис. 101
).

Далее, используя предположение о нормальном распределении диаметров, рассчитаем долю бракованных изделий, задавшись предельным отклонением 0,065. Используя возможности таблицы подстановки (случай двух параметров), построим зависимость доли брака от среднего значения и стандартного отклонения (рис. 102
).

Доверительный интервал для разности двух средних значений

Это одно из наиболее важных применений статистических методов. Примеры ситуаций.

    Менеджер магазина одежды хотел бы знать, на сколько больше или меньше тратит в магазине средняя женщина-покупатель, чем мужчина.

    Две авиакомпании летают аналогичными маршрутами. Организация-потребитель хотела бы сравнить разницу между среднеожидаемыми временами задержек рейсов по обеим авиакомпаниям.

    Компания рассылает купоны на отдельные виды товаров в одном городе и не рассылает в другом. Менеджеры хотят сравнить средние объемы покупок этих товаров в ближайшие два месяца.

    Автомобильный дилер часто имеет дело на презентациях с замужними парами. Чтобы понять их персональную реакцию на презентацию, пары часто опрашивают отдельно. Менеджер хочет оценить разницу в рейтингах указываемых мужчинами и женщинами.

Случай независимых выборок

Разность средних значений будет иметь t-распределение с n 1 + n 2 - 2 степенями свободы. Доверительный интервал для μ 1 - μ 2 выражается соотношением:

Данная задача допускает решение не только по вышеприведенным формулам, но и стандартными средствами StatPro . Для этого достаточно применить

Доверительный интервал для разности между пропорциями

Пусть - математическое ожидание долей. Пусть - их выборочные оценки, построенные по выборкам размера n 1 и n 2 соответственно. Тогда является оценкой для разности . Следовательно, доверительный интервал этой разности выражается как:

Здесь z кр является значением, полученным из нормального распределения по специальным таблицам (например, 1,96 для 95%-й доверительного интервала).

Стандартная ошибка оценки выражается в данном случае соотношением:

.

Пример

Магазин, готовясь к большой распродаже, предпринял следующие маркетинговые исследования. Были выбраны 300 лучших покупателей, которые в свою очередь были случайным образом поделены на две группы по 150 членов в каждой. Всем из отобранных покупателей были разосланы приглашения для участия в распродаже, но только для членов первой группы был приложен купон, дающий право на скидку 5%. В ходе распродажи покупки всех 300 отобранных покупателей фиксировались. Каким образом менеджер может интерпретировать полученные результаты и сделать заключение об эффективности предоставления купонов? (см. файл КУПОНЫ.XLS (шаблон и решение )).

Решение

Для нашего конкретного случая из 150 покупателей, получивших купон на скидку, 55 сделали покупку на распродаже, а среди 150, не получивших купон, покупку сделали только 35 (рис. 103
). Тогда значения выборочных пропорций соответственно 0,3667 и 0,2333. А выборочная разность между ними равна соответственно 0,1333. Полагая доверительный интервал 95%-м, находим по таблице нормального распределения z кр = 1,96. Вычисление стандартной ошибки выборочной разности равно 0,0524. Окончательно получаем, что нижняя граница 95%-го доверительного интервала равна 0,0307, а верхняя граница 0,2359 соответственно. Полученные результаты можно интерпретировать таким образом, что на каждых 100 покупателей, получивших купон со скидкой, можно ожидать от 3 до 23 новых покупателей. Однако надо иметь в виду, что этот вывод сам по себе еще не означает эффективности применения купонов (поскольку, предоставляя скидку, мы теряем в прибыли!). Продемонстрируем это на конкретных данных. Предположим, что средний размер покупки равен 400 руб., из которых 50 руб. есть прибыль магазина. Тогда ожидаемая прибыль на 100 покупателях, не получивших купон, равна:

50 0,2333 100 = 1166,50 руб.

Аналогичные вычисления для 100 покупателей получивших купон, дают:

30 0,3667 100 = 1100,10 руб.

Уменьшение средней прибыли до 30 объясняется тем, что, используя скидку, покупатели, получившие купон, в среднем будут делать покупку на 380 руб.

Таким образом, итоговый вывод говорит о неэффективности использования таких купонов в данной конкретной ситуации.

Замечание. Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно свести данную задачу к задаче оценки разности двух средних способом, а далее применить StatPro/Statistical Inference/Two-Sample Analysis для построения доверительного интервала разности двух средних значений.

Управление длиной доверительного интервала

Длина доверительного интервала зависит от следующих условий :

    непосредственно данных (стандартное отклонение);

    уровня значимости;

    размера выборки.

Размер выборки для оценки среднего значения

Сначала рассмотрим задачу в общем случае. Обозначим данное нам значение половины длины доверительного интервала за В (рис. 104
). Нам известно, что доверительный интервал для среднего значения некоторой случайной величины X выражается как , где . Полагая:

и выражая n , получим .

К сожалению, точное значение дисперсии случайной величины X нам не известно. Кроме этого, нам неизвестно и значение t кр , так как оно зависит от n через количество степеней свободы. В данной ситуации мы можем поступить следующим образом. Вместо дисперсии s используем какую-либо оценку дисперсии, по каким-либо имеющимся реализациям исследуемой случайной величины. Вместо значения t кр используем значение z кр для нормального распределения. Это вполне допустимо, поскольку функции плотности распределений для нормального и t-распределения очень близки (за исключением случая малых n ). Таким образом, искомая формула принимает вид:

.

Поскольку формула дает, вообще говоря, нецелочисленные результат, в качестве искомого размера выборки берется округление с избытком результата.

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать некоторое количество посетителей из тех, кто уже попробовал его, и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. При этом он хочет, чтобы половина ширины доверительного интервала не превышала 0,3. Какое количество посетителей ему необходимо опросить?

выглядит следующим образом:

Здесь р оц - оценка доли p , а В есть заданная половина длины доверительного интервала. Завышенное значение для n можно получить, используя значение р оц = 0,5. В этом случае длина доверительного интервала не будет превосходить заданного значения В при любом истинном значении p .

Пример

Пусть менеджер из предыдущего примера планирует оценить долю клиентов, отдавших предпочтение новому виду продукции. Он хочет построить 90%-й доверительный интервал, половина длины которого не превосходила бы 0,05. Сколько клиентов должно войти в случайную выборку?

Решение

В нашем случае значение z кр = 1,645. Поэтому искомое количество вычисляется как .

Если бы менеджер имел основания полагать, что искомое значение p составляет, например, примерно 0,3, то, подставляя это значение в вышеприведенную формулу, мы получили бы меньшее значение величины случайной выборки, а именно 228.

Формула для определения размеров случайной выборки в случае разности между двумя средними значениями записывается как:

.

Пример

Некоторая компьютерная компания имеет сервисный центр по обслуживанию клиентов. В последнее время увеличилось количество жалоб клиентов на плохое качество обслуживания. В сервисном центре в основном работают сотрудники двух типов: не имеющие большого опыта, но закончившие специальные подготовительные курсы, и имеющие большой практический опыт, но не закончившие специальных курсов. Компания хочет проанализировать нарекания клиентов за последние полгода и сравнить их средние количества, приходящиеся на каждую из двух групп сотрудников. Предполагается, что количества в выборках по обеим группам будут одинаковые. Какое количество сотрудников необходимо включить в выборку, чтобы получить 95%-й интервал с половиной длины не более 2?

Решение

Здесь σ оц есть оценка стандартного отклонения обеих случайных переменных в предположении, что они близки. Таким образом, в нашей задаче нам необходимо каким-то образом получить эту оценку. Это можно сделать, например, следующим образом. Просмотрев данные по нареканиям клиентов за последние полгода, менеджер может заметить, что на каждого сотрудника в основном приходится от 6 до 36 нареканий. Зная, что для нормального распределения практически все значения удалены от среднего значения не более чем на три стандартных отклонения, он может с определенным основанием полагать, что:

, откуда σ оц = 5.

Подставляя это значение в формулу, получаем .

Формула для определения размера случайной выборки в случае оценки разности между долями имеет вид:

Пример

Некоторая компания имеет две фабрики по производству аналогичной продукции. Менеджер компании хочет сравнить доли бракованной продукции на обеих фабриках. По имеющейся информации процент брака на обеих фабриках составляет от 3 до 5%. Предполагается построить 99%-й доверительный интервал с половиной длины не более 0,005 (или 0,5%). Какое количество изделий необходимо отобрать с каждой фабрики?

Решение

Здесь р 1оц и р 2оц являются оценками двух неизвестных долей брака на 1-й и 2-й фабрике. Если положить р 1оц = р 2оц = 0,5, то мы получим завышенное значение для n . Но поскольку в нашем случае мы имеем некоторую априорную информацию об этих долях, то мы берем верхнюю оценку этих долей, а именно 0,05. Получаем

Когда делается оценка некоторых параметров совокупности по выборочным данным, полезно дать не только точечную оценку параметра, но и указать доверительный интервал, который показывает, где может находиться точное значение оцениваемого параметра.

В данной главе мы также познакомились с количественными соотношениями, позволяющими строить такие интервалы для различных параметров; узнали способы управления длиной доверительного интервала.

Отметим также, что задачу оценки размеров выборки (задача планирования эксперимента) можно решить, используя стандартные средства StatPro , а именно StatPro/Statistical Inference/Sample Size Selection .