Поглощение рентгеновского излучения в воздухе. Поглощение рентгеновских лучей веществом. Часто пользуются массовыми коэффициентами

Рассеяние и поглощение рентгеновского излучения .

Рентгеновское излучение возникает при бомбардировке быстрыми электронами металлической мишени анода (антикатод ). Из опытов Баркла это излучение поперечно поляризовано. Опыты Брэгга, Лауэ, Фридриха, Книппинга, а также Дебая и Шерера показали, что рентгеновское излучение, так же как свет, имеет электромагнитное происхождение. Однако рентгеновское излучение характеризуется гораздо меньшими длинами волн. Рентгеновское излучение занимает спектральную область между гамма и ультрафиолетовым излучением в диапазоне длин волн от до см. Источники рентгеновского излучения - рентгеновские трубки,

Солнце и другие космические объекты. Два типа рентгеновского излучения: тормозное ихарактеристическое .

Тормозное излучение возникает вследствие замедления электронов в мишени и не зависит от вещества мишени. Спектр тормозного излучения сплошной. С увеличением длины волны интенсивность тормозного излучения после максимума монотонно ослабевает. Со стороны коротких длин волн интенсивность резко обрывается коротковолновая граница (квантовый предел )тормозного излучения. Энергия кванта излучения будет максимальной, если вся энергия тормозящегося в мишени электрона eV тратится на излучение:

. (3.48)

С увеличением ускоряющего напряжения на фоне сплошного спектра, начиная с некоторого критического значения, возникают резкие максимумы. Их положение зависит от вещества мишени. Эти максимумы связывают с характеристическим рентгеновским излучением. Оно имеет дискретный спектр. Характеристическое излучение также группируется в спектральные серии.Их обозначение: Ксерия, Lсерия, Мсерия и т.д. Свойства характеристического изл:

I. Характеристическое излучение имеет небольшое число линий;

II. Наблюдается монотонное смещение в коротковолновую часть спектра;

III. Характеристическое излучение является чисто атомным свойством вещества.

IV. Отсутствует обращение спектральных линий. Если пропускать сплошное рентгеновское излучение через вещество, то наблюдаются полосы поглощения.

По интерпретации Косселя (1917) характеристическое излучение происходит в два этапа:

1) бомбардирующий мишень электрон выбивает из атома электрон с какой-то внутренней оболочки. В оболочке образуется «дырка»;

2) электроны атома с верхних уровней переходят на уровень с «дыркой». Избыток энергии при этом освобождается в виде рентгеновского излучения - возникают K, L, M, N серии.

Ксерия самая коротковолновая: . Все линии имеют тонкую структуру. Линии Ксерии являются дублеты: .

С увеличением энергии электронов, сталкивающихся с

мишенью, появляются линии длинноволновых серий, и в последнюю очередь возникают линии Ксерии. Наименьшее значение ускоряющей разности потенциалов, при котором в характеристическом спектре появляются линии некоторой серии - критический потенциал возбуждения серия имеет 5 критических потенциалов возбуждения, Lсерия 3, Ксерия 1 . Потенциал возбуждения Ксерии - потенциал ионизации атома. Если возбуждается Ксерия, то одновременно возникают все остальные серии данного элемента.



Мозли - частота линий рентгеновского излучения определяется формулой бальмеровского типа. В частности, частота линии равна: . (3.49)

Z – 1 эффективный заряд ядра, который экранирован одним из электронов Кслоя.

для линии , где a – постоянная экранирования. Закон Мозли (рис.3.20): ,

постоянные.

При прохождении слоя вещества толщиной х интенсивность параллельного пучка рентгеновского излучения ослабляется по закону: , (3.50)

k – коэффициент ослабления . Ослабление излучения происходит из-за рассеяния ,; из-за поглощения (абсорбции ) , , (3.50а)

коэффициент истинного поглощения, коэффициент рассеяния рентгеновских лучей.

Часто пользуются массовыми коэффициентами: (3.50б)

– плотность вещества.

Используются также атомные коэффициенты:

, (3.50в)

Рассеяние излучения вызывается неоднородностями cреды и флуктуациями ее плотности. В случае мягкого рентгеновского излучения , когда его длина волны велика, атом рассеивает как целое падающее излучение. Рассеяние когерентно - падающее и рассеянное излучения характеризуются одной и той же частотой. Это томсоновское рассеяние , сечение которого определяется классическим радиусом электрона.

В случае жесткого рентгеновского излучения рассеяниестановится некогерентным .Эксперименты Комптона показали, что наряду со смещенной линией рассеяния наблюдается несмещенная линия. Ее возникновение связано с когерентным рассеянием излучения атомом как целого.

Спектр поглощения рентгеновского излучения составляют полосы. Поглощение рентгеновского излучения не зависит от оптических свойств вещества. В пределах полосы поглощения коэффициент поглощения рентгеновских фотонов с энергией от до эВ монотонно убывает в соответствии с приближенной формулой

, (3.53) – эмпирическая постоянная. «Зазубренность» краев полосы: каждая серия, кроме К–серии, имеет несколько критических потенциалов. По значениям этих краев находят энергию связи электронов в слоях и оболочках атомов.

Поглощение рентгеновского излучения может сопровождаться как ионизацией атомов,так и испусканием излучения более низкой частоты. Поэтому коротковолновое излучение обладает большой проникающей способностью (жесткое излучение).Мягкое рентгеновское излучение очень сильно поглощается почти всеми веществами.

В 1925 г. Оже изучал процесс возникновения электронов при поглощении жесткого рентгеновского излучения атомами криптона. Оже обнаружил, что иногда из одной точки выходят следы двух, а не одного электрона. Это Оже–эффект. Механизм возникновения второго, Оже–электрона: Воздействие кванта жесткого рентгеновского излучения на атом приводит к выбросу из него электрона из К-слоя, в котором образуется «дырка». Атом становится ионизованным и сильно возбужденным. Освобождение его энергии в виде рентгеновского излучения не единственный механизм. Энергия возбуждения атома столь высока, что возможен вылет из него второго электрона с L–слоя, причем без излучения кванта . Энергия Оже–электрона еV определяется законом сохранения энергии:

, (3.54)

– энергия фотона, который мог бы излучиться, –энергия ионизации L–электрона. В атоме происходит внутреннее перераспределение энергии, называемое внутренней конверсией, приводящее к выбросу из него Оже–электрона. Атом становится двукратно ионизованным. Оже–эффект рассматривается как проявление общего процесса автоионизации возбужденного атома. Особенно сильно этот эффект проявляется в случае запрещенных электромагнитных переходов.

В предыдущем разделе мы остановились на фотоэлектронном поглощении. Это один из трех процессов, приводящих к ослаблению пучка высокоэнергетичных фотонов, проникающих в твердое тело: рождение фотоэлектронов, комптоновское рассеяние и рождение пар. При эффекте Комптона рентгеновское излучение рассеивается электронами поглощающего материала. Это приводит к существованию помимо первоначального излучения с длиной волны X компоненты с увеличенной длиной волны (меньшей энергией). Эта задача обычно решается как столкновение фотона с импульсом с покоящимся электроном с энергией покоя . После рассеяния на угол в длина волны фотона сдвинется в сторону больших длин волн на величину , где принято называть комптоновской длиной волны электрона.

Если энергия фотона превышает , фотон может поглотиться с образованием электрон-позитронной пары. Этот процесс называется рождением пары. Каждый из этих трех процессов, фотоэлектронное рассеяние, комптоновское рассеяние и образование пар, преобладает в определенной области энергий фотонов, как показано на рис. 8.3. В случае рентгеновского и низкоэнергетического гамма-излучений главный вклад в поглощение излучения в веществе дает фотоэлектронный эффект. Атомным процессам в материаловедении соответствует именно этот энергетический интервал.

Интенсивность I рентгеновского излучения, прошедшего через тонкую пленку вещества, подчиняется экспоненциальному закону убывания от начального значения :

где р - плотность твердого тела (в г/см3), - линейный коэффициент поглощения, - массовый коэффициент поглощения, измеряемый в .

Рис. 8.3. Относительный вклад трех важнейших типов взаимодействия в поглощение фотонов. Линиями показаны величины Z и , для которых соседние эффекты равны. I - преобладание фотоэффекта; II - преобладание комптоновского рассеяния; III - преобладание рождения пар.

Рис. 8.4. Зависимость массового коэффициента поглощения от .

Зависимость массового коэффициента поглощения в от длины волны рентгеновского излучения показана на рис. 8.4. Сильная зависимость коэффициента поглощения следует из энергетической зависимости для сечения фотоэффекта. Вблизи -края поглощения фотоны выбивают электроны из -оболочки. Для длин волн, больших, чем -край, преобладает поглощение за счет фотоэлектронного процесса на -оболочках; при более коротких длинах волн, когда преобладает фотоэлектронное поглощение на -оболочках.

Как рентгеновская фотоэлектронная спектроскопия (обсуждаемая в гл. 9), так и рентгеновское поглощение определяются фотоэлектрическим эффектом. Экспериментальные схемы этих методик приведены на рис. 8.5 (рентгеновская фотоэлектронная спектроскопия проиллюстрирована на левой половине рисунка, рентгеновское поглощение - на правой). В рентгеновской фотоэлектронной спектроскопии связанный электрон, например -оболочки, показанный на рис. 8.5, переводится в свободное состояние. Поскольку кинетическая энергия фотоэлектрона является вполне определенной, в спектре фотоэлектронов возникают острые фотопики. Когда связанный электрон переводится на первый незанятый уровень, переход на который разрешен правилами отбора, в спектрах рентгеновского поглощения наблюдаются полосы поглощения. В металлических образцах такой незанятый уровень расположен на уровне Ферми или непосредственно над ним. При измерениях рентгеновского поглощения исследуется зависимость поглощения, тогда как в случае рентгеновской фотоэлектронной спектроскопии образец облучают фотонами постоянной энергии, измеряя кинетическую энергию электронов.

Массовый коэффициент поглощения для электронов на заданных оболочках или подоболочках может быть рассчитан через поперечное сечение а фотоэффекта:

(см. скан)

Рис. 8.5. Сопоставление рентгеновской фотоэлектронной спектроскопии (I) и рентгеновского поглощения (II) . I - рентгеновская трубка; 2 - образец; 3 - детектор.

где р - плотность; N - концентрация атомов; - число электронов в оболочке. Например, для излучения , падающего на никель, в котором энергия связи -оболочки равна 8,33 кэВ, величина сечения фотоэффекта на один -электрон равна

Плотность атомов в равна при удельной плотности . Массовый коэффициент поглощения на -оболочке равен

В этих расчетах вклад -оболочек не учитывался. При энергиях фотонов, превышающих энергию связи К-оболочки, сечение фотоэффекта для -оболочек имеет величину по крайней мере на порядок меньшую, чем для -оболочки; это является основной причиной резкого возрастания поглощения при переходе К-края поглощения. Из-за сильной зависимости сечения фотоэффекта от энергии связи в рассматриваемом здесь случае линии оно на множитель меньше для электронов -оболочки, чем для -оболочки, если предположить, что средняя энергия связи и -оболочек равна

Рассчитанная величина превышает измеренную 47,24 (приложение ). Слабым местом расчетов массового коэффициента поглощения, выполненных выше, являлось то, что энергия Е излучения всего в 2 раза превышает энергию связи -оболочки тогда как при выводе выражения (8.37) предполагалось . В случае излучения энергия фотона примерно в 10 раз превышает энергию связи -оболочки, и рассчитанное сечение фотоэффекта приводит к величине поглощения близкой к табличному значению .

Измеренные величины массового коэффициента поглощения для излучения различных материалов даны в приложении и показаны на рис. 8.6 для . Коэффициент поглощения для заданного элемента может меняться на 2 порядка по величине в зависимости от длины волны падающего излучения. Сильная зависимость коэффициента поглощения от энергии фотона показана на рис. 8.6, б.

Рентгеновские спектры бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и полностью характеризуется им. Каждый элемент обладает своим, характерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называют также характеристическими.

Схему возникновения характеристического рентгеновского излучения можно изобразить следующим образом.

Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров различных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания: они состоят из нескольких полос с резким длинноволновым краем.


Все эти особенности рентгеновских спектров объясняются механизмом испускания, который находится в полном согласии со строением электронных оболочек. Электрон, падающий на материал антикатода, сталкиваясь с атомами антикатода, может выбить электрон с одной из внутренних оболочек атома. В результате этого получается атом, у которого отсутствует электрон на одной из внутренних оболочек. Следовательно, электроны более внешних оболочек могут переходить на освободившееся место. В результате этого испускается квант, который и является квантом рентгеновского излучения.

электронами и возмущения со стороны других электронов. При переходе электрона на освободившееся место на внутренней оболочке с внешней оболочки излучается квант, частота которого

Поскольку Z для тяжелых атомов велико, энергия термов также велика по сравнению с энергией оптических термов. Следовательно, и частоты излучения велики по сравнению с оптическими частотами. Этим объясняется большая энергия рентгеновских квантов.

Поскольку внутренние оболочки атомов имеют одинаковое строение, все тяжелые атомы должны иметь одинаково построенные рентгеновские спектры, лишь у более тяжелых атомов спектр смещается в сторону больших частот.

Это полностью подтверждается экспериментом и доказывает, что внутренние оболочки атомов имеют одинаковое строение, как это и предполагалось при объяснении периодической системы элементов.

В 1913 г. Английский физик Мозли установил закон, связывающий длины волн линий рентгеновского спектра с атомным номером элемента Z. Согласно этому закону:

Здесь R– постоянная Ридберга (R=1,1×10 7 1/м), n– номер энергетического уровня, на который перешел электрон, k– номер энергетического уровня, с которого перешел электрон.

Постоянная sназывается постоянной экранирования. Электроны, совершающие переходы при испускании рентгеновского излучения, находятся под воздействием ядра, притяжение которого несколько ослаблено действием остальных окружающих его электронов. Это экранирующее действие и находит свое выражение в необходимости вычесть из z некоторую величину.

Закон Мозли позволяет определить заряд ядра, зная длину волны линий, характеристического рентгеновского излучения. Именно исследования характеристического рентгеновского излучения позволили расставить окончательно элементы в таблице Менделеева.

Закон Мозли показывает, что корни квадратные из рентгеновских термов зависят линейно от зарядового числа Z элементов.

Если электрон выбит из К-оболочки (n =1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке (n =2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т.е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис.9.6.) образуется в результате выбивания электрона из самой внутренней оболочки атома – К-оболочки, полоса L – из второй оболочки и т.д. Резкий длинноволновой край каждой полосы соответствует началу процесса фотоионизации, т.е. вырыванию электрона из соответствующей оболочки без сообщения ему дополнительной кинетической энергии. Длинноволновая часть полосы поглощения соответствует актам фотоионизации с сообщением электрону избыточной кинетической энергии. Структуры рентгеновских спектров поглощения тяжелых элементов аналогичны друг другу и подтверждают одинаковость строения внутренних оболочек атомов тяжелых элементов. На рис.9.7. видно, что каждая из полос поглощения имеет тонкую структуру: в К-полосе есть один максимум, в L-полосе – три максимума, в М-полосе – пять максимумов. Это объясняется тонкой структурой рентгеновских термов.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем, источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Принципы дифракции рентгеновского излучения. Чтобы понять явление дифракции рентгеновского излучения, нужно рассмотреть по порядку: во-первых, спектр рентгеновского излучения, во-вторых, природу кристаллической структуры и, в-третьих, само явление дифракции.

Как уже говорилось выше, характеристическое рентгеновское излучение состоит из серий спектральных линий высокой степени монохроматичности, определяемых материалом анода. С помощью фильтров можно выделить наиболее интенсивные из них. Поэтому, выбрав соответствующим образом материал анода, можно получить источник почти монохроматического излучения с очень точно определенным значением длины волны. Длины волн характеристического излучения обычно лежат в диапазоне от 2,285 для хрома до 0,558 для серебра (значения для различных элементов известны с точностью до шести значащих цифр). Характеристический спектр накладывается на непрерывный «белый» спектр значительно меньшей интенсивности, обусловленный торможением в аноде падающих электронов. Таким образом, от каждого анода можно получить два типа излучения: характеристическое и тормозное, каждое из которых играет по-своему важную роль.

Атомы в кристаллической структуре располагаются с правильной периодичностью, образуя последовательность одинаковых ячеек – пространственную решетку. Некоторые решетки (например, для большинства обычных металлов) довольно просты, а другие (например, для молекул белков) весьма сложны.

Для кристаллической структуры характерно следующее: если от некоторой заданной точки одной ячейки сместиться к соответствующей точке соседней ячейки, то обнаружится точно такое же атомное окружение. И если некоторый атом расположен в той или иной точке одной ячейки, то в эквивалентной ей точке любой соседней ячейки будет находиться такой же атом. Этот принцип строго справедлив для совершенного, идеально упорядоченного кристалла. Однако многие кристаллы (например, металлические твердые растворы) являются в той или иной степени неупорядоченными, т.е. кристаллографически эквивалентные места могут быть заняты разными атомами. В этих случаях определяется не положение каждого атома, а лишь положение атома, «статистически усредненного» по большому количеству частиц (или ячеек).

Дифракция рентгеновского излучения – это коллективное явление рассеяния, при котором роль отверстий и центров рассеяния играют периодически расположенные атомы кристаллической структуры. Взаимное усиление их изображений при определенных углах дает дифракционную картину, аналогичную той, которая возникла бы при дифракции света на трехмерной дифракционной решетке.

Рассеяние происходит благодаря взаимодействию падающего рентгеновского излучения с электронами в кристалле. Вследствие того, что длина волны рентгеновского излучения того же порядка, что и размеры атома, длина волны рассеянного рентгеновского излучения та же, что и падающего. Этот процесс является результатом вынужденных колебаний электронов под действием падающего рентгеновского излучения.

Рассмотрим теперь атом с облаком связанных электронов (окружающих ядро), на который падает рентгеновское излучение. Электроны во всех направлениях одновременно рассеивают падающее и испускают собственное рентгеновское излучение той же длины волны, хотя и разной интенсивности. Интенсивность рассеянного излучения связана с атомным номером элемента, т.к. атомный номер равен числу орбитальных электронов, которые могут участвовать в рассеянии. (Эта зависимость интенсивности от атомного номера рассеивающего элемента и от направления, в котором измеряется интенсивность, характеризуется атомным фактором рассеяния, который играет чрезвычайно важную роль в анализе структуры кристаллов.)

Выберем в кристаллической структуре линейную цепочку атомов, расположенных на одинаковом расстоянии друг от друга, и рассмотрим их дифракционную картину. Уже отмечалось, что рентгеновский спектр складывается из непрерывной части («континуума») и набора более интенсивных линий, характеристических для того элемента, который является материалом анода. Допустим, мы отфильтровали непрерывный спектр и получили почти монохроматический пучок рентгеновского излучения, направленный на нашу линейную цепочку атомов. Условие усиления (усиливающей интерференции) выполняется, если разность хода волн, рассеянных соседними атомами, кратна длины волны. Если пучок падает под углом a 0 к линии атомов, разделенных интервалами a (период), то для угла дифракции a разность хода, соответствующая усилению, запишется в виде

a (cos a – cosa 0) = hl ,

где l – длина волны, а h – целое число.

Чтобы распространить этот подход на трехмерный кристалл, необходимо лишь выбрать ряды атомов по двум другим направлениям в кристалле и решить совместно полученные таким образом три уравнения для трех кристаллических осей с периодами a , b и c . Два других уравнения имеют вид

Это – три фундаментальных уравнения Лауэ для дифракции рентгеновского излучения, причем числа h , k и c – индексы Миллера для плоскости дифракции. Рассматривая любое из уравнений Лауэ, например первое, можно заметить, что, поскольку a , a 0, l – константы, а h = 0, 1, 2, ..., его решение можно представить в виде набора конусов с общей осью a (рис. 5). То же самое верно для направлений b и c .

В общем случае трехмерного рассеяния (дифракция) три уравнения Лауэ должны иметь общее решение, т.е. три дифракционных конуса, расположенных на каждой из осей, должны пересекаться; общая линия пересечения показана на рис. 6. Совместное решение уравнений приводит к закону Брэгга – Вульфа:

l = 2(d /n )sinq ,

где d – расстояние между плоскостями с индексами h , k и c (период), n = 1, 2, ... – целые числа (порядок дифракции), а q – угол, образуемый падающим пучком (а также и дифрагирующим) с плоскостью кристалла, в которой происходит дифракция.

Анализируя уравнение закона Брэгга – Вульфа для монокристалла, расположенного на пути монохроматического пучка рентгеновского излучения, можно заключить, что дифракцию непросто наблюдать, т.к. величины l и q фиксированы, а sinq < 1. При таких условиях, чтобы имела место дифракция для рентгеновского излучения с длиной волны l , плоскость кристалла с периодом d должна быть повернута на правильный угол q . Для того чтобы реализовать это маловероятное событие, применяются различные методики.

Лабораторная работа ¹ 62

Задача ¹3.

Изучение поглощения рентгеновских лучей.

§1.Взаимодействие рентгеновских лучей с веществом.

При прохождении пучка рентгеновских лучей через веществ о его интенсивность уменьшается. Это уменьшение объясняется сле дующими причи- нами:

1.томсоновским или когерентным рассеянием;

2.комптоновским или некогерентным рассеянием;

3.поглощением рентгеновских лучей в веществе.

Томсоновское рассеяние происходит без изменения энерги и рассеянных квантов. После рассеяния они лишь изменяют направление своего движения, выходя, таким образом, из первичного рентгеновского п учка.

При комптоновском рассеянии из атомов выбиваются, так наз ываемые электроны отдачи, на что расходуется часть энергии кванта и, следовательно, при этом увеличивается длина его волны.

Наконец, в акте поглощения рентгеновских лучей квант исчезает полностью. Его энергия расходуется на ионизацию атома и на сообщ ение кинетической энергии выброшенному из атома электрону.

Для монохроматического излучения можно считать, что вызв анное тремя перечисленными причинами уменьшение интенсивности рентгеновского пучка /dI / при прохождении тонкого слоя /dx/ вещества пропорционально интенсивности пучка и толщине ослабляющего слоя.

dI = − Iμ dx

Коэффициент пропорциональности μ называется линейным коэффициентом ослабления.

Лабораторная работа ¹ 62

на ослабляющего слоя. Коэффициент μ имеет размерность L− 1 и измеряется обычно в см− 1 . Он может быть представлен в виде суммы двух величин:

Преобразуем формулу (1) к виду, более удобному для практиче ского использования. Пусть поперечное сечение рентгеновского пу чка равноS, а плотность ослабляющего вещества ρ . Перепишем показатель степени в (1) следующим образом:

Величина r называется массовым коэффициентом ослабления. Она име-

ет размерность L2 M − 1 и измеряется обычно в ñì 2 ã . Как и раньше мы можем написать:

массовый коэффициент рассеяния,

Массовый коэффициент

истинного

поглощения.

Введение массовых коэффициентов оказывается удобным, по тому что при этом отпадает необходимость определять коэффициенты ослабления для

всего бесконечного множества химических соединений, т.к. r для сложных

Лабораторная работа ¹ 62

веществ очень просто определяется через ρ для составляющих их элементов.

Это возможно, потому что поглощение и рассеяние рентгеновских лучей осуществляется в основном внутренними электронами атома, со стояние которых не зависит от того, входит атом в химическое соединение ил и нет.

Если обозначить через pi весовую долю, которую i-ый элемент составля-

ет от общего веса соединения (причем Σ pi = 1), то поверхностная плотность

для каждого элемента в отдельности будет равна pi m и ослабление, давае-

Общее ослабление будет определятся произведением сомно жителей для отдельных элементов.

F m I

F m I

J × p i

M×SG J × pi

Π e

H r K

i H r K

Очевидно, что сумма, стоящая в показателе степени экспоне нты, является массовым коэффициентом ослабления для сложного вещества

μ I

= Σ G

ρ K i

Преобразуем формулу (6) теперь еще раз, умножив и разделив к аждое слагаемое в показателе степени на Ai - массу одного атома i-го сорта. Так как

элемента, приходящееся на 1 см2 ñëîÿ.

μ I

ρ K i

F m I

G J A i

I 0 e

Sb m g n

H r K i

à i i

Величина b μ à g

имеет размерность

и называется эффективным сече-

нием. Она обозначает ту площадь, которую мы должны приписа ть атому, чтобы объяснить его поглощающую и рассеивающую сущность. Конечно, она не

Лабораторная работа ¹ 62

имеет ничего общего с действительной площадью поперечного сечения атома.

Мы видим, таким образом, что ослабление рентгеновских луч ей определя-

ется суммой эффективных сечений всех атомов, находящихся на 1 см2 ослабляющего слоя. Эту сумму можно получить, просуммировав эффективные сече- ния атомов одной молекулы, а затем умножив на общее число м олекул, при-

ходящихся на 1см2 . Таким образом,

ãäå σ à è σ m соответственно атомное и молекулярное сечение рассеяния, τ à è τ m - атомное и молекулярное сечение истинного поглощения.

Относительная роль рассеяния и поглощения в ослаблении р ентгеновских лучей различна при различных длинах волн. Если длина волны доста-

точно велика (λ = 1 A), òî σ пренебрежимо мала по сравнению с τ , и мы можем считать, что все ослабление рентгеновских лучей вызвано истинным поглощением. В настоящей работе с учетом этого обстоятель ства исследуются законы поглощения рентгеновских лучей в веществе.

§2.Поглощение рентгеновских лучей в веществе.

Рассмотрим подробнее законы поглощения рентгеновских л учей веществом. Мы уже упоминали во введении, что электроны занимают в атоме различные энергетические уровни K,L,M и т.д., соответствующие зна чениям главного квантового числа n = 1, 2, 3. Каждый из этих уровней делится на подуровни, число которых равно 2 и -1. Рентгеновский квант может удалить электрон с какого-либо подуровня только в том случае, если его энергия превышает потенциал ионизации данного подуровня. Для большей наглядности изобразим на одном и том же рисунке зависимость энергии квант а от длины волны и систему энергетических уровней атома (см рис.1). Как известно, энергия

Она изображается спадающей кривой. Обозначим символом λ k длину волны, при которой энергия кванта равна энергии K-уровня. При λ < λ k , энергия

Лабораторная работа ¹ 62

кванта превышает потенциал ионизации любого подуровня а тома, поэтому поглощение будет осуществляться электронами всех подур овней. Коэффициент массового поглощения в этой области будет представле н суммой коэффициентов, учитывающих поглощение отдельными подуровнями.

τ I

τ I

τ I

τ I

τ I

J + K

ρ K

ρ K K

ρ K L

ρ K L

ρ K L

Как показывает опыт, изменение в этой области происходит по степенно-

му закону

C 1 λS 1

причем S1 ≈ 3.

Однако, если длина волны кванта хотя бы незначительно пре вышаетλ k , то его энергия уже не достаточна для ионизации K-уровня. Поэто му приλ > λ k K-электроны выключаются из поглощения, что приводит к резк ому уменьшению коэффициента поглощения. При λ k будет иметь место, как говорят, K- скачок поглощения. Длина волны λ k называется K-краем поглощения.

В то же время поглощение рентгеновских лучей остальными п одуровнями

Лабораторная работа ¹ 62

скачка не испытывают и продолжают увеличиваться. Очевидн о, что в области длин волн λ k < λ < λ L I массовый коэффициент поглощения по-прежнему мо-

жет быть представлен суммой коэффициентов, относящихся к различным подуровням, однако член, связанный с K-уровнем будет в этой сумме отсутствовать.

τ I

τ I

τ I

τ I

τ I

ρ K

ρ K L

ρ K L

ρ K L

ρ K M

После K-скачка с увеличением длины волны также происходит возрастание по степенному закону, но постоянные C и S имеют другие значения.

При дальнейшем уменьшении энергии кванта, т.е. при увеличе нии длины волны, будут последовательно выключаться из поглощения LI , LII , LIII , MI и т.д. подуровни и возникнут LI , LII , LIII ,K- скачки поглощения.

Избрав определенную длину волны, можно определить зависи мостьρ от атомного номера поглощающего элемента.

При малых z энергия связи K-электронов с атомом мала, но она растет п- ри увеличении z. Наконец, при некотором z она становится больше, нежели энергия кванта при данной длине волны. Коэффициент поглощ ения при этом z резко упадет, т.к. K-оболочка выключится из поглощения. Поэт ому зависи-

мость ρ τ от z будет иметь такие же скачки, как и зависимость ρ τ îò λ , à

в промежутках между скачками она также будет выражаться степенной функцией:

C b λ g z k

Где k 3. Формулы (13) и (15) можно объединить в одну,

C c λ S z k h

§3.Монохроматизация рентгеновского излучения.

Рентгеновская трубка дает немонохроматическое излучени е, в состав которого входят характеристические линии K α I , K α II , K β I , а также тормозной

Лабораторная работа ¹ 62

спектр. Так как в условиях нашей работы дублет Kα I ,II неразрешим, то мы можем считать его одной линией. Монохроматическое излучение можно получить, выделив кристаллом K α I , èëè K β I линию. Схема установки для монохроматизации показана на рис.2.

Источником рентгеновского излучения является рентгенов ская трубка PT. При помощи щели S1 и диафрагмы S2 выделяется узкий пучок рентгеновских лучей, падающий на кристалл K. Специальное гониометрическое устройство обеспечивает возможность поворота кристалла вокруг оси O и установки нужного угла θ . Поворачивая кристалл, мы можем подобрать угол θ таким, чтобы условие Брегга-Вульфа выполнилось. При этом в направлении зеркального отражения будет распространяться отраженный рентгеновский луч. Однако он может и не быть монохроматическим. В самом деле, е сли условие Брегга-Вульфа выполняется для некоторой длины волны λ 1 ïðè n = 1, òî îíî

будет выполняться и для λ 2 1 ïðè n = 2, äëÿ λ 3 1 ïðè n = 3 и т.д. Т.е., в отражен-

ном луче могут присутствовать так называемые высшие порядки отражения. Длины волн этих высших порядков в целое число раз меньше длины волны излучения, которое мы хотим выделить. Высшие порядки будут присутствовать в отраженном луче, разумеется, в том случае, если в пер вичном луче есть излучение с соответствующими длинами волн. Они могут возн икнуть, в частности, за счет сплошного, тормозного спектра.

Вспомним однако, что тормозной спектр имеет коротковолно вуюграницу, положение которой зависит от напряжения. Если мы подадим на трубку такое напряжение, при котором коротковолновая граница будет больше, чем длины волн всех высших порядков, то они будут отсутствовать в отраженном луче. И отраженный луч будет монохроматическим.

Допустим, что мы имеем трубку с медным анодом и хотим выдел ить из

ее излучения линию СuKα длиной волны 1,54A . Второй порядок отражения

Лабораторная работа ¹ 62

имеет длину длину волны 0,77A. Тормозной спектр будет иметь коротковол-

новую границу в точности равную 0,77A при напряжении

U 0 = 12, 4

16,1êâ

Если же напряжение будет несколько меньше, то коротковолн овая граница сдвинется в сторону больших длин волн и второй порядок отражения (и тем более остальные высшие порядки) будут отсутствовать в отраженном луче.

Следовательно, напряжение на трубке с медным анодом не должно превышать 16 кВ.

§4.Регистрация интенсивности рентгеновского излучения.

Для того, чтобы определить коэффициенты поглощения иссле дуемого вещества, необходимо вначале измерить интенсивность первичного пучка I0 , отраженного от кристалла, затем ввести в этот пучок слой и сследуемого вещества и измерить интенсивность пучка I . Измерение интенсивности рентгеновских лучей в данной работе производится при помощи пропорционального счетчика. Счетчик представляет собой металлический цилиндр, по оси которого на изоляторах натянута тонкая металлическая провол ока. На проволочку подается положительный потенциал относительно корпуса ≈ (2кв). Сбоку цилиндра имеется бериллиевое окно, через которое внутрь сче тчика проникает регистрируемое излучение.

Поглощаясь в газе, наполняющем счетчик, квант излучения с оздает, так называемую первичную ионизацию - положительные ионы и сво бодные электроны. Двигаясь под влиянием электрического поля к проволочке, электроны вызывают т.н. лавину (т.е. происходит процесс газового усиления). В результате этого на сопротивлении, включенном последовате льно с проволоч- кой, возникает электрический импульс, который регистриру ется специальной электронной схемой. По истечении некоторого времени все освободившиеся при разряде электроны собираются на проволочке, а положит ельные ионы на корпусе цилиндра. Счетчик приходит в первоначальное сост ояние и готов к новому разряду.

Ясно, что число разрядов, а значит и число импульсов, возникающих на сопротивлении за единицу времени, пропорционально интен сивности регистрируемого излучения, а амплитуда импульсов пропорционал ьна энергии квантов.

Мерой интенсивности рентгеновского излучения может слу жить поэтому скорость счета N′ , т.е. число импульсов счетчика приходящееся на единицу

Лабораторная работа ¹ 62

времени: N′ = n ′ , где T - время измерения, n′ - общее число импульсов, на-

копленных за T .

Однако измерение скорости счета осложняется двумя обсто ятельствами. Во-первых, во время прохождения разряда и последующего во сстановления режима счетчик оказывается выключенным и не может регистрировать поглощенные в это время кванты. Это время τ называется мертвым временем и равно приблизительно 10 μ ñåê . Поэтому в найденную скорость счета необходимо внести поправку.

Если за единицу времени зарегистрировано N′ импульсов, то общее нерабочее время равно τ N ′ . Следовательно, чтобы найти истинную скорость счета

N необходимо наблюдаемое число N′

отнести к рабочему времени счетчика

T − τN ′ .

N′

− τN ′

Полученная нами формула верна только в первом приближени и, т.к. при больших N′ мертвое время в свою очередь начинает изменяться. Обычно требуется, чтобы произведение τ N ′ было меньше 0,1. Отсюда следует, что N′ не должно превышать 10000 имп/сек.

Во-вторых, каждый акт поглощения кванта является случайны м принципиально непредсказуемым событием. Поэтому общее число им пульсовn, накопленных за время T , также является числом случайным, распределенным по некоторому закону около среднего значения n . Теоретическое рассмотрение

показывает, что среднеквадратичное отклонение от среднего значения b n − n g 2 равно корню квадратному из общего числа накопленных импульсов, независимо от того, за какое время они накоплены.

b n − n g 2 = n

Можно показать, что при каждом конкретном измерении с вер оятностью 95% отклонение n − n по абсолютной величине не будет превышать удвоенного среднеквадратичного отклонения. Т.е. определяемая ве личинаn с веро-

Формула (21) показывает, что относительная ошибка измерени я уменьша-

Лабораторная работа ¹ 62

ется с увеличением числа накопленных импульсов, т.е. с увел ичением времени измерения. Если бы рассмотренная нами ошибка, которую н азывают статистической ошибкой, была единственной, то увеличивая время измерения, можно было бы сколько угодно повышать точность измерения. Однак о всегда существуют другие источники ошибок, рассматривать которые зд есь не будем. Поэтому уменьшать статистическую ошибку, увеличивая вре мя измерения, разумно только до тех пор, пока она не станет быть определяющей ошибкой.

В условиях нашей работы можно потребовать, чтобы статисти ческая ошибка не превышала в 95 случаях из 100 %.

Таким образом, время каждого измерения нужно выбирать так им, чтобы накопить около 4 0000 импульсов. При ограничениях, наложенных на ско-

рость счета e N < 10000 èìïñåê j , измерение займет, очевидно, несколько секунд.

При работе с пропорциональным счетчиком следует также им еть в виду, что кроме импульсов, создаваемых рентгеновским излучением, в счетчике могут возникнуть другие импульсы, образующие т.н. фон. Источнико м фона может служить космическое излучение, а также радиоактивные элементы, которые в ничтожных количествах входят в материалы, из которых изго товлен счетчик и окружающие его приборы.

§5.Определение зависимости коэффициента массового поглощения от атомного номера поглотителя и длины волны рентгеновского излучения.

Перед началом работы необходимо ознакомиться с установк ой, на которой она выполняется, пользуясь описанием, выдаваемым студенту на руки.

Первая часть работы состоит в определении ρ для C,O, Al ,Cu и слюды при фиксированной длине волны. Как упоминалось ранее, рассеянием при

λ > 1 A можно пренебречь, что позволяет свести задачу к более простому оп-

Работу начинают с определения ρ для углерода. Т.к. получить тонкую и

Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).

1. Фотоэлектрическое поглощение . Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.

Таким образом, в результате фотоэлектрического поглощения возникает характеристический спектр данного вещества - вторичное характеристическое излучение. Если вырывание электрона произошло с K-оболочки, то появляется весь линейчатый спектр, характерный для облучаемого вещества.

Рис. 2.5. Спектральное распределение коэффициента поглощения.

Рассмотрим изменение массового коэффициента поглощения t/r, обусловленное фотоэлектрическим поглощением в зависимости от длины волны l падающего рентгеновского излучения(рис.2.5). Изломы кривой называются скачками поглощения, а соответствующая им длина волны - границей поглощения. Каждый скачек соответствует определенному энергетическому уровню атома K, L, M и т.д. При l гр энергия рентгеновского кванта оказывается достаточной для того, чтобы выбить электрон с этого уровня, в результате чего поглощение рентгеновских квантов данной длины волны резко возрастает. Наиболее коротковолновый скачек соответствует удалению электрона с K-уровня, второй с L-уровня, и т.д. Сложная структура L и M-границ обусловлена наличием нескольких подуровней в этих оболочках. Для рентгеновских лучей с длинами волн несколько большими l гр, энергия квантов недостаточна, чтобы вырвать электрон с соответствующей оболочки, вещество относительно прозрачно в этой спектральной области.

Зависимость коэффициента поглощения от l и Z при фотоэффекте определяется как:

t/r = Сl 3 Z 3 , (2.11)

где С - коэффициент пропорциональности, Z - порядковый номер облучаемого элемента, t/r - массовый коэффициент поглощения, l - длина волны падающего рентгеновского излучения.

Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.

2. Классическое (когерентное) рассеяние объясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.

Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3 Å. Мощность рассеяния одним атомом равна:

p= × ×I 0 , (2.12)

а одним граммом вещества

где I 0 - интенсивность падающего рентгеновского пучка, N - число Авогадро, A - атомный вес, Z - порядковый номер вещества.

Отсюда можно найти массовый коэффициент классического рассеяния s кл /r, поскольку он равен P/I 0 или s кл /r = × × Z .

Подставив все значения, получим s к,л /r = 0,402 .

Так как у большинства элементов Z /A@0,5 (кроме водорода), то

s кл /r » 0,2 , (2.14)

т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.

3. Квантовое (некогерентное) рассеяние . При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3 Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией hn 0 в результате такого столкновения отклоняются от первоначального направления на угол y, и будут иметь энергию hn 1 , меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:

hn 1 = hn 0 - E отд, (2.15)

где E отд - кинетическая энергия электрона отдачи.

Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z , но зависит от угла рассеянияy. При этом

l y - l 0 = l = ×(1 - cos y) @ 0,024 (1 - cosy) , (2.16)

где l 0 и l y - длина волны рентгеновского кванта до и после рассеяния,

m 0 - масса покоящегося электрона, c - скорость света.

Из формул видно, что по мере увеличения угла рассеяния, l возрастает от 0 (при y = 0°) до 0,048 Å (при y = 180°). Для мягких лучей с длиной волны порядка 1 Å эта величина составляет небольшой процент примерно 4-5 %. Но для жестских лучей (l = 0,05 - 0,01 Å) изменение длины волны на 0,05 Å означает изменение l вдвое и даже в несколько раз.

Ввиду того, что квантовое рассеяние некогерентно (различно l, различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.

Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.

Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.

m/r = s/r + t/r , (2.17)

где s/r - массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния; t/r - массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.

Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что

m/r » t/r , (2.18)

т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.

Выбор излучения . Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.

1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например

Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.

K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг - порядка 0,01 - 0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл - одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии K a и K b , лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.

2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K b - линия, за счет чего появляется флюоресценция, которая может мешать при съемке.

3. Если разница в атомных номерах составляет 2-3 единицы Z , то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.

Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.

Фильтры . Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотых мм. Фольга изготовлена из вещества, у которого порядковый номер на 1-2 единицы меньше, чем Z анода. В этом случае согласнорис.2.6 (кривая 2) край полосы поглощения фольги лежит между K a - и K b - линиями излучения и K b - линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление K b по сравнению с K a - излучением порядка 600. Таким образом, мы отфильтровали b-излучение от a-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1-2 единицы меньше Z анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.

Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.


Похожая информация.