Решение модульных уравнений. Решение уравнений с модулем

Ставка 1х2 (ставка на исход, head -to -head , трёхисходная ставка ) – одна из базовых ставок в букмекерских конторах. Не нужно подсчитывать предполагаемые очки, считать угловые, кто первый забьет и т.п. Достаточно просто быть уверенным в том, выиграет первая команда, вторая, или будет ничья.

Производить эту ставку можно как в режим лайв так и в прематчевом периоде. Чаще всего она актуальна для футбола и хоккея , но также возможна и в других видах спорта. Стоит сказать, что ставка head-to-head в ее типичной интерпретации не характерна для тенниса, волейбола, бейсбола и других видов спорта , где возможна победа только одного человека/команды (ведь нету того самого Х). В данном случае используют одиночную ставку.

Так же ставки этого рода можно производить как на итоговый результат матча (победа команды в конце игры) или же на итог игры в первом тайме (к примеру победа Ливерпуля по очкам после 45 минут игры).

Фактически ставка на исход прогнозирует итоговый результат окончания матча. А 1Х2 она иногда называется из-за сокращения: 1 в этом случае является победой хозяев, Х ничья, а 2 победа гостей (некоторые любят сокращение Хозяева-Ничья-Гостьи).

Одним из недостатков данного вида ставки является иногда широкая вилка между коэффициентами. Так, на фаворита матча кэф может быть 1.0, тогда как у противоположной стороны 12 и выше.

Выигрыш ставки head-to-head рассчитывается путем умножения суммы ставки на коэффициент, который был в момент осуществления ставки. Соответственно, при победе гостей с коэффициентом 10 при сумме ставки в 1000 р. ваша прибыль составит 10.000 рублей.

Все еще непонятно что значит 1х2 в ставках? Давайте приведем пример. Возьмем матч Россия – Германия. Обозначим Россию цифрой 1, Германию цифрой 2. Ничью возьмем за условный Х. Коэффициент букмекера на победу России (5,3), Германии (1,9), на ничью (2,4). Ваша ставка на победу России 500 рублей. В случае победы ставки (1) вы получите обратно на свой счет 500х5,3=2650 рублей. В случае победы (2) или Х вы не получите ничего и потеряете сумму ставки.

1X2 1 X 2
Россия v Германия 5.30 2.40 1.90

Выше представлен пример отображения ставки у букмекерской конторы.

Одной из модификаций трехисходной ставки являются ставки «Двойной шанс» , которые понижают степень риска и повышают процент победы. Существуют варианты 1Х, 2Х и 12. Что же значат эти обозначения? Возьмем тот же матч Россия – Германия. Ставка 1Х говорит о том, что вы ставите на победу первой команды (России) или же на ничью в матче (Х).

Соответственно, при счете 1:1 вы получите выигрыш ставки. 2Х говорит о вашей предрасположенности к Германии или ничьей. Ну а ставка 12 говорит о выигрыше либо России либо Германии, при ничьей ставка будет проиграна. Минусы в ставках по этому типу очевидны: так как по-факту вы прогнозируете не 1 события, а 2 возможных букмекерские конторы понижают коэффициенты. Так, например, при кэфе на победу России – 5.3, если вы решите еще добавить ничью 1Х, кэф вероятно упадет до 3,2 или ниже.

Надеюсь мы помогли вам разобраться с вопросом значения ставки 1Х2. Дерзайте и будьте победителями.

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа , и как правильно раскрывать выражения, содержащие знак модуля , то наличие в уравнении выражения, стоящего под знаком модуля , перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

Число -5 имеет знак "-" и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x), если f(x) ≥ 0, и

|f(x)|= - f(x), если f(x) < 0

Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля .

Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x 2 +4x-3

1. Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка: х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

и решим это уравнение.

Это уравнение имеет корни:

х 1 =0, х 2 =3

Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 2 =3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

х 1 =2, х 2 =3

Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 1 =2.

Итак: из первого промежутка мы берем только корень х=3, из второго - корень х=2.

Для того, чтобы научиться решать уравнения с модулем, надо вспомнить и выучить определение модуля.

Из определения видно, что модуль любого числа неотрицателен. Кроме того, определение показывает как можно избавляться от знака модуля в уравнении.

На практике это делается так:

1) Находят значения переменной, при которых выражения стоящие под знаком модуля обращаются в нуль.

2) Отмечают все нули на числовой прямой. Они разобьют эту прямую на лучи и промежутки, на которых все подмодульные выражения имеют постоянный знак.

3) Определяем знаки подмодульных выражений на каждом промежутке и раскрываем все модули (заменяя их подмодульными выражениями со знаком плюс или со знаком минус в зависимости от знака подмодульного выражения).

4) Решаем получившиеся уравнения на каждом промежутке (сколько промежутков, столько и уравнений).Обратите внимание, что обязательно выбираем только те решения, которые находятся в данном промежуток (полученные решения могут и не принадлежать промежутку).

Хватит уже теории, пора на примерах посмотреть как решаются уравнения с модулем. Начнем с более простого.

Решение уравнений с модулями

Пример 1. Решить уравнение .

Решение. Так как , то . Если , то , и уравнение принимает вид .

Отсюда получаем .

Пример 2. Решить уравнение .

Решение. Из уравнения следует, что .

Поэтому , , , и уравнение принимает вид или .

Так как , то исходное уравнение корней не имеет.

Ответ: корней нет.

Пример 3. Решить уравнение .

Решение. Перепишем уравнение в равносильном виде .

Полученное уравнение относится к уравнениям типа .

Известно, что уравнение такого типа равносильно неравенству . Следовательно, здесь имеем или .

Ответ: .

Думаю, как решать такого вида уравнения с модулем вы уже разобрались. Попробуем разобраться с более сложным уравнением .

Пример 4 . Решить уравнение: |x 2 + 2x| |2 – x| = |x 2 – x|

Находим нули подмодульных выражений:

х 2 + 2х = 0, х(х + 2) = 0, х = 0 или х = ‒ 2. При этом парабола у = х 2 + 2х положительна на промежутках (–∞; –2) и (0; +∞), а на промежутке (–2; 0) она отрицательна (см. рисунок).

х 2 ‒ х = 0, х(х – 1) =0, х = 0 или х = 1. Эта парабола у = х 2 ‒ х положительна на промежутках (–∞; 0) и (1; +∞), а на промежутке (0; 1) она отрицательна (см. рисунок).

2 – х = 0, х = 2, модуль положителен на промежутке (–∞; 0) и принимает отрицательные значения на промежутке (2; +∞) (см. рисунок).

Теперь решаем уравнения на промежутках:

1) х ≤ ‒2: х = 1/2

2) –2 ≤ x <0: ‒(х 2 + 2х) – (2 – х) = х 2 ‒ х, ‒х 2 ‒ 2х – 2 + х = х 2 ‒ х, ‒2 х 2 = 2, х 2 = ‒1 , решений нет.

3) 0 ≤ x <1: х 2 + 2х ‒ (2 – х) = ‒ (х 2 ‒ х), х 2 + 2х ‒ 2 + х = ‒х 2 + х, 2х 2 + 2х – 2 = 0, х 2 + х – 1 = 0, √D = √5,
х 1 = (‒1 ‒ √5)/2 и х 2 = (‒1 + √5)/2.

Так как первый корень отрицательный, то он не принадлежит нашему промежутку, а второй корень больше нуля и меньше единицы это и есть наше решение на данном промежутке.

4) 1 ≤ x <2: х 2 + 2х – (2 – х) = х 2 ‒ х, х 2 + 2х – 2 + х = х 2 ‒ х, 4х = 2, х= 1/2 (не входит в рассматриваемый промежуток)

5) х ≥ 2: х 2 + 2х –(‒(2 – х)) = х 2 ‒ х, х 2 + 2х + 2 ‒ х = х 2 ‒ х, 2х = ‒ 2, х = ‒1 (не входит в рассматриваемый промежуток).

Ответ: (‒1 + √5)/2 .

Вы заметили, что решается это уравнение также как и предыдущие, отличие в количестве промежутков. Так как под модулем стоят квадратные выражения то корней получилось больше, а соответственно и больше промежутков.

А как же решать уравнение в котором модуль стоит под модулем? Давайте посмотрим на примере.

Пример 5 . Решите уравнение |3 – |x – 2|| = 1

Подмодульное выражение может принимать значение либо 1 либо – 1. Получаем два уравнения:

3 ‒ |х ‒ 2|= ‒1 или 3 ‒ |х ‒ 2|= 1

Решаем каждое уравнение отдельно.

1) 3 ‒ |х ‒ 2|= ‒1, ‒|х ‒ 2|= ‒1 – 3, ‒|х ‒ 2|= ‒4, |х ‒ 2|= 4,
х ‒ 2= 4 или х ‒ 2= ‒ 4, откуда получаем х 1 = 6, х 2 = ‒2 .

2) 3 ‒ |х ‒ 2|= 1, ‒|х ‒ 2|= 1 ‒ 3, ‒|х – 2|= ‒2, |х – 2|= 2,
х – 2 = 2 или х – 2 = ‒2,
х 3 = 4 , х 4 = 0.

Надеюсь, после изучения данной статьи вы будете успешно решать уравнения с модулем. Если остались вопросы, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену.

(Напомним: приведенное квадратное уравнение – это уравнение, где первый коэффициент равен 1).

Пояснение :

Пусть квадратное уравнение ax 2 + bx + c = 0 имеет корни х 1 и х 2 . Тогда по теореме Виета:

Пример 1 :

Приведенное уравнение x 2 – 7x + 10 = 0 имеет корни 2 и 5.

Сумма корней равна 7, а произведение равно 10.

А в нашем уравнении второй коэффициент равен -7, а свободный член 10.

Таким образом, сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней – свободному члену.

Довольно часто встречаются квадратные уравнения, которые можно легко вычислить с помощью теоремы Виета – больше того, с ее помощью их вычислять проще. В этом легко убедиться как на предыдущем примере, так и на следующем.

Пример 2 . Решить квадратное уравнение х 2 – 2х – 24 = 0.

Решение .

Применяем теорему Виета и записываем два тождества:

х 1 · х 2 = –24

х 1 + х 2 = 2

Подбираем такие множители для –24, чтобы их сумма была равна 2. После недолгих размышлений находим: 6 и –4. Проверим:

6 · (– 4) = –24.

6 + (– 4) = 6 – 4 = 2.

Как вы заметили, на практике суть теоремы Виета заключается в том, чтобы в приведенном квадратном уравнении свободный член разложить на такие множители, сумма которых равна второму коэффициенту с противопложным знаком. Эти множители и будут корнями.

Значит, корнями нашего квадратного уравнения являются 6 и –4.

Ответ: х 1 = 6, х 2 = –4.

Пример 3 . Решим квадратное уравнение 3х 2 + 2х – 5 = 0.

Здесь мы имеем дело не с приведенным квадратным уравнением. Но и такие уравнения тоже можно решать с помощью теоремы Виета, если их коэффициенты уравновешены – например, если сумма первого и третьего коэффициентов равна второму с обратным знаком.

Решение .

Коэффициенты уравнения уравновешены: сумма первого и третьего членов равны второму с противоположным знаком:

3 + (–5) = –2.

В соответствии с теоремой Виета

х 1 + х 2 = –2/3
х 1 · х 2 = –5/3.

Нам надо найти такие два числа, сумма которых равна –2/3, а произведение –5/3. Эти числа и будут корнями уравнения.

Первое число угадывается сразу: это 1. Ведь при х = 1 уравнение превращается в простейшее сложение-вычитание:
3 + 2 – 5 = 0. Как найти второй корень?
Представим 1 в виде 3/3, чтобы все числа имели одинаковый знаменатель: так проще. И сразу напрашиваются дальнейшие действия. Если х 1 = 3/3, то:

3/3 + х 2 = –2/3.

Решаем простое уравнение:

х 2 = –2/3 – 3/3.

Ответ: х 1 = 1; х 2 = –5/3

Пример 4 : Решить квадратное уравнение 7x 2 – 6x – 1 = 0.

Решение :

Один корень обнаруживается сразу – он прямо в глаза бросается: х 1 = 1 (потому что получается простая арифметика: 7 – 6 – 1 = 0).

Коэффициенты уравнения уравновешены: сумма первого и третьего равны второму с обратным знаком:
7 + (– 1) = 6.

В соответствии с теоремой Виета составляем два тождества (хотя в данном случае достаточно одного из них):

х 1 · х 2 = –1/7
х 1 + х 2 = 6/7

Подставляем значение х 1 в любое из этих двух выражений и находим х 2:

х 2 = –1/7: 1 = –1/7

Ответ : х 1 = 1; х 2 = –1/7

Дискриминант приведенного квадратного уравнения.

Дискриминант приведенного квадратного уравнения можно вычислять как общей формуле, так и по упрощенной:

При D = 0 корни приведенного уравнения можно вычислять по формуле:

Если D < 0, то уравнение не имеет корней.

Если D = 0, то уравнение имеет один корень.

Если D > 0, то уравнение имеет два корня.