Линейная теория упругости. Основы теории упругости. Основные понятия теории упругости

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {} и вектора перемещений, девять функций.

Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

где - компоненты тензора линейной части деформаций Коши;

Компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Прямая и обратная задачи теории упругости

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)

Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

Запишем уравнения равновесия (18) в развернутом виде для j = 1

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где л- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

где - оператор Лапласа (гармонический оператор), который определятся как

Аналогично можно получить:

Уравнения (30) и (32) можно записать в следующем виде:

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

причем запись в данном случае не подразумевает суммирования по i. Здесь

или, с учетом (31)

Подставив (22) в (34) и проведя преобразования, получим

а, следовательно

где - функция, удовлетворяющая данному равенству. Если

следовательно, f - функция гармоническая. Значит и объемная деформация также функция гармоническая.

Считая верным предыдущее предположение, возьмем гармонический оператор от i -ой строчки уравнения Ламе

Если объемные силы равны нулю или постоянны, то компоненты перемещения есть бигармонические функции.

Известны различные формы представления бигармонических функций через гармонические (удовлетворяющие уравнениям Ламе).

где k = 1,2,3. Причем

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.

Оглавление 4
От редактора перевода 10
Предисловие к третьему изданию 13
Предисловие ко второму изданию 15
Предисловие к первому изданию 16
Обозначения 20
Глава 1. Введение 22
§ 1. Упругость 22
§ 2. Напряжения 23
§ 3. Обозначения для сил и напряжений 24
§ 4. Компоненты напряжений 25
§ 5. Компоненты деформаций 26
§ 6. Закон Гука 28
§ 7. Индексные обозначения 32
Задачи 34
Глава 2. Плоское напряженное состояние и плоская деформация 35
§ 8. Плоское напряженное состояли 35
§ 9. Плоская деформация 35
§ 10. Напряжения в точке 37
§ 11. Деформации в точке 42
§ 12. Измерение поверхностных деформаций 44
§ 13. Построение круга деформаций Мора для розетки 46
§ 14. Дифференциальные уравнения равновесия 46
§ 15. Граничные условия 47
§ 16. Уравнения совместности 48
§ 17. Функция напряжений 50
Задачи 52
Глава 3. Двумерные задачи в прямоугольных координатах 54
§ 18. Решение в полиномах 54
§ 19. Концевые эффекты. Принцип Сен-Венана 58
§ 20. Определение перемещений 59
§ 21. Изгиб консоли, нагруженной на конце 60
§ 22. Изгиб балки равномерной нагрузкой 64
§ 23. Другие случаи балок с непрерывным распределением нагрузки 69
§ 24. Решение двумерной задачи при помощи рядов Фурье 71
§ 25. Другие приложения рядов Фурье. Нагрузка от собственного веса 77
§ 26. Влияние кондов. Собственные функции 78
Задачи 80
Глава 4. Двумерные задачи в полярных координатах 83
§ 27. Общие уравнения в полярных координатах 83
§ 28. Полярно-симметричное распределение напряжений 86
§ 29. Чистый изгиб кривых брусьев 89
§ 30. Компоненты деформаций в полярных координатах 93
§ 31. Перемещения при симметричных нолях напряжений 94
§ 32. Вращающиеся диски 97
§ 33. Изгиб кривого бруса силой, приложенной на конце 100
§ 34. Краевые дислокации 105
§ 35. Влияние круглого отверстия на распределение напряжений в пластинке 106
§ 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы 113
§ 37. Произвольная вертикальная нагрузка на прямолинейной границе 119
§ 38. Сила, действующая на острие клина 125
§ 39. Изгибающий момент, действующий на острие клина 127
§ 40. Действие на балку сосредоточенной силы 128
§ 41. Напряжения в круглом диске 137
§ 42. Сила, действующая в точке бесконечной пластинки 141
§ 43. Обобщенное решение двумерной задачи в полярных координатах 146
§ 44. Приложения обобщенного решения в полярных координатах 150
§ 45. Клин, нагруженный вдоль граней 153
§ 46. Собственные решения для клиньев и вырезов 155
Задачи 158
Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 163
§ 47. Экспериментальные методы и проверка теоретических решений 163
§ 48. Измерение напряжений фотоупругим методом 163
§ 49. Круговой полярископ 169
§ 50. Примеры определения напряжений фотоупругим методом 171
§ 51. Определение главных напряжений 174
§ 52. Методы фотоупругости в трехмерном случае 175
§ 53. Метод муара 177
Глава 6. Двумерные задачи в криволинейных координатах 180
§ 54. Функции комплексного переменного 180
§ 55. Аналитические функции и уравнение Лапласа 182
§ 56. Функции напряжений, выраженные через гармонические и комплексные функции 184
§ 57. Перемещения, отвечающие заданной функции напряжений 186
§ 58. Выражение напряжений и перемещений через комплексные потенциалы 188
§ 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия 190
§ 60. Криволинейные координаты 193
§ 61. Компоненты напряжений в криволинейных координатах 196
Задачи 198
§ 62. Решения в эллиптических координатах. Эллиптическое отверстие в пластинке с однородным напряженным состоянием 198
§ 63. Эллиптическое отверстие в пластинке, подвергнутой одноосному растяжению 202
§ 64. Гиперболические границы. Вырезы 206
§ 65. Биполярные координаты 208
§ 66. Решения в биполярных координатах 209
§ 67. Определение комплексных потенциалов по заданным граничным условиям. Методы Н. И. Мусхелишвили 214
§ 68 Формулы для комплексных потенциалов 217
§ 69. Свойства напряжений и деформаций, отвечающих комплексным потенциалам, аналитическим в области материала, расположенной вокруг отверстия 219
§ 70. Теоремы для граничных интегралов 221
§ 71. Отображающая функция ω(ξ)для эллиптического отверстия. Второй граничный интеграл 224
§ 72. Эллиптическое отверстие. Формула для ψ(ζ) 225
§ 73. Эллиптическое отверстие. Частные задачи 226
Задачи 229
Глава 7. Анализ напряжений и деформаций в пространственном случае 230
§ 74. Введение 230
§ 75. Главные напряжения 232
§ 76. Эллипсоид напряжений и направляющая поверхность напряжений 233
§ 77. Определение главных напряжений 234
§ 78. Инварианты напряжений 235
§ 79. Определение максимального касательного напряжения 236
§ 80. Однородная деформация 238
§ 81. Деформации в точке тела 239
§ 82. Главные оси деформаций 242
§ 83. Вращение 243
Задачи 245
Глава 8. Общие теоремы 246
§ 84. Дифференциальные уравнения равновесия 246
§ 85. Условия совместности 247
§ 86. Определение перемещений 250
§ 87. Уравнения равновесия в перемещениях 251
§ 88. Общее решение для перемещений 252
§ 89. Принцип суперпозиции 253
§ 90. Энергия деформации 254
§ 91. Энергия деформации для краевой дислокации 259
§ 92. Принцип виртуальной работы 261
§ 93. Теорема Кастильяно 266
§ 94. Приложения принципа минимальной работы. Прямоугольные пластинки 270
§ 95. Эффективная ширина широких полок балок 273
Задачи 279
§ 96. Единственность решения 280
§ 97. Теорема взаимности 282
§ 98. Приближенный характер решений для плоского напряженного состояния 285
Задачи 287
Глава 9. Элементарные трехмерные задачи теории упругости 289
§ 99. Однородное напряженное состояние 289
§ 100. Растяжение призматического стержня под действием собственного веса 290
§ 101. Кручение круглых валов постоянного поперечного сечения 293
§ 102. Чистый изгиб призматических стержней 294
§ 103. Чистый изгиб пластинок 298
Глава 10. Кручение 300
§ 104. Кручение прямолинейных стержней 300
§ 105. Эллиптическое поперечное сечение 305
§ 106. Другие элементарные решения 307
§ 107. Мембранная аналогия 310
§ 108. Кручение стержня узкого прямоугольного поперечного сечения 314
§ 109. Кручение прямоугольных стержней 317
§ 110. Дополнительные результаты 320
§ 111. Решение задач о кручении энергетическим методом 323
§ 112. Кручение стержней прокатных профилей 329
§ 113. Экспериментальные аналогии 331
§ 114. Гидродинамические аналогии 332
§ 115. Кручение полых валов 335
§ 116. Кручение тонкостенных труб 339
§ 117. Винтовые дислокации 343
§ 118. Кручение стержня, одно из поперечных сечений которого остается плоским 345
§ 119. Кручение круглых валов переменного диаметра 347
Задачи 355
Глава 11. Изгиб брусьев 359
§ 120. Изгиб консоли 359
§ 121. Функция напряжений 361
§ 122. Круглое поперечное сечение 363
§ 123. Эллиптическое поперечное сечение 364
§ 124. Прямоугольное поперечное сечение 365
§ 125. Дополнительные результаты 371
§ 126. Несимметричные поперечные сечения 373
§ 127. Центр изгиба 375
§ 128. Решение задач изгиба с помощью метода мыльной пленки 378
§ 129. Перемещения 381
§ 130. Дальнейшие исследования изгиба брусьев 382
Глава 12. Осесимметричные напряжения и деформации в телах вращения 384
§ 131. Общие уравнения 384
§ 132. Решение в полиномах 387
§ 133. Изгиб круглой пластинки 388
§ 134. Трехмерная задача о вращающемся диске 391
§ 135. Сила, приложенная в некоторой точке бесконечного тела 393
§ 136. Сферический сосуд под действием внутреннего или внешнего равномерного давления 396
§ 137. Местные напряжения вокруг сферической полости 399
§ 138. Сила, приложенная на границе полубесконечного тела 401
§ 139. Нагрузка, распределенная по части границы полубесконечного тела 405
§ 140. Давление между двумя соприкасающимися сферическими телами 412
§ 141. Давление между двумя соприкасающимися телами. Более общий случай 417
§ 142. Соударение шаров 422
§ 143. Симметричная деформация круглого цилиндра 424
§ 144. Круглый цилиндр под действием опоясывающего давления 428
§ 145. Решение Буссинеска в виде двух гармонических функций 430
§ 146. Растяжение винтовой пружины (винтовые дислокации в кольце) 431
§ 147. Чистый изгиб части круглого кольца 434
Глава 13. Температурные напряжения 436
§ 148. Простейшие случаи распределения температурных напряжений. Метод устранения деформаций 436
Задачи 442
§ 149. Продольное изменение температуры в полосе 442
§ 150. Тонкий круглый диск: распределение температуры, симметричное относительно центра 445
§ 151. Длинный круглый цилиндр 447
Задачи 455
§ 152. Сфера 455
§ 153. Общие уравнения 459
§ 154. Теорема взаимности в термоупругости 463
§ 155. Полные термоупругие деформации. Произвольное распределение температуры 464
§ 156. Термоупругие перемещения. Интегральное решение В. М. Май-зеля 466
Задачи 469
§ 157. Начальные напряжения 469
§ 158. Общее изменение объема, связанное с начальными напряжениями 472
§ 159. Плоская деформация и плоское напряженное состояние. Метод устранения деформаций 472
§ 160. Двумерные задачи со стационарным потоком тепла 474
§ 161. Плоское термонапряженное состояние, вызванное возмущением однородного потока тепла изолированным отверстием 480
§ 162. Решения общих уравнений. Термоупругий потенциал перемещения 481
§ 163. Общая двумерная задача для круговых областей 485
§ 164. Общая двумерная задача. Решение в комплексных потенциалах 487
Глава 14. Распространение волн в упругой сплошной среде 490
§ 165. Введение 490
§ 166. Волны расширения и волны искажения в изотропной упругой среде 491
§ 167. Плоские волны 492
§ 168. Продольные волны в стержнях постоянного сечения. Элементарная теория 497
§ 169. Продольное соударение стержней 502
§ 170. Поверхностные волны Рэлея 510
§ 171. Волны со сферической симметрией в бесконечной среде 513
§ 172. Взрывное давление в сферической полости 514
Приложение. Применение конечно-разностных уравнений в теории упругости 518
§ 1. Вывод конечно-разностных уравнений 518
§ 2. Методы последовательных приближений 522
§ 3. Метод релаксации 525
§ 4. Треугольные и шестиугольные сетки 530
§ 5. Блочная и групповая релаксации 535
§ 6. Кручение стержней с многосвязными поперечными сечениями 536
§ 7. Точки, расположенные вблизи границы 538
§ 8. Бигармоническое уравнение 540
§ 9. Кручение круговых валов переменного диаметра 548
§ 10. Решение задач с помощью ЭВМ 551
Именной указатель 553
Предметный указатель 558

4. СТРОЕНИЕ ЗЕМЛИ ПО ДАННЫМ СЕЙСМОЛОГИИ

Основы теории упругости: тензор деформации, тензор напряжений, закон Гука, упругие модули, однородные деформации, упругие волны в изотропной среде, законы Ферма, Гюйгенса, Снеллиуса. Сейсмические волны. Развитие сейсмометрических наблюдений: сейсмические станции и их сети, годографы, траектории волн внутри Земли. Определение скорости распространения сейсмических волн с помощью уравнения Гертлоца-Вихерта. Скорости продольных и поперечных волн как функции радиуса Земли. Состояние вещества Земли по данным сейсмологии. Земная кора. Литосфера и астеносфера. Сейсмология и глобальная тектоника.

Основы теории упругости [Ландау, Лифшиц, 2003, с. 9-25, 130-144]

Тензор деформации

Механика твердых тел, рассматриваемых как сплошные среды, составляет содержание теории упругости . Основные уравнения теории упругости были установлены О.Л. Коши и С.Д. Пуассоном в 20-х годах 19 века (подробнее см. главу 15).

Под влиянием приложенных сил твердые тела в той или иной степени деформируются, т.е. изменяют свою форму и объем. Для математического описания деформации тела поступают следующим образом. Положение каждой точки тела определяется ее радиус-вектором r (с компонентами х 1 = х , х 2 = у , х 3 = z ) в некоторой системе координат. При деформировании тела все его точки, вообще говоря, смещаются. Рассмотрим какую-нибудь определенную точку тела; если ее радиус-вектор до деформирования был r , то в деформированном теле он будет иметь некоторое другое

значение r / (с компонентами x i / ). Смещение точки тела при деформировании изобразится тогда вектором r / - r , который обозначим буквой u :

u = x/ − x .

Вектор u называют вектором деформации (или вектором смещения ). Знание вектора u

как функции от x i полностью определяет деформацию тела.

При деформировании тела меняются расстояния между его точками. Если радиусвектор между ними до деформирования был dx i , то в деформированном теле радиус-

вектор между теми же двумя точками будет dx i / = dx i + du i . Само расстояние между точками до деформирования было равно:

dl = dx1 2 + dx2 2 + dx3 2 ,

а после деформирования:

dl / = dx 1 / 2 + dx 2 / 2 + dx 3 / 2 .

Окончательно получаем:

dl / 2 = dl 2 + 2 u

∂u i

∂u k

∂u l

∂u l

∂x k

∂x k

∂x i

∂x i

Этими выражениями определяется изменение элемента длины при деформировании тела. Тензор u ik называется тензором деформации ; по своему определению он симметричен:

u ik = u ki .

Как и всякий симметричный тензор, тензор u ik в каждой точке можно привести к

главным осям и убедиться, что в каждом элементе объема тела деформацию можно рассматривать как совокупность трех независимых деформации по трем перпендикулярным направлениям – главным осям тензора деформации. Практически почти во всех случаях деформирования тел деформации оказываются малыми. Это значит, что изменение любого расстояния в теле оказывается малым по сравнению с самим расстоянием. Другими словами, относительные удлинения малы по сравнению с единицей.

За исключением некоторых особых случаев, которых касаться не будем, если тело подвергается малой деформации, то все компоненты тензора деформации также являются малыми. Поэтому в выражении (4.3) можно пренебречь последним членом как малой величиной второго порядка. Таким образом, в случае малых деформаций тензор деформации определится выражением:

u = 1

∂u i

+ ∂ u k ) .

∂x k

∂x i

Итак, силы являются причиной возникающих в теле движений (перемещений), а деформации – результатом движений [Хайкин, 1963, с. 176].

Основное допущение классической теории упругости

В недеформированном теле расположение молекул соответствует состоянию его теплового равновесия. При этом все его части находятся друг с другом и в механическом равновесии. Это значит, что если выделить внутри тела какой-нибудь объем, то равнодействующая всех сил, действующих на этот объем со стороны других частей, равна нулю.

При деформировании же расположение молекул меняется, и тело выводится из состояния равновесия, в котором оно находилось первоначально. В результате в нем возникнут силы, стремящиеся вернуть тело в состояние равновесия. Эти возникающие при деформировании внутренние силы называются внутренними напряжениями . Если тело не деформировано, то внутренние напряжения в нем отсутствуют.

Внутренние напряжения обуславливаются молекулярными связями, т.е. силами взаимодействия молекул тела друг с другом. Весьма существенным для теории упругости является то обстоятельство, что молекулярные силы обладают очень незначительным радиусом действия. Их влияние распространяется вокруг создающей их частицы лишь на расстоянии порядка межмолекулярных. Но в теории упругости, как в макроскопической теории, рассматриваются только расстояния, большие по сравнению с межмолекулярными. Поэтому «радиус действия» молекулярных сил в теории упругости должен считаться равным нулю. Можно сказать, что силы, обусловливающие внутренние напряжения, являются в теории упругости силами «близкодействующими», передающимися от каждой точки только к ближайшим с нею точкам.

Таким образом, в классической теории упругости силы, действующие на какуюнибудь часть тела со стороны окружающих ее частей, проявляют это действие только непосредственно через поверхность этой части тела.

По сути, такой же идеологии применительно к теории упругости вслед за [Ландау, Лифшиц, 2003] придерживается и автор фундаментального труда [Хайкин, 1963, с. 484].

Тензор напряжений

Вывод о том, что все силы проявляют свое действие только через поверхность, является ключевым для классической теории упругости. Он позволяет для любого объема тела каждую из трех компонент равнодействующей всех внутренних напряжений сил

∫ F i dV (где F i - сила, действующая на единицу объема dV ) преобразовать в интеграл по поверхности этого объема. В таком случае, как следует из векторного анализа, вектор F i должен являться дивергенцией некоторого тензора второго ранга, т.е. иметь вид:

F i = ∂ σ ik . (4.6)

∂x k

Тогда сила, действующая на некоторый объем, сможет быть записана в виде интеграла по замкнутой поверхности, охватывающей этот объем:

∫ Fi dV = ∫ ∂ ∂ σ x ik

= ∫ σ ik df k ,

где вектор d f = df 2

Df 2

направлен

по внешней нормали к поверхности,

охватывающей объем dV .

Тензор σ ik называется тензором напряжений . Как видно из (4.7), σ ik df k есть i -я

компонента силы, действующей на элемент поверхности d f . Выбирая элементы поверхности в плоскостях ху , уz , xz , находим, что компонента σ ik тензора напряжений

есть i -я компонента силы, действующей на единицу поверхности, перпендикулярную к оси x k . Так, на единичную площадку, перпендикулярную к оси х , действуют нормальная к

ней (направленная вдоль оси х ) сила σ xx и тангенциальные (направленные по осям y и z )

силы σ yx и σ zx .

Отметим, что сила, действующая со стороны внутренних напряжений на всю поверхность тела, в отличие от (4.7) есть:

− ∫ σ ik df k .

Записывая момент сил M ik , действующих на некоторый объем тела, в виде:

M ik = ∫ (F i x k − F k x i ) dV

и требуя, чтобы он выражался в виде интеграла только по поверхности, получаем, что тензор напряжения является симметричным:

σ ik = σ ki .

К аналогичному выводу можно прийти и более простым путем [Сивухин, 1974, с. 383]. А именно. Момент dM ik прямо пропорционален моменту инерции элементарного

объема dM ik ≈ I ≈ (dV )5 / 3 и, следовательно, получаем (F i x k − F k x i )dV = dM ik ≈ (dV )5 / 3 ≈ 0 , откуда автоматически следует соотношение (4.8).

Симметрия тензора напряжений позволяет его в каждой точке привести его к главным осям , т.е. в каждой точке тензор напряжений может быть представлен в виде:

σ ik = σ xx + σ yy + σ zz .

В равновесии силы внутренних напряжений должны взаимно компенсироваться в каждом элементе объема тела, т.е. должно быть F i = 0 . Таким образом, уравнения

равновесия деформированного тела имеют вид:

∂ σ ik = 0 .

∂x k

Если тело находится в поле силы тяжести, то должна исчезать сумма F + ρ g сил внутренних напряжений F и силы тяжести ρ g , действующей на единицу объема, ρ -

плотность тела, g – вектор ускорения свободного падения. Уравнения равновесия в этом случае имеют вид:

∂ σ ik + ρ g i = 0 .

∂x k

Энергия деформирования

Рассмотрим какое-нибудь деформированное тело и предположим, что его деформация меняется так, что вектор деформации u i изменяется на малую величину δ u i .

Определим работу, производимую при этом силами внутренних напряжений. Умножая силу (4.6) на перемещение δ u i и интегрируя по всему объему тела, получим:

∫ ∂ x k

δ RdV =

∂ σ ik

δ ui dV .

Символом δ R обозначена работа сил внутренних напряжений в единице объема тела. Интегрируя по частям, рассматривая неограниченную среду, не деформированную на бесконечности, устремляя поверхность интегрирования в бесконечность, тогда на ней σ ik = 0 , получаем:

∫ δ RdV = − ∫ σ ik δ uik dV .

Таким образом, находим:

δ R = − σ ikδ u ik .

Полученная формула определяет работу по изменению тензора деформации, которая и определяет изменение внутренней энергии тела.

В телах, находящихся в покое или движутся под действием нагрузок.


1. Задача теории упругости

Задачей этой теории есть запись математических уравнений, решение которых позволяет ответить на следующие вопросы:

  • какими будут деформации конкретного тела, если к нему приложить в известных местах погрузки заданной величины?
  • какими будут при этом напряжение в теле?

Вопрос, тело разрушится, выдержит эти нагрузки, тесно связанные с теорией упругости, но, строго говоря, не входит в его компетенцию.

Примеров можно привести множество - от определения деформаций и напряжений в нагруженной балке на опорах, в расчет этих же параметров в корпусе самолета, ракеты, подлодки, в колесе вагона в броне танка при ударе снаряда, в горном массиве при прокладке штольни, в каркасе высотного здания и так далее.

Для случая инженерных задач, напряжения и деформации в конструкциях рассчитывают по упрощенным теориям, логически базируются на теории упругости. К таким теориям относятся: сопротивление материалов , задачей которого является расчет стержней и балок , а также оценка напряжений, возникающих в зонах контактного взаимодействия твердых тел; строительная механика - расчет стержневых систем (например, мостов), и теория оболочек - самостоятельная и хорошо развитая отрасль науки о деформации и напряжения, предметом исследования которой является тонкостенные оболочки - цилиндрические, конические, сферические, и сложные формы.


2. Основные понятия теории упругости

Основными понятиями теории упругости является напряжение, действующих на малых площинках, которые можно мысленно провести в теле через заданную точку P, деформации малой окрестности точки P и перемещения самой точки P. Точнее говоря, вводятся тензор механических напряжений , Тензор малых деформаций и вектор перемещения u i. Краткое обозначение , Где индексы i, j принимают значения 1, 2, 3 (или x, y, z) следует понимать как матрицу в видах:

Аналогично следует понимать и краткое обозначение тензора .

Если физическое точка тела M вследствие деформации заняла новое положение в пространстве P ", то вектор перемещения является вектор с компонентами (u x, u y, u z), или, сокращенно, u i. В теории малых деформаций компоненты u i и считаются малыми величинами (строго говоря, бесконечно малыми). Компоненты тензора , Который также называется тензор деформации Коши или линейный тензор деформации и вектора u i связаны зависимостями:

С последней записи видно, что , Поэтому тензор деформации является симметричным по определению.

Если упругое тело под действием внешних сил находится в равновесии (т.е. скорости всех его точек равны нулю), то в равновесии находится и любая часть тела, которую мысленно можно из него выделить. Из тела выделяется бесконечно малый прямоугольный параллелепипед, грани которого параллельны координатным плоскостям декартовой системы. Из условия равновесия параллелепипеда с размерами ребер dx, dy, dz, рассмотрев условия равновесия сил в проекциях, можно получить:

Аналогично получаются уравнения равновесия, выражающих равенство нулю главного момента всех сил, действующих на параллелепипед, приводимые к виду:

Это равенство означает, что тензор напряжений является симметричным тензор и число неизвестных компонент тензора напряжений сводится к 6. Есть только три уравнения равновесия, т.е. уравнений статики недостаточно для решения задачи. Выход из положения состоит в том, чтобы выразить напряжения через деформации с помощью уравнений закона Гука , а затем деформации выразить через перемещения u i с помощью формул Коши, и результат подставить в уравнение равновесия. При этом получается три дифференциальные уравнения равновесия относительно трех неизвестных функций u x u y u z, т.е. число неизвестных будет соответствовать числу уравнений. Эти уравнения называются уравнениями Навье-Коши.

.

3. Граничные условия

Решение задач теории упругости сводится к интегрированию системы дифференциальных уравнений в частных производных, определяющие поведение упругого тела во внутренних точках. К этим уравнениям добавляются условия на поверхности, ограничивающей тело. Эти условия определяют задания или внешних поверхностных сил, или перемещений точек поверхности тела. В зависимости от этого обычно формулируют один из трех типов краевых задач.

Первая краевая задача - кинематическая. В объеме тела отыскиваются составляющие перемещений, приобретают на поверхности определенных значений. В условии на поверхности тела таким образом задаются уравнения поверхности и значения составляющих перемещений на ней.

Вторая краевая задача - статическая. В этом случае на поверхности тела не наложены никакие ограничения на перемещение и задаются уравнения поверхности, направляющие косинусы нормали к поверхности и значения составляющих поверхностных нагрузок.

В случае, когда поверхность тела совпадает с координатными плоскостями, граничные условия могут быть сформулированы непосредственно в напряжениях. Тогда достаточно указать уравнение поверхности и задать значения составляющих напряжений на ней.

Третья краевая задача - смешанная. В этом случае на одной части поверхности тела задаются кинематические условия, а на другой - статические.

Этими тремя задачами не исчерпывается все разнообразие граничных условий. Например, на некотором участке поверхности могут быть заданы не все три составляющие перемещения или составляющие поверхностной нагрузки.


4. Смотри также

Источники

  • Тимошенко С. П., Гудьер Дж. Теория упругости. М.: Наука, 1979. 560 с.

- – раздел механики, изучающий вызванные физическими воздействиями упругие деформации и напряжения в твердом теле. [Терминологический словарь по строительству на 12 языках] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

теория упругости - Наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN elasticity theory DE… … Справочник технического переводчика

теория упругости - tamprumo teorija statusas T sritis fizika atitikmenys: angl. elasticity theory vok. Elastizitätstheorie, f rus. теория упругости, f pranc. théorie d’élasticité, f … Fizikos terminų žodynas

ТЕОРИЯ УПРУГОСТИ - наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала (Болгарский язык; Български) теория на еластичността (Чешский язык; Čeština) teorie pružnosti (Немецкий… … Строительный словарь

Теория упругости и пластичности - состоит из двух подразделов: Теории упругости, Теории пластичности. Список значений слова или словосочетан … Википедия

УПРУГОСТИ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия

УПРУГОСТИ МАТЕМАТИЧЕСКАЯ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. Напряжение в любой точке тела характеризуется 6 величинами компонентами напряжений: нормальными … Математическая энциклопедия

Упругости теория - Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Упругости теория - раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия

Теория пластичности - Теория пластичности раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряженное состояние… … Википедия

Книги

  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей краткий курс теории упругости составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции имеют… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа , Купить за 2200 грн (только Украина)
  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей «краткий курс теории упругости» составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции… Категория: Математика и естественные науки Серия: Издатель: