Самое горячее место во вселенной. Самое пустое место во вселенной или суперпустота эридана. Сделано в России

Побить это температурный рекорд вряд ли удастся; в момент рождения наша Вселенная имела температуру около 10 32 К, и под словом «момент» мы здесь подразумеваем не секунду, а планковскую единицу времени, равную 5 10 -44 секунды. В это буквально неизмеримо короткое время Вселенная была так горяча, что мы понятия не имеем, по каким законам она существовала; на таких энергиях не существуют даже фундаментальные частицы.

2. БАК

Второе место в списке самых горячих мест (или моментов времени, в данном случае разницы нет) после Большого Взрыва занимает наша голубая планета. В 2012 году на Большом Адронном коллайдере физики столкнули разогнанные до 99% скорости света тяжелые ионы и на краткое мгновение получили температуру в 5,5 триллионов Кельвин (5*10 12) (или градусов Цельсия — на таких масштабах это одно и то же).

3. Нейтронные звезды

10 11 К - такова температура внутри новорожденой нейтронной звезды. Вещество при такой температуре совсем не похоже на привычные нам формы. Недра нейтронных звезд состоят из бурлящего «супа» электронов, нейтронов и других элементов. Всего за несколько минут звезда остывает до 10 9 К, а за первые сто лет существования — еще на порядок.

4. Ядерный взрыв

Температура внутри огненного шара ядерного взрыва составляет около 20 000 К. Это больше, чем температура на поверхности большинства звезд главной последовательности.

5. Самые горячие звезды (кроме нейтронных)

Температура поверхности Солнца — около шести тысяч градусов, но это не предел для звезд; самая горячая из известных на сегодняшний день звезд, WR 102 в созвездии Стрельца, раскалена до 210 000 К — это в десять раз горячее атомного взрыва. Таких горячих звезд сравнительно немного (в Млечном Пути их нашли около сотни, еще столько же в других галактиках), они в 10−15 раз массивнее Солнца и намного ярче него.

Вещество нашей Вселенной структурно организовано и образует большое многообразие феноменов различного масштаба с весьма сильно разнящимися физическими свойствами. Одно из важнейших таких свойств - температура. Зная этот показатель и используя теоретические модели, можно судить о многих характеристиках того или иного тела - о его состоянии, строении, возрасте.

Разброс значений температуры у различных наблюдаемых компонентов Вселенной весьма велик. Так, самая низкая величина ее в природе зафиксирована для туманности Бумеранг и составляет всего 1 K. А каковы самые высокие температуры во Вселенной, известные на сегодняшний день, и о каких особенностях различных объектов свидетельствуют? Для начала посмотрим, как же ученые определяют температуру удаленных космических тел.

Спектры и температура

Всю информацию о далеких звездах, туманностях, галактиках ученые получают, исследуя их излучение. По тому, на какой частотный диапазон спектра приходится максимум излучения, определяется температура как показатель средней кинетической энергии, которой обладают частицы тела, - ведь частота излучения связана прямой зависимостью с энергией. Так что самая высокая температура во Вселенной должна отражать, соответственно, и наибольшую энергию.

Чем более высокими частотами характеризуется максимум интенсивности излучения, тем горячее исследуемое тело. Однако полный спектр излучения распределен по очень широкому диапазону, и по особенностям видимой его области («цвету») можно делать определенные общие выводы о температуре, например, звезды. Окончательная же оценка производится на основе изучения всего спектра с учетом полос эмиссии и поглощения.

Спектральные классы звезд

На основе спектральных особенностей, включая цвет, была разработана так называемая Гарвардская классификация звезд. Она включает семь основных классов, обозначаемых буквами O, B, A, F, G, K, M и несколько дополнительных. Гарвардская классификация отражает поверхностную температуру звезд. Солнце, фотосфера которого разогрета до 5780 K, относится к классу желтых звезд G2. Наиболее горячи голубые звезды класса O, самые холодные - красные - принадлежат классу M.

Гарвардскую классификацию дополняет Йеркская, или классификация Моргана-Кинана-Келлман (МКК - по фамилиям разработчиков), подразделяющая звезды на восемь классов светимости от 0 до VII, тесно связанных с массой светила - от гипергигантов до белых карликов. Наше Солнце - карлик класса V.

Примененные совместно, в качестве осей, по которым отложены значения цвет - температура и абсолютная величина - светимость (свидетельствующая о массе), они дали возможность построить график, широко известный как диаграмма Герцшпрунга-Рассела, на котором отражены главные характеристики звезд в их взаимосвязи.

Самые горячие звезды

Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).

Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона - звезды Альнитак, - которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) - R136a1 в Большом Магеллановом облаке - оценена в 53 000 K.

Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.

Термоядерные топки космоса

В ядрах массивных звезд, стиснутых колоссальным давлением, развиваются действительно высокие температуры, достаточные для нуклеосинтеза элементов вплоть до железа и никеля. Так, расчеты для голубых гигантов, сверхгигантов и очень редких гипергигантов дают для этого параметра к концу жизни звезды порядок величины 10 9 K - миллиард градусов.

Строение и эволюция подобных объектов пока еще недостаточно хорошо изучены, соответственно и модели их еще далеко не полны. Ясно, однако, что очень горячими ядрами должны обладать все звезды больших масс, к каким бы спектральным классам они ни принадлежали, - например, красные сверхгиганты. Несмотря на несомненные различия в процессах, протекающих в недрах звезд, ключевым параметром, определяющим температуру ядра, является масса.

Звездные остатки

От массы в общем случае зависит и судьба звезды - то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, - белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.

Гигантские звезды ждет иная судьба - взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 10 11 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда - очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч - до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда - не то место, где температура - самая высокая во Вселенной.

Далекие экзотические объекты

Существует класс космических объектов, достаточно удаленных (а значит, и древних), характеризующихся совершенно экстремальными температурами. По современным воззрениям, квазар представляет собой обладающую мощным аккреционным диском, образуемым падающим на нее по спирали веществом - газом или, точнее, плазмой. Собственно, это активное галактическое ядро в стадии формирования.

Скорость движения плазмы в диске настолько велика, что вследствие трения она разогревается до сверхвысоких температур. Магнитные поля собирают излучение и часть вещества диска в два полярных пучка - джета, выбрасываемых квазаром в пространство. Это чрезвычайно высокоэнергетический процесс. Светимость квазара в среднем на шесть порядков выше светимости самой мощной звезды R136a1.

Теоретические модели допускают для квазаров эффективную температуру (то есть присущую абсолютно черному телу, излучающему с той же яркостью) не более 500 миллиардов градусов (5×10 11 K). Однако недавние исследования ближайшего квазара 3C 273 привели к неожиданному результату: от 2×10 13 до 4×10 13 K - десятки триллионов кельвинов. Такая величина сравнима с температурами, достигающимися в явлениях с наивысшим известным энерговыделением - в гамма-всплесках. На сегодняшний день это самая высокая температура во Вселенной, которая была когда-либо зарегистрирована.

Жарче всех

Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.

Если вернуться к самому моменту ее рождения - приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, - мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.

Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10 -43 секунд. Самый горячий объект в эту эпоху - сама наша Вселенная, с планковской температурой 1,4×10 32 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.

Ученые из России нашли на просторах Вселенной удивительный объект – квазар, который получил индекс 3C 273. Этот объект интересен тем, что имеет настолько высокую температуру, что ее нельзя описать существующими физическими теориями.

Квазары, как и черные дыры, это малоизученные объекты в космосе, которые очень интересуют астрономов. Ученым удалось найти в созвездии Девы новый квазар. После тщательного изучения выяснилось, что 3C 273 имеет колоссальную температуру, которая колеблется от 10 до 40 триллионов градусов по Цельсию! Ученые были , ведь такой температурный предел выходит за рамки наших физических знаний.

Ранее ученые считали, что ядра квазаров не превышают температуру в 500 миллиардов градусов, но 3C 273 «поломал» все научные расчеты и ввел академический мир в ступор. «Это совершенно не сходится с нашими вычислениями, мы пока что не нашли нормального ответа, почему этот объект . Скорее всего, мы стоим на пороге новой эры исследования Вселенной» – сообщил исследователь из России Н. Кардашев.

Квазары удивительны тем, что излучают огромное количество света. Некоторые подобные объекты могут создавать излучения, которые больше всех звезд в нашей галактике! Есть теория, которая гласит, что квазары это ранняя «стадия» новых галактик, которая растет за счет поглощения вещества черной дырой.

Находится самый горячий объект во Вселенной на очень далеком , со скоростью света добраться до него можно только через 2,44 миллиарда лет.

Некоторые космологи утверждают, что реликтовое «холодное пятно» является отпечатком параллельной Вселенной, которая переплетается с нашей.

Суперпустота Эридана или «холодное пятно» — это уникальная область в созвездии Эридан, которая имеет невероятно низкое реликтовое излучение, температура которого на 70 мкК холоднее, чем средняя температура реликтового излучения во всей Вселенной, которое создается реликтовыми фотонами. Температурное отклонение на 0,00015 градусов по Цельсию может означать, что «холодное пятно» является супервойдом - пустейшим пространством между галактическими нитями. В районе Суперпустоты Эридана радиоисточники, которые могли бы создавать излучение, практически отсутствуют. Это значит, что в этой области космоса нет ни галактик, ни галактических скоплений.

Размер этой пространственной «дыры» в диаметре составляет примерно миллиард световых лет. В ней свободно бы поместилось более 10 000 разных галактик. Предположительно здесь отсутствует не только обычное вещество, но и гипотетическая темная материя. Основываясь на этом предположении, Суперпустота Эридана может вмещать в себя темную энергию или космический вакуум.

Согласно последним данным, полученным учеными, обычное вещество, из которого состоят все известные элементарные частицы, создают 5% полной энергии во Вселенной. Темная и обычная материя составляет лишь 1/3 суммарной энергии Вселенной. Базируясь на теории о том, что Вселенная постоянно расширяется, космологи решили, что помимо гравитационного притяжения в природе существует и гравитационное отталкивание - антигравитация.

Главным «двигателем» расширения Вселенной астрономы признали темную энергию. Соответственно, оставшиеся 2/3 суммарной энергии Вселенной предположительно приходятся на эту субстанцию. Теоретически, носителем темной энергии во Вселенной выступает универсальная физическая среда. Может быть, она содержится именно внутри таких «дыр», как Суперпустота Эридана?

Нельзя не отметить, что подобных пустот во Вселенной, подобной зоне в созвездии Эридана, существует не мало. Современной науке известны пара десятков суперпустот–войдов, где плотность космического вещества ниже, чем в среднем во Вселенной. Суперпустота Эридана могла бы претендовать на роль самой большой пустоты среди всех, содержа на 20% меньше материи, чем в остальной части Вселенной. Что же может находиться внутри этой «дыры»?

Некоторые космологи утверждают, что реликтовое «холодное пятно» является отпечатком параллельной Вселенной, которая переплетается с нашей. Другие же считают, что реальная картина выглядит иначе. Суперпустота Эридана может является скоплением гораздо меньших пустот, каждая их которых окружена галактиками. Данное предположение согласовывается с теорией о Мультивселенных, которая рассказывает о том, что наша Вселенная существует в гипотетическом «мыльном пузыре», в то время как параллельные миры развиваются внутри своих собственных «пузырей». Если анализ фонового реликтового излучения докажет состоятельность этой теории, то Суперпустота Эридана может стать свидетельством ее правдивости.

Вещества, которое занимает первое место этого списка, не существует уже почти 15 миллиардов лет. А на втором месте — наша Земля, точнее, ускоритель частиц под Женевой, где в 2012 году получили температуру, выше которой Вселенная не знала с начала времен.

В этой статье:

1. Большой взрыв

Побить это температурный рекорд вряд ли удастся; в момент рождения наша Вселенная имела температуру около 1032 К, и под словом «момент» мы здесь подразумеваем не секунду, а планковскую единицу времени, равную 5 10-44 секунды. В это буквально неизмеримо короткое время Вселенная была так горяча, что мы понятия не имеем, по каким законам она существовала; на таких энергиях не существуют даже фундаментальные частицы.

2. БАК

Второе место в списке самых горячих мест (или моментов времени, в данном случае разницы нет) после Большого Взрыва занимает наша голубая планета. В 2012 году на Большом Адронном коллайдере физики столкнули разогнанные до 99% скорости света тяжелые ионы и на краткое мгновение получили температуру в 5,5 триллионов Кельвин (5*1012) (или градусов Цельсия — на таких масштабах это одно и то же).

3. Нейтронные звезды

1011 К — такова температура внутри новорожденой нейтронной звезды. Вещество при такой температуре совсем не похоже на привычные нам формы. Недра нейтронных звезд состоят из бурлящего «супа» электронов, нейтронов и других элементов. Всего за несколько минут звезда остывает до 10 9 К, а за первые сто лет существования — еще на порядок.

4. Ядерный взрыв

Температура внутри огненного шара ядерного взрыва составляет около 20 000 К. Это больше, чем температура на поверхности большинства звезд главной последовательности.

5. Самые горячие звезды (кроме нейтронных)

Температура поверхности Солнца — около шести тысяч градусов, но это не предел для звезд; самая горячая из известных на сегодняшний день звезд, WR 102 в созвездии Стрельца, раскалена до 210 000 К — это в десять раз горячее атомного взрыва. Таких горячих звезд сравнительно немного (в Млечном Пути их нашли около сотни, еще столько же в других галактиках), они в 10−15 раз массивнее Солнца и намного ярче него.