Примеры решения логарифмов в степени. Определение логарифма и его свойства: теория и решение задач. Логарифм произведения и логарифм частного

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение иного значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:

  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Иные элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и иные виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:

  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный:

  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.

Преобразователи постоянного тока в переменный:

  • Инверторы.

Преобразователи переменного напряжения:

  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.

Особенности

  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6-24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

Автоматики в телемеханике, устройств связи, электробытовых приборов;
радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Достоинства и недостатки

К достоинствам преобразователей напряжения можно отнести:

  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.

Электрическая энергия вырабатывается на электростанциях и распределяется главным образом в виде переменного тока промышленной частоты. Однако большое количество в промышленности требует для своего питания другие виды электроэнергии.

Чаще всего требуется:

  • (электрохимические и электролизные ванны, электропривод постоянного тока, электрический транспорт и подъемные устройства, электросварочные агрегаты);
  • непромышленной частоты ( , регулируемый привод переменного тока).

В связи с этим возникает необходимость а преобразовании переменного тока в постоянный (выпрямленный) ток, или в преобразовании переменного тока одной частоты в переменный ток другой частоты. В системах передачи электрической энергии, в тиристорном электроприводе постоянного тока, возникает потребность в преобразовании постоянного тока в переменный (инвертирование тока) в месте потребления.

Данные примеры охватывают не все случаи, когда требуется преобразовывать электрическую энергию одного вида в другой. Более трети всей вырабатываемой электроэнергии преобразуется в другой вид энергии, поэтому технический прогресс во многом связан с успешным развитием преобразовательных устройств (преобразовательной техники).

Классификация устройств преобразовательной техники

Удельный вес устройств преобразовательной техники в энергетическом балансе страны занимает значительное место. Преимущества полупроводниковых преобразователей , по сравнению с другими видами преобразователей, неоспоримы. Основные преимущества заключаются в следующем:

Полупроводниковые преобразователи обладают высокими регулировочными и энергетическими показателями;

Имеют малые габариты и массу;

Просты и надежны в эксплуатации;

Обеспечивают бесконтактную коммутацию токов в силовых цепях.

Благодаря указанным преимуществам полупроводниковые преобразователи получили широкое применение: цветной металлургии, химической промышленности, на железнодорожном и городском транспорте, в черной металлургии, машиностроении, энергетике и других отраслях.

Дадим определения основных видов преобразовательных устройств .

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное напряжение (U~ → U=).

Инвертором называют устройство для преобразования постоянного напряжения в переменное напряжение (U= → U~).

Преобразователь частоты служит для преобразования переменного напряжения одной частоты в переменное напряжение другой частоты (Uf1 → Uf2).

Преобразователь переменного напряжения (регулятор) предназначен для изменения (регулирования) подводимого к нагрузке напряжения, т.е. преобразует переменное напряжение одной величины в переменное напряжение другой величины (U1~ → U2~).

Здесь названы наиболее широко применяемые типы устройств преобразовательной техники . Имеется ряд преобразовательных устройств, предназначенных для преобразования (регулирования) величины постоянного тока, числа фаз преобразователя, формы кривой напряжения и др.

Краткая характеристика элементной базы преобразовательных устройств

Все преобразовательные устройства , разработанные для разных целей, имеют общий принцип работы, который основан на периодическом включении и выключении электрических вентилей. В настоящее время в качестве электрических вентилей применяются полупроводниковые приборы. Наибольшее применение получили диоды, , симисторы и , работающие в ключевом режиме.

1. – это двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью. Проводимость диода зависит от полярности приложенного напряжения. Условно диоды разделяют на диоды малой мощности (допускаемый средний ток Iа доп ≤ 1А), диоды средней мощности (Iа доп = 1 - 10А) и диоды большой мощности (Iа доп 10А). По назначению диоды делятся на низкочастотные (fдоп 500 Гц) и высокочастотные (fдоп > 500 Гц).

Основными параметрами выпрямительных диодов являются наибольшее среднее значение выпрямленного тока , Iа доп, А, и наибольшее обратное напряжение , Ubmax, В, которое может быть приложено к диоду в течение длительного времени без опасности нарушения его работы.

В преобразователях средней и большой мощности применяются мощные (лавинные) диоды. Эти диоды имеют некоторые специфические особенности, поскольку работают при больших токах и высоких обратных напряжениях, что приводит к выделению значительной мощности в р-n – переходе. Поэтому здесь должны предусматриваться эффективные способы охлаждения.

Другая особенность мощных диодов – необходимость их защиты от кратковременных перенапряжений, возникающих при резких сбросах нагрузки, коммутационных и .

Защита силового диода от перенапряжений заключается в переводе возможного электрического пробоя р-n – перехода с поверхностных участков в объемные. В этом случае пробой носит лавинный характер, а диоды называют лавинными. Такие диоды способны пропускать достаточно большой обратный ток без перегрева локальных участков.

При разработке схем преобразовательных устройств может возникнуть необходимость получить выпрямленный ток, превышающий предельно допустимое значение одного диода. В этом случае применяют параллельное включение однотипных диодов с принятием мер по выравниванию прямых токов приборов, входящих в группу. Для увеличения суммарного допустимого обратного напряжения используют последовательное соединение диодов. При этом также предусматривают меры, исключающие неравномерное распределение обратного напряжения.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Полупроводниковая структура и условное обозначение диода показано на рис 1, а,б. Обратная ветвь вольт-амперной характеристики диода – на рис. 1, в (кривая 1 – ВАХ лавинного диода, кривая 2 – ВАХ обычного дио-да).

Рис. 1 - Условное обозначение и обратная ветвь вольт-амперной характеристики диода.

– это четырехслойный полупроводниковый прибор, обладающий двумя устойчивыми состояниями: состоянием с низкой проводимостью (тиристор закрыт) и состоянием с высокой проводимостью (тиристор открыт). Переход из одного устойчивого состояния в другое обусловлен действием внешних факторов. Наиболее часто для отпирания тиристора на него воздействуют напряжением (током) или светом (фототиристоры).

Различают диодные тиристоры (динисторы) и триодные тиристоры , имеющие управляющий электрод. Последние делятся на однооперационные и двухоперационные.

В однооперационных тиристорах по цепи управляющего электрода осуществляется только операция отпирания тиристора. Тиристор переходит в открытое состояние при положительном анодном напряжении и наличии управляющего импульса на электроде управления. Следовательно, основной отличительной особенностью тиристора является возможность произвольной задержки момента его отпирания при наличии на нем прямого напряжения. Запирание однооперационного тиристора, (а также динистора) производится изменением полярности напряжения анод – катод.

Двухоперационные тиристоры допускают по цепи управления и отпирание и запирание тиристора. Запирание осуществляется подачей импульса управления обратной полярности на электрод управления.

Следует учесть, что промышленность выпускает однооперационные тиристоры на допустимые токи тысячи ампер и допустимые напряжения единицы киловольт. Существующие же двухоперационные тиристоры имеют значительно меньшие допустимые токи, чем однооперационные (единицы и десятки ампер), и меньшие допустимые напряжения. Такие тиристоры используются в релейной аппаратуре и в маломощных преобразовательных устройствах.

На рис. 2 приведены условное обозначение тиристора, схема полупроводниковой структуры и вольт-амперная характеристика тиристора. Буквами А, К, УЭ соответственно обозначены выводы анода, катода и управляющего элемента тиристора.

Основными параметрами, определяющими выбор тиристора и его работу в схеме преобразователя, являются: допустимый прямой ток, Iа доп, А; допустимое прямое напряжение в закрытом состоянии, Uа max, В, допустимое обратное напряжение, Ubmax, В.

Максимальное прямое напряжение на тиристоре с учетом вариантов работы преобразовательной схемы не должно превышать рекомендованного рабочего напряжения.

Рис. 2 –

Важным параметром является ток удержания тиристора в открытом состоянии , Iуд, А, – минимальный прямой ток, при более низких значениях которого тиристор выключается; параметр, необходимый для расчета минимально допустимой нагрузки преобразователя.

Другие виды преобразовательных устройств

Симисторы (симметричные тиристоры) проводят ток в обоих направлениях. Полупроводниковая структура симистора содержит пять слоев полупроводников и имеет более сложную конфигурацию по сравнению с тиристором. С помощью комбинации р- и n -слоев создают полупроводниковую структуру, в которой при разной полярности напряжения выполняются условия, соответствующие прямой ветви вольт-амперной характеристики тиристора.

Работающие в ключевом режиме. В отличие от двухоперационного тиристора в базовой цепи транзистора необходимо поддерживать сигнал управления на всем этапе проводящего состояния ключа. С помощью биполярного транзистора можно реализовать полностью управляемый ключ.

к.т.н. Коляда Л. И.

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т. е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы.

Трансформаторы широко применяют и в радиотехнике.

Схематическое устройство простейшего трансформатора показано на рис. 1. Он состоит из двух катушек из изолированного провода, называемых обмотками? насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали. Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод - линией между ними.

Рис. 1.Трансформатор с магнитопроводом из стали:
а - устройство в упрощенном виде; б - схематическое изображение

Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую-либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток - лампа станет гореть.

Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной , а обмотку, в которой индуцируется переменное напряжение - вторичной .

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение.

Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В - это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 110 В - это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае - первичной.

Но, пользуясь трансформатором, не стоит забывать о том, что мощность тока (Р = U·I), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении.

Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков. С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи.

Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чем больше объем магнитопровода, тем большая мощность тока может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой.

Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди.

Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами, так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки римскими цифрами.

Принцип действия высокочастотных трансформаторов, предназначаемых для трансформации колебаний высокой частоты, также основан на электромагнитной индукции. Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 2).


Рис. 2.Высокочастотные трансформаторы без сердечников (слева катушки трансформатора с общим каркасом; справа - катушки трансформатора на отдельных каркасах; в центре обозначение на схемах)

При появлении тока высокой частоты в одной из катушек вокруг нее возникает быстропеременное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.

Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 3), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками.

Рис 3.Высокочастотные трансформаторы с магнитодиэлектрическими сердечниками (слева - со стержневым, справа с кольцевым (тороидальным) сердечником)

Наиболее распространены ферритовые сердечники Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника.

Магнитодиэлектрический сердечник высокочастотного трансформатора независимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, - прямой линией между катушками, а обмотки, как и катушки индуктивности, - латинскими буквами L.