Водородная бомба с оболочкой из кобальта. П. Д. Смит. Кобальтовая бомба ("Грязная бомба"). Способ применения бомбы

Гриб головач – яркий представитель рода Головач семейства Шампиньоновые. Довольно распространённый гриб во многих областях Российской Федерации. Его часто можно встретить в лиственных и смешанных лесах, на лугах, степях, полях, даже в городских парках и скверах. Оригинальный внешний вид, размеры и форма, легко отличают его от других редуцентов своего рода. Съедобный гриб широко применяется в кулинарии и народной медицине.

Прорастает поодиночке, либо группами. Зачастую имеет шарообразную, овальную, яйцевидную форму плодового тела, слегка приплюснутую. Гриб головач вырастает до 10 – 50 см в диаметре. У молодого экземпляра тело белое, по мере созревания, темнеет, трескается, обретает различные тёмные оттенки жёлтого или коричневого цвета. Мякоть или глеба при начале роста белая, упругая, после созревания ватоподобная, рыхлая, бледно-зелёного или коричневого цвета. Ножка белая, толстая, цилиндрической формы, к земле может утолщаться или сужаться, у многих видов ножка короткая, у других может вырастать до 15 – 20 см. Поверхность шляпки головача может быть гладкой или шершавой, при разламывании образуются куски неодинаковой формы с рваными краями.

Характерная отличительная особенность – во время созревания плодовое тело почти полностью растрескивается и отпадает. Споры гриба имеют коричневый оттенок.
Для приготовления блюд используют только молодые грибы с белой, плотной, упругой мякотью.

Разновидности и двойники

Род грибов головачей насчитывает более 30 видов. Наиболее распространено 3 вида: гигантский, мешковатый, продолговатый. По незнанию, многие путают этот гриб с дождевиками, порховиками, хоть это и не страшно, поскольку эти виды тоже съедобные.

Головач круглый мешковатый

Другое название этого вида – головач пузыревидный, округлый, дождевик заячий. Шляпка шарообразная, немного сдавленная, сверху достигает в диаметре до 15 см, к земле сужается, формируя ложную ножку. В высоту достигает 20 см. Поверхность белая, с характерными точечными выпуклостями, напоминающими короткие иголочки или шипы. Мякоть белая, упругая. По мере созревания меняется цветовая окраска плодового тела и внутренней мякоти – от жёлтого до темно-коричневого. После полного созревания верхняя часть плодового тела распадается, обнажая мякоть со спорами, гриб приобретает форму широкой чаши с неровными краями. Споры коричневого цвета.

Прорастает почти повсеместно – в лесах, на лугах и полях, в большинстве случаев встретить можно одиночный гриб, в группах прорастают крайне редко. Собирают с конца мая до второй половины сентября, пик роста - июль.

Этот вид относится к 4 категории съедобных грибов, употребляют в пищу только экземпляры с белой мякотью.

Головач гигантский лангермания

Плодовое тело округлой формы, диаметром до 0,5 м, чуть сдавленно сверху. Ножка короткая, еле заметная под массивной шляпкой. У молодого гриба мякоть белая, упругая, при созревании желтеет, становиться рыхлой, затем приобретает бурый оттенок.

Головач гигантский становится бурым после полного созревания, тогда оболочка разрывается почти полностью, оголяя внутреннюю часть со спорами.

Огромный, гигантский гриб прорастает преимущественно поодиночке в лесах умеренной зоны.

Головач продолговатый

Другие названия – дождевик удлинённый, головач сумчатый. Плодовое тело по форме напоминает кеглю или перевёрнутую грушу. В высоту достигает до 18 см. Небольшая шляпка округлая, плавно переходит в ложноножку, расширенную у земли. Диаметр широкой части 5 – 7 см, узкой до 4 см. Поверхность неоднородная, шероховатая, покрыта шипами разного размера. Молодой гриб белый, в процессе созревания приобретает более тёмные оттенки, вплоть до тёмно-коричневого. Одновременно с этим меняется и мякоть – упругая и белая она темнеет, становиться рыхлой. После созревания шляпка разламывается и отпадает, ложноножка в большинстве случаев остаётся стоять. Споры тёмно-коричневого цвета.

Головач продолговатый прорастает со второй половины июля и до конца сентября, либо группами, либо поодиночке. Встречается в лесах смешанного типа, на лугах и полях.

В кулинарии используют только шляпку.

Головач продолговатый

Родственные виды

Очень часто гриб головач принимают за крупный шиповатый дождевик, в особенности экземпляр с короткой ложноножкой. Большую разницу, особенно в молодом возрасте, увидеть сложно. При созревании дождевик выбрасывает споры из трещины в шляпке, а у головача шляпка распадается.

Выращивание

Головач легко вырастить в домашних условиях, на даче или в саду. Для этого достаточно в лесу найти старый гриб, который ещё не «сбросил» голову. Шляпку мелко режут и замачивают на сутки в воде, затем полученную смесь выливают на участок, где хотят получить грибную поляну.

Другой способ – гриб пропускают через мясорубку, засыпают массу в банку, добавляют живых дрожжей и немного сахара, хорошо перемешивают, дают настояться пару дней. Считается всхожесть грибных спор в разы увеличивается при таком способе культивирования.

Первые всходы можно наблюдать уже через 4 – 6 месяцев.

Польза гриба

Имея большую массу и размер, головач гигантский привлекателен в качестве трофея у грибников. В любом случае, будь то молодой гриб или старый, ему найдётся применение, если не в кулинарии, то в качестве народного лекарства.

Применение в кулинарии

В кулинарии используют только молодые, свежие головачи, с белой мякотью. Этим они отличаются от гриба шампиньона и других представителей, которые спокойно выдерживают долгое хранение на холоде.

Не стоит хранить головач долго, со временем концентрация ядовитых веществ возрастает.

Головач гигантский, мешковатый и продолговатый, в отличие от других грибов, не требует предварительной варки. Его используют при жарке, в выпечке и супах. Готовят, как и другие грибы, не требующие предварительной термической обработки.

Применение в медицине

Головач гигантский широко используется в народной и традиционной медицине. Для приготовления различных препаратов и медикаментов используют только полностью вызревшие экземпляры. Данный вид грибов обладает антиоксидантным, анестезирующим, противовоспалительным, противоопухолевым и кровоостанавливающим свойством. Применяют созревшие споры или тонкие слои головача. При порезах рану посыпают споровым порошком или прикладывают тонкую прослойку мякоти. Также используют для лечения ларингита, оспы, крапивницы.

Опасность от гриба

Крайне опасно употреблять в пищу старые головачи, поскольку можно отравиться. У таких грибов возрастает концентрация токсинов, при употреблении реакция организма может быть летальной. Признаки отравления проявляются не сразу, а через 2-3 суток, за это время сильно поражаются внутренние органы.

Незадолго до создания первой атомной бомбы появилась другая идея, связанная с применением радиоактивных материалов. В конце 30-х годов прошлого века, когда только-только О. Ганн и Ф. Штрассман отрыли явление деления ядра, даже ученые сомневались в возможности искусственного запуска цепной реакции расщепления ядер урана. Как следствие, под вопросом был и тот вид вооружения, который вскоре назовут ядерным . Зато уже тогда стали появляться различные проекты использования радиоактивных материалов, в первую очередь, военного. Один из них предложил начинающий писатель Р. Хайнлайн. В его рассказе 1940 года «Никудышное решение» страны антигитлеровской коалиции так и не смогли освоить цепную реакцию деления ядер урана, и им пришлось сбрасывать на Берлин обычные бомбы, снаряженные пылью радиоактивных металлов. Получив свою долю облучения, нацисты сдались. Через пять лет Германия действительно подписала капитуляцию, но никто никакие бомбы с пылью на ее столицы не сыпал. Тем не менее, неудачный «прогноз» не похоронил саму идею. Даже наоборот, впоследствии будут проводиться исследования на тему подобного оружия. Уже в начале 50-х годов вид вооружения, разбрасывающий по атакуемой территории радиоактивную пыль, станет называться радиологическим оружием. Но большее распространение получит термин «грязная бомба».


Основное отличие радиологического оружия от ядерного заключается в том, что последнее имеет сразу пять поражающих факторов, а грязная бомба наносит ущерб только радиационным заражением. Таким образом, самый опасный период заражения после ядерного взрыва можно переждать в убежище, а через несколько лет начать вновь использовать территории, пострадавшие от него (к примеру, Хиросиму и Нагасаки начали восстанавливать к концу сороковых). В свою очередь, радиологический боеприпас обеспечивает длительное заражение подвергшейся атаке местности. Это можно считать как плюсом, так и минусом грязных бомб.

Первое время проекты гипотетической грязной бомбы представляли собой прямое заимствование у Хайнлайна – контейнер с радиоактивным веществом и заряд взрывчатки, который должен был разбрасывать изотоп по атакуемой местности. Уже в 1952 году бывший участник Манхэттенского проекта Л. Силлард предложил принципиально новую концепцию радиологического оружия. В его проекте к обычной водородной бомбе крепились пластины из самого обычного природного кобальта с атомным весом в 60 единиц. При взрыве температура, давление и поток нейтронов превращает кобальт-60 в изотоп кобальт-59. Последний не встречается в природе, зато имеет высокую радиоактивность. Благодаря мощности водородной бомбы радиоактивный кобальт-59 оказывается рассеян по большой площади. Период полураспада кобальта-59 – больше пяти лет, после чего он переходит в возбужденное состояние никеля-60, а затем и в основное. Существует популярное заблуждение относительно кобальтовой бомбы: ее иногда считают ядерным или термоядерным оружием большой мощности. Однако это не так: основным поражающим элементом такого оружия все же является разбрасываемый изотоп кобальта. Ядерный или термоядерный боезаряд используется исключительно для приведения кобальта из естественного в радиоактивное состояние. Вскоре для подобных устройств появился термин «Машина Судного дня» (Doomsday Machine). Стало понятно, что достаточное количество кобальтовых бомб может гарантированно уничтожить, как минимум, большую часть населения Земли и биосферы. В 1964 году эта сверхжестокость радиологического оружия была обыграна в художественном фильме «Доктор Стрейнджлав, или как я перестал бояться и полюбил бомбу» (режиссер С. Кубрик). Тот самый доктор Стрейнджлав из названия кино, узнав о том, что советская автоматическая система после падения на территории СССР американской бомбы привела в действие «Машину Судного дня», быстро подсчитал, что возрождение человечества сможет начаться только через девяносто с лишним лет. И то, при ряде соответствующих мер, да и время для их осуществления стремительно уменьшалось.

Кадр из фильма «Доктор Стрейнджлав, или как я перестал бояться и полюбил бомбу» (режиссер С. Кубрик)

Вышеупомянутый фильм по праву считается одной из лучших антимилитаристских кинолент. И, что интересно, людоедская кобальтовая бомба была предложена Силлардом не из желания поскорее уничтожить вероятного противника. Физик просто хотел продемонстрировать бесполезность дальнейшей гонки в сфере оружия массового уничтожения. В середине 50-х американские ядерщики просчитали технологическую и экономическую части проекта кобальтовой бомбы и ужаснулись. Создание Машины Судного дня, способной уничтожить все живое на планете было по карману любой стране, владеющей ядерными технологиями. Во избежание проблем в самом ближайшем будущем Пентагон запретил продолжать работы по теме грязных бомб на кобальте-60. Такое решение вполне понятно, в одной из радиопередач пятидесятых годов с участием Силларда прозвучала замечательная фраза: «кобальтовой бомбой проще уничтожить под корень все человечество, чем какую-то определенную его часть».

Но прекращение работ по кобальтовым боеприпасам не стало гарантией неприменения грязных бомб. Сверхдержавы, а затем и страны, обладающие ядерными технологиями, быстро пришли к выводу, что подобное вооружение не имеет смысла. Ядерная или термоядерная бомба может мгновенно уничтожить противника в нужном месте. Занять эту территорию можно будет через считанные дни после взрыва, когда уровень радиации упадет до приемлемого. А вот радиологическое оружие не может работать так быстро, как ядерное, и так же скоро «освобождать» местность от своих последствий. Грязная бомба как средство сдерживания? Такому применению мешают ровно те же проблемы. Получается, крупным развитым странам грязные боеприпасы не нужны. Благодаря всему этому радиологическое оружие никогда официально не принималось на вооружение, никогда не испытывалось и, тем более, не использовалось на практике.

В то же время, у грязных бомб есть несколько настораживающих особенностей. Во-первых, оно сравнительно доступно. Для того чтобы иметь атомную или водородную бомбу нужны соответствующие предприятия, должный уровень науки и множество других немаловажных нюансов. Зато для изготовления радиологических боезарядов достаточно некоторого количества любого радиоактивного вещества, а взрывчатых веществ в мире и так, что называется, навалом. Радиоактивный материал можно взять откуда угодно – вплоть до урановой руды или медицинских препаратов, правда, в последнем случае придется «расковырять» довольно большое количество контейнеров, предназначенных для онкологических отделений больниц. В конце концов, в датчиках задымления нередко используются подходящие изотопы, например, америций-241. Однако подобные аппараты являются совсем неприемлемым «источником» – в современных моделях настолько мизерное количество изотопов, что для критической массы понадобится демонтировать несколько миллионов приборов. Пожалуй, на нашей планете нет такого злодея-диктатора страны третьего мира, который одобрит прожект по созданию грязной бомбы из противопожарной аппаратуры.

Страны третьего мира не случайно упомянуты в контексте радиологического оружия. Дело в том, что грязные бомбы иногда называют «ядерным оружием для нищих». В частности, именно поэтому регулярно в средствах массовой информации всего мира появляются заметки, в которых говориться об обнаружении в различных частях света чертежей или даже частей готовой грязной бомбы. Очень хотелось бы, чтобы все эти сообщения оказывались банальными газетными утками. Есть достаточный повод желать именно такого исхода. По подсчетам военных аналитиков, если бы 11 сентября 2001 года в Нью-Йорке произошел теракт с использованием не самолетов, но грязной бомбы… Счет жертв пошел бы не на тысячи, а на миллионы. Кроме того, немалую часть города пришлось бы превратить в зону отчуждения, подобную Чернобыльской. Иными словами, радиологическое оружие можно считать весьма привлекательной вещью для террористических организаций. Их «акции» чаще всего направлены на мирное население, и грязные бомбы могли бы оказаться весомым «аргументом» в неблагонадежных руках.

Аварию на четвертом энергоблоке Чернобыльской АЭС можно считать ярчайшим примером того, что может произойти в случае применения радиологического оружия. Надо заметить, фактическое воздействие настоящей радиологической бомбы будет значительно слабее, хотя бы потому, что в реакторе АЭС произошел взрыв мощностью, минимум, в несколько сотен килограмм тротила (в различных неофициальных источниках встречается даже упоминание эквивалента в 100 тонн), а после самого взрыва в разрушенном сооружении сохранялись благоприятные условия для испарения радиоактивного материала. Вряд ли кто-то станет делать грязную бомбу с пятьюстами килограммами тринитротолуола. Хотя бы потому, что это непрактично.

Несмотря на отсутствие промышленно произведенных образцов, грязные бомбы можно считать весьма опасным, хотя и по большей части вымышленным оружием. И все же остается некоторая вероятность того, что грязная бомба может оказаться в руках опасных лиц с отнюдь не добрыми намерениями. Спецслужбы всего мира обязаны сделать все, чтобы радиологическое оружие из гипотетического не стало в полной мере существующим – цена этого будет слишком высока.

Одним из видов радиологического оружия является кобальтовая бомба. Что это такое, знают практически все физики-ядерщики, а также военные всех государств.

Разновидность радиологического оружия

Этот тип бомбы считается модификацией ядерной бомбы в теоретическом смысле. Последствия ее взрыва весьма печальны. Происходит значительное и очень глубокое заражение территории не только в самом эпицентре, но и в близлежащих районах. Причем значительность этого заражения не зависит от силы взрыва, очень сильные последствия для окружающей среды может вызвать и относительно небольшой ядерный взрыв.

Из чего состоит бомба?

Ториево-кобальтовая бомба в ее теоретическом понимании состоит из термоядерного боевого заряда. В отличие от простого ядерного припаса, завершающая оболочка этого термоядерного заряда состоит не из урана-238. В ней содержится химический элемент кобальт. Существующий в природе кобальт причисляется к моноизотопам, на все сто процентов этот химический элемент состоит из кобальта-59.

Химические реакции при взрыве

Во время взрыва происходит обильное облучение этой кобальтовой оболочки нейтронным потоком. После этого осуществляется следующая химическая реакция. Захват нейтрона сопровождается тем, что стабильное ядро природного химического элемента перевоплощается в кобальт-60, который является радиоактивным изотопом.

Нужно заметить, что время, необходимое для полураспада получившегося изотопа, исчисляется пятью годами и несколькими месяцами. После бета-распада полученного нуклида появляется никель-60. Последний находится в возбужденном состоянии, а через определенный промежуток времени сменяется на основное состояние, сопровождающееся исходом одного либо нескольких гамма-квантов.

По своим характеристикам один грамм кобальта-60 приравнивается к 41,8 ТБк или 1130 Ки. Для того чтобы подвергнуть заражению всю поверхность планеты, достаточно всего 510 тысяч тонн этого вещества. При этом данный расчет производился с учетом того, что один грамм потребовался бы для заражения одного квадратного километра.

Кобальт-60, обнаруженный на полигонах

Каких-либо достоверных сведений или проверенной информации на сегодняшний день о том, что в какой-то стране создана и имеется кобальтовая осколочная бомба, нет. По официальным сведениям, такого факта не зарегистрировано. Однако при различных ядерных испытаниях кобальт-60 все же использовался в разных странах. Так, 14 сентября 1957 года малые количества этого элемента были применены британскими военными при проводимых ими испытаниях. Он был использован в качестве радиохимических меток. Следует отметить, что рассматриваемый химический элемент является обыкновенным последствием ядерных взрывов, причем не имеет значения форма их осуществления, он образуется как при открытых, так и закрытых испытательных подрывах. Кобальт-60 появляется при таких взрывах в итоге нейтронной активации железа. Но в этом процессе участвует не только железо, но и природный кобальт, и никель. Взаимодействие происходит с железом, содержащимся как в самой бомбе (стальной оболочке), так и с железом, находящимся в земле (в любом грунте имеется определенный процент этого элемента).

Например, рассматриваемый радиоактивный изотоп был выявлен на территориях, где производились наземные и подземные ядерные испытания, а именно промышленные военные подрывы. К таким относятся произведенные советские испытания на Семипалатинском ядерном полигоне, расположенном в Республике Казахстан, а также взрывы «Тайга», «Чаган», «Кристал», «Кратон-3». Из зарубежных полигонов нужно отметить североамериканский полигон Аламогордо, на котором был произведен первый взрыв такой классификации, названный «Тринити». Также обнаруживался кобальт-60 и на французском испытательном полигоне, который находился в Алжире.

Автор идеи создания грязной бомбы

Кобальтовая бомба, а точнее, идея ее создания принадлежит физику Лео Силарду. Еще в 1950 году этот ученый высказался о том, что имеющийся у какой-нибудь страны арсенал, состоящий из оружия этого вида, будет способен опустошить всю Землю. Кобальт как элемент, влекущий радиоактивное заражение в результате определенных химических реакций, был выбран неслучайно. Именно с его помощью можно было бы добиться высокоактивного и при этом довольно долгого радиоактивного воздействия и заражения.

При выборе между кобальтом-60 и остальными изотопами, если имеется цель искоренить человечество, конечно же, первый заслуживает большего внимания. Так, другие изотопы хотя и имеют больший период полураспада, однако для получения нужного результата их активности более чем недостаточно. А вот кобальт-60 подходит как нельзя лучше. Рассматривались этим ученым и другие изотопы, жизнь которых еще более коротка, чем у кобальта-60. Это натрий-24 и золото-198. Однако весьма маленький период полураспада этих химических элементов мог способствовать тому, что какая-то часть населения в результате ядерной атаки могла бы выжить, спрятавшись в бункерах.

Способ применения бомбы

Машина Судного дня - так названа физиком придуманная им кобальтовая бомба. Кто создал ее в настоящее время, и создана ли она, вообще, неизвестно. Но желательно, чтобы такого оружия на свете не существовало, так как оно может привести к необратимым трагическим последствиям для человечества. Термоядерное устройство, придуманное Силардом, не требует какой-либо специальных способов доставки к месту назначения.

Любая террористическая организация или страна, угрожающая всему миру, способна будет шантажировать все человечество, угрожая взорвать эту бомбу на своей территории. Конечно, эта страна погибнет, но вместе с ней будут уничтожены и все жители Земли. Это будет достигнуто за счет того, что радиоактивный изотоп будет распространен по всему миру с помощью ветров, атмосферных течений. Понятно, что это произойдет не в одно мгновение, а спустя несколько месяцев, но будет неизбежным.

Дополнительная информация

Существует информация о том, что во времена существования Советского Союза группа под руководством знаменитого академика и ученого Сахарова А.Д. выступила перед генеральным секретарем компартии Хрущёвым Н.С. с инициативой создания ракеты с кобальтовой оболочкой. Такая кобальтовая бомба, фото которой вряд ли можно найти в открытых источниках, содержала бы огромное количество дейтерия, и при ее взрыве у берегов Соединенных Штатов все население этой страны бы погибло.

Источником такой информации послужил Негин Е.А., имевший звание генерал-полковника, служивший во время правления Хрущёва.

Мой новый сайт, на котром есть вся информация по рискам вымирания человечества:
http://www.humanextinction.ru/

П. Д. Смит в своей книге «Люди конца света» (Doomsday men) так описывает историю того, как впервые была предложена кобальтовая бомба. Это произошло на радиошоу, где спорили в прямом эфире ведущие физики о возможностях создания кобальтовой бомбы в 1950-м году:


«Когда Бете закончил говорить, глаза Сциларда внезапно ярко вспыхнули. Он ждал этого момента. Он начал с того, что не согласился с мнением Бете об угрозе радиоактивности. «Потребуется очень большое количество бомб, чтобы жизнь оказалось под угрозой от водородных бомб, - сказал Сцилард. – Но, - продолжил он, - очень просто усилить водородную бомбу таким образом, чтобы она произвела очень опасное количество радиоактивности». Затем он дал своим слушателям, как находящимся за столом в студии, так и по всей Америке, урок о том, как сконструировать бомбу судного дня.

В начале он объяснил, как атомный взрыв создаёт опасные радиоактивные элементы. «Большинство встречающихся в природе элементов становятся радиоактивными, когда поглощают нейтроны», - сказал он. Всё, что вам нужно сделать, это подобрать подходящий элемент и организовать так, чтобы этот элемент захватывал все нейтроны. В этом случае вы имеете очень опасную ситуацию. Я сделал вычисления на этот случай. Предположим, что мы создаём радиоактивный элемент, который будет жить пять лет, и которому мы просто позволим выделиться в воздух. В течение следующих лет он будет постепенно осаждаться и покроет всё Землю пылью. Я спросил себя: сколько нейтронов или сколько тяжёлого водорода мы должны взорвать, чтобы убить каждого на Земле этим способом?»

Сцилард остановился и посмотрел вокруг стола, как если бы он ожидал ответа. «Я пришёл к выводу, что 50 тонн нейтронов будет достаточно, чтобы убить каждого, что означает примерно 500 тонн дейтерия. Харрисон Браун внимательно смотрел на Сциларда, пытаясь понять значение того, что он говорил… «Вы имеете в виду, - сказал Браун, - что если вы взорвёте 500 тонн тяжёлого водорода, и затем позволите этим нейтронам быть поглощёнными другим элементом с целью порождения радиоактивной субстанции, то все люди на Земле будут убиты?»
Сцилард ответил: «Если это долгоживущий элемент, который постепенно, в течение нескольких лет, осаждается, формируя слой пыли на поверхности Земли, то тогда все люди до одного будут убиты».

Специализацией Брауна была геологическая химия, в частности, внеземных образований. Журнал «Тайм» незадолго до этого момента изобразил его держащим в руках метеорит. И теперь он выбрал геологическую аналогию, которая была ему знакома: «То есть тогда вы можете себе представить нечто вроде взрыва Кракатау, когда вы организовываете один большой взрыв или серию маленьких взрывов. Пыль поднимается высоко в воздух, как было в случае этого конкретного взрыва, циркулирует вокруг Земли в течение многих, многих месяцев и даже лет, и затем постепенно выпадет на поверхность Земли?»
Сцилард откинулся назад в своём кресле и выразительно развёл руками: «Я согласен с вами». Аналогия с вулканом была хороша. Сциларду она нравилась. Он ясно выразил свою точку зрения. Оружие судного дня было рождено.

Ганс Бете слушал Сциларда с растущим раздражением. Хотя его лицо всё ещё несло мягкую улыбку, которая привычно обитала у него на губах, его брови наморщились. Дело было не в том, что он научно был не согласен с тем, что Сцилард говорил, скорее, его раздражал типично сцилардовский полёт фантазии. Не было необходимости обострять текущую ситуацию. Водородная бомба должна была быть и так достаточно плоха – зачем пугать людей тем, что может придти за ней.

«Вы можете спросить, – сказал Сцилард, предвосхищая своих критиков, – кто захочет убить всех на земле?» Любая страна, которая хочет быть непобедима на войне, был его драматичный ответ. Это будет преимуществом, которое обретёт любая страна, овладевшая оружием конца света – водородной бомбой, усиленной таким образом, как он описал, цинком, или, как он позднее предложил, кобальтом.

«Давайте предположим, - объяснил он, - что мы участвуем в войне и находимся на грани победы в войне с Россией, после борьбы, которая, скажем, длилась десять лет. Русские могут сказать: «Дальше это границы вы не пойдёте. Вы не вторгнетесь в Европу, и вы не будете сбрасывать на нас обычные атомные бомбы, или мы детонируем наши водородные бомбы и убьём всех». Столкнувшись с такой угрозой, я думаю, мы не сможем продолжать. Я думаю, что Россия будет непобедимой».

Харрисон Браун явным образом страдал от осознания последствий того, что только что сказал Сцилард. «Неужели какая-либо нация, - спросил он, - решиться уничтожить всех вместо того, чтобы потерпеть поражение?» Сцилард честно признался, что он не знает ответа на этот вопрос. Но он добавил следующее пугающее завершение: «Я думаю, что мы можем угрожать это сделать, и русские могут угрожать это сделать. И кто тогда возьмёт на себя риск не принимать эту угрозу всерьёз?»

В публичной лекции в следующем месяце Браун сказал аудитории, что он теперь убеждён, что существуют люди, которые были бы готовы уничтожить всю жизнь на Земле, если бы им не уступили дорогу. «Можем ли мы сомневаться, – спросил он, – что Гитлер, в отчаянии от поражения, уничтожил бы весь мир, если бы он имел власть это сделать?»
Тем февральским вечером дискуссия за круглым столом переместилась к обсуждению возможности того, что огромные водородные бомбы будут доставляться на кораблях. Если он будут взорваны в Тихом океане, радиоактивность от таких чудовищных устройств проплывёт над Америкой благодаря преобладающим западным ветрам, отравляя землю и людей. Это было новой и пугающей угрозой для Америки. Страх кораблей-бомб будет порождать заголовки газет до конца десятилетия, в то время как Америка и Россия будут стремиться переплюнуть друг друга в создании всё больших водородных бомб. Но, как указал Сцилард, такую радиоактивность невозможно контролировать. Ужасной иронией является то, добавил Харрисон Браун, что «проще убить всех людей на Земле, чем только часть из них». «Так оно и есть», – согласился Сцилард. …

Осенью 1950 года страхи Сциларда о кобальтовой бомбе получили независимую научную поддержку. Доктор Джеймс Арнольд из института ядерных исследований в Чикаго решил исследовать, насколько такое оружие технически возможно. Согласно Ньюсвик, «блестящий молодой (27 лет) физик начал с того, чтобы, с логарифмической линейкой в руках, разрушить аргументы Сциларда. Но закончил он согласием по многим аспектам».
Вычисления Арнольда показали, что машина судного дня, описанная Лео Сцилардом, должна быть гигантским устройством «возможно, в два с половиной раза тяжелее линкора Миссури (70,000 тонн водоизмещения – А.Т.)» Дейтерий, который должен наполнять эту бомбу, должен стоить столько же, сколько весь Манхеттенский проект, 2 миллиарда долларов.

Кроме того, по крайней мере, 10 000 тонн кобальта потребуются для создания смертельного радиоактивного изотопа, кобальта-60, когда бомба взорвётся. Большинство предположений Сциларда о кобальтовой бомбе были подтверждены чикагским учёным. В действительности, единственным моментом неопределённости был вопрос о том, будет ли радиоактивная пыль от такой бомбы конца света равномерно распределяться по всему миру.
Хотя Арнольд пришёл к выводу, что человеческая раса не находится в опасности сейчас, поскольку создание такого устройства потребует «полномасштабных усилий большой страны в течение многих лет», он был убеждён, что «подавляющее большинство людей могут быть убиты таким способом». Единственным лучом надежды, который смог найти Ньюсвик, было то, что «те, кто захотят использовать это оружия для убийства, должны принять суицид как условие сделки».

Будучи местом рождения атомной эры и кобальтовой бомбы, Университет Чикаго был домом для наиболее важного журнала по атомным проблемам – «Бюллетень учёных атомщиков». Именно этот Бюллетень поручил Джеймсу Арнольду исследовать предсказания Лео Сциларда о машине судного дня.

Перевод: А.В.Турчин