Формула для определения средней квадратической. Рассчитаем величину моды. Каждый динамический ряд содержит две составляющие

При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объектив­ными и закономерными. При определении степени точности выборочно­го исследования оценивается величина ошибки, которая может прои­зойти в процессе выборки. Такие ошибки носят название случайных ошибок р епр езентативно сти (m),

На практике для определения средней ошибки выборки при проведении статистических исследований, используются следующие Формулы:

1) для расчета средней ошибки (m м) средней величины (М):

, где σ - среднее квадратическое отклонение;

n - численность выборки.

Это при большой выборке, а при малой n-1

92 Среднее квадратичное отклонение. Методика вычисления, применение в деятельности врача.

Приближенный метод оценки колеблемости вариационного ряда - это определение лимита, т.е. минимального и максимального значе­ния количественного признака, и амплитуды - т.е. разности между наибольшим и наименьшим значением вариант (Vmax - Vmin). Одна­ко лимит и амплитуда не учитывают значений вариант внутри ряда.

Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является σ - сигма).

Средняя длительность лечения в обеих больницах одинакова, од­нако во второй больнице колебания были значительнее.

Методика расчета среднего квадратического отклонения включает следующие этапы:

2. Определяют отклонения отдельных вариант от средней арифмети­ческой (V-M=d). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю (графа 3. табл. 5).

3. Возводят каждое отклонение в квадрат (графа 4. табл. 5).

4. Перемножают квадраты отклонений на соответствующие частоты d2*p (графа 5, табл. 5).

5. Вычисляют среднее квадратическое отклонение по формуле:

при n больше 30,или
. при n меньше либо равно 30, где n - число всех вариант

Методика расчета среднего квадратического отклонения приведе­на в таблице 5.

Среднее квадратическое отклонение позволяет установить сте­пень типичности средней, пределы рассеяния ряда, сравнить колеб­лемость нескольких рядов распределения. , коэффициент вариации (Cv)

Таблица 5

Число дней V

Число больных Ρ

М=20 n=95 Σ=252

Пример: по данным специального исследования средний рост мальчиков 7 лет в городе N составил 117.7 см (σ=5. 1 см), а сред­ний вес - 21,7 кг (σ=2,4 кг). Оценить колеблемость роста и веса путем сравнения средних квадратических отклонений нельзя, т. к. вес и рост - величины именованные. Поэтому используется относи­тельная величина - коэффициент вариации:

,

Сравнение коэффициентов вариации роста (4.3%) и веса (11.2%) показывает, что вес имеет более высокий коэффициент вариации,следовательно,является менее устойчивым признаком.

Чем выше коэффициент вариации,

Средние величины широко применяются в повседневной работе ме­дицинских работников. Они используются для характеристики Физи­ческого развития, основных антропометрических признаков: рост, вес. окружность груди, динамометрия и т.д. Средние величины при­меняются для оценки состояния больного путем анализа физиологи­ческих, биохимических сдвигов в организме: уровня артериального давления, частоты сердечных сокращений. температуры тела, уровня биохимических показателей, содержания гормонов и т. д. Широкое применение средние величины нашли при анализе деятельности лечеб­но-профилактических учреждений, например: при анализе работы ста­ционаров вычисляются показатели среднегодовой занятости койки, средней длительности пребывания больного на койке и т. д.

среднее квадратичес­кое отклонение (σ - сигма)

1. Находят среднюю арифметическую величину (Μ).

Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv ) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

Коэффициент вариации вычисляется по формуле:

Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.

81. Среднее квадратическое отклонение, методика расчета, применение.

Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является среднее квадратичес­кое отклонение (σ - сигма) . Чем больше среднее квадратическое отклонение, тем степень ко­леблемости данного ряда выше.

Методика расчета среднего квадратического отклонения включает следующие этапы:

1. Находят среднюю арифметическую величину (Μ).

2. Определяют отклонения отдельных вариант от средней арифмети­ческой (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю.

3. Возводят каждое отклонение в квадрат d2.

4. Перемножают квадраты отклонений на соответствующие частоты d2*p.

5. Находят сумму произведений (d2*p)

6. Вычисляют среднее квадратическое отклонение по формуле:

При n больше 30,или при n меньше либо равно 30, где n - число всех вариант.

Значение среднего квадратичного отклонения:

1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.

2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.

Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.

Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.

Установлено, что при нормальном распределении признака:

68,3% значений вариант находится в пределах М1

95,5% значений вариант находится в пределах М2

99,7% значений вариант находится в пределах М3

3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.

4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды

5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.

Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv ) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

Коэффициент вариации вычисляется по формуле:

Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.

Средняя арифметическая и средняя гармоническая величины

Сущность и значение средних величин, их виды

Наиболее распространенной формой статистического показателя является средняя величина . Показатель в форме средней величи­ны выражает типичный уровень признака в совокупности. Широкое применение средних величин объясняется тем, что они позволяют и сравнивать значения признака у единиц, относящихся к разным сово­купностям. Например, можно сравнивать среднюю продолжитель­ность рабочего дня, средний тарифный разряд рабочих, средний уровень заработной платы по различным предприятиям.

Сущность средних величин заключается в том, что в них взаи­мопогашаются отклонения значений признака у отдельных единиц со­вокупности, обусловленные действием случайных факторов. Поэтому средние величины должны рассчитываться для достаточно много­численных совокупностей (в соответствии с законом больших чи­сел). Надежность средних величин зависит также от колеблемости значений признака в совокупности. В общем случае, чем меньше ва­риация признака и чем больше совокупность, по которой определяет­ся средняя величина, тем она надежнее.

Типичность средней величины непосредственным образом свя­зана также с однородностью статистической совокупности. Сред­няя величина только тогда будет отражать типичный уровень призна­ка, когда она рассчитана по качественно однородной совокупности. В противном случае метод средних используется в сочетании с методом группировок. Если совокупность неоднородна, то общие средние заменяются или дополняются групповыми средними, рассчитанными по качественно однородным группам.

Выбор вида средних определяется экономическим содержание ем исследуемого показателя и исходных данных. Наиболее часто в статистике применяются следующие виды средних величин: степен­ные средние (арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д.), средняя хронологическая, а также структурные средние (мода и медиана).

Средняя арифметическая величина наиболее часто встреча­ется в социально-экономических исследованиях. Средняя арифмети­ческая применяется в форме простой средней и взвешенной средней.

Рассчитывается по несгруппированным данным на основании формулы (4.1):

где x - индивидуальные значения признака (варианты);

n - число единиц совокупности.

Пример. Требуется найти среднюю выработку рабочего в бри­гаде, состоящей из 15 человек, если известно количество изделий, произведенных одним рабочим (шт.): 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.

Средняя арифметическая простая рассчитывается по несгруппированным данным на основании формулы (4.2):

где f - частота повторения соответствующего значения признака (варианта);

∑f - общее число единиц совокупности (∑f = n).

Пример . На основании имеющихся данных о распределении ра­бочих бригады по количеству выработанных ими изделий требуется найти среднюю выработку рабочего в бригаде.

Примечание 1. Средняя величина признака в совокупности может рассчитываться как на основании индивидуальных значений признака, так и на основании групповых (частных) средних, рассчитанных по отдельным частям совокупности. При этом используется формула средней арифметической взвешенной, а в качестве вариантов значений признака рассматриваются групповые (частные) средние (x j ).

Пример. Имеются данные о среднем стаже рабочих по цехам завода. Требуется определить средний стаж рабочих в целом по заводу.

Примечание 2. В том случае, когда значения осредняемого признака зада­ны в виде интервалов, при расчете средней арифметической величины в качестве значений признака в группах принимают средние значения этих интервалов (х ’) . Таким образом, интервальный ряд преобразуется в дискретный. При этом величи­на открытых интервалов, если таковые имеются (как правило, это первый и по­следний), условно приравнивается к величине интервалов, примыкающих к ним.

Пример. Имеются данные о распределении рабочих предпри­ятия по уровню заработной платы.

Средняя гармоническая величина является модификацией средней арифметической. Применяется в тех случаях, когда известны индивидуальные значения признака, т. е. варианты (x ), и произведений вариант на частоту (xf = М), но неизвестны сами частоты (f ).

Средняя гармоническая взвешенная рассчитывается по формуле (4.3):

Пример . Требуется определить средний размер заработной платы работников объединения, состоящего из трех предприятий, если известен фонд заработной платы и средняя заработная плата работников по каждому предприятию.

Средняя гармоническая простая в практике статистики исполь­зуется крайне редко. В тех случаях, когда xf = Mm = const, средняя гар­моническая взвешенная превращается в среднюю гармоническую простую (4.4):

Пример . Две машины прошли один и тот же путь. При этом одна из них двигалась со скоростью 60 км/ч, вторая - со скоростью 80 км/ч. Требуется определить среднюю скорость машин в пути.

Другие виды степенных средних. Средняя хронологическая

Средняя геометрическая величина используется при расчете средних показателей динамики. Средняя геометрическая применяется в форме простой средней (для несгруппированных данных) и взве­шенной средней (для сгруппированных данных).

Средняя геометрическая простая (4.5):

где n - число значений признака;

П - знак произведения.

Средняя геометрическая взвешенная (4.6):

Средняя квадратическая величина используется при расчете показателей вариации. Применяется в форме простой и взвешенной.

Средняя квадратическая простая (4.7):

Средняя квадратическая взвешенная (4.8):

Средняя кубическая величина используется при расчете показателей асимметрии и эксцесса. Применяется в форме простой взвешенной.

Средняя кубическая простая (4.9): мода определяется достаточно просто - по максимальному пока­зателю частоты. В интервальном вариационном ряду мода приблизительно соответствует центру модального интервала, т. е. интервала, имеющего большую частоту (частость). частота интервала, следующего за модальным.

Медианой (Ме) называется значение признака, расположенное в середине ранжированного ряда. Под ранжированным понимают ряд, упорядоченный в порядке возрастания или убывания значений признака. Медиана делит ранжированный ряд на две части, одна из которых имеет значения признака не большие, чем медиана, а друга - не меньшие.

Для ранжированного ряда с нечетным числом членов медиа­ной является варианта, расположенная в центре ряда. Положение ме­дианы определяется порядковым номером единицы ряда в соответст­вии с формулой (4.13):

где n - число членов ранжированного ряда.

Для ранжированного ряда с четным числом членов медиа­ной является среднее арифметическое из двух смежных значений, на­ходящихся в центре ряда.

Частота медианного интервала.

Пример. Рабочие бригады, состоящей из 9 чел., имеют сле­дующие тарифные разряды: 4; 3; 4; 5; 3; 3; 6; 2;6. Требуется опреде­лить модальное и медианное значения тарифного разряда.

Поскольку в данной бригаде больше всего рабочих 3-го разряда, то этот разряд и будет модальным, т. е. Мо = 3.

Для определения медианы осуществим ранжирование исходного ряда в порядке возрас­тания значений признака:

2; 3; 3; 3; 4; 4; 5; 6; 6.

Центральным в этом ряду является пятое по счету значение признака. Соответственно Ме = 4.

Пример. Требуется определить модальный и медианный тарифный разряд рабочих завода по данным следующего ряда распределения.

Поскольку исходный ряд распределения является дискретным, то модальное значение определяется по максимальному показателю частоты. В данномпримере на заводе больше всего рабочих 3-го разряда (f max = 30), т.е. этот разряд является модальным (Мо = 3).

Определим положение медианы. Исходный ряд распределения построен на основании ранжированного ряда, упорядоченного по воз­растанию значений признака. Середина ряда находится между 50-м и 51-м порядковыми номерами значений признака. Выясним, к какой группе относятся рабочие с этими порядковыми номерами. Для это­го рассчитаем накопленные частоты. Накопленные частоты ука­зывают на то, что медианное значение тарифного разряда равно трем (Ме = 3), поскольку значения признака с порядковыми номе­рами от 39-го до 68-го, в том числе 50-е и 51-е, равны 3.

Пример. Требуется определить модальную и медианную зара­ботную плату рабочих завода по данным следующего ряда распределения.

Поскольку исходный ряд распределения является интерваль­ным, то модальное значение заработной платы рассчитывается по формуле. При этом модальным является интервал 360-420 с максимальной частотой, равной 30.

Медианное значение заработной платы также рассчитывает­ся по формуле. При этом медианным является интервал 360-420, на­копленная частота которого равна 70, тогда как накопленная час­тота предыдущего интервала составляла только 40 при общем числе единиц, равном 100.

В данной статье я расскажу о том, как найти среднеквадратическое отклонение . Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности ).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение . Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего :

Наконец, чтобы вычислить дисперсию , каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм 2 .

Таким образом, дисперсия составляет 21704 мм 2 .

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

Мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки = мм 2 .

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал , Сергей Валерьевич

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом . В то же время не все так плохо. При увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной. Поэтому при работе с большими размерами выборок можно использовать формулу выше.

Язык знаков полезно перевести на язык слов. Получится, что дисперсия — это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Разгадка заключается всего в трех словах.

Однако в чистом виде, как, например, средняя арифметическая, или индекс, дисперсия не используется. Это скорее вспомогательный и промежуточный показатель, который необходим для других видов статистического анализа. У нее даже единицы измерения нормальной нет. Судя по формуле, это квадрат единицы измерения исходных данных. Без бутылки, как говорится, не разберешься.

{module 111}

Дабы вернуть дисперсию в реальность, то есть использовать в более приземленных целей, из нее извлекают квадратный корень. Получается так называемое среднеквадратичное отклонение (СКО) . Встречаются названия «стандартное отклонение» или «сигма» (от названия греческой буквы). Формула стандартного отклонения имеет вид:

Для получения этого показателя по выборке используют формулу:

Как и с дисперсией, есть и немного другой вариант расчета . Но с ростом выборки разница исчезает.

Среднеквадратичное отклонение, очевидно, также характеризует меру рассеяния данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Но и этот показатель в чистом виде не очень информативен, так как в нем заложено слишком много промежуточных расчетов, которые сбивают с толку (отклонение, в квадрат, сумма, среднее, корень). Тем не менее, со среднеквадратичным отклонением уже можно работать непосредственно, потому что свойства данного показателя хорошо изучены и известны. К примеру, есть такое правило трех сигм , которое гласит, что у данных 997 значений из 1000 находятся в пределах ±3 сигмы от средней арифметической. Среднеквадратичное отклонение, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.

Коэффициент вариации

Среднее квадратическое отклонение дает абсолютную оценку меры разброса. Поэтому чтобы понять, насколько разброс велик относительно самих значений (т.е. независимо от их масштаба), требуется относительный показатель. Такой показатель называется коэффициентом вариации и рассчитывается по следующей формуле:

Коэффициент вариации измеряется в процентах (если умножить на 100%). По этому показателю можно сравнивать самых разных явлений независимо от их масштаба и единиц измерения. Данный факт и делает коэффициент вариации столь популярным.

В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. Мне здесь трудно что-то прокомментировать. Не знаю, кто и почему так определил, но это считается аксиомой.

Чувствую, что я увлекся сухой теорией и нужно привести что-то наглядное и образное. С другой стороны все показатели вариации описывают примерно одно и то же, только рассчитываются по-разному. Поэтому разнообразием примеров блеснуть трудно, Отличаться могут лишь значения показателей, но не их суть. Вот и сравним, как отличаются значения различных показателей вариации для одной и той же совокупности данных. Возьмем пример с расчетом среднего линейного отклонения (из ). Вот исходные данные:

И график для напоминания.

По этим данным рассчитаем различные показатели вариации.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Стандартное отклонение:

Расчет сведем в табличку.

Как видно, среднее линейное и среднеквадратичное отклонение дают похожие значения степени вариации данных. Дисперсия – это сигма в квадрате, поэтому она всегда будет относительно большим числом, что, собственно, ни о чем не говорит. Размах вариации – это разница между крайними значениями и может говорить о многом.

Подведем некоторые итоги.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

1. Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.
2. Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.
3. Дисперсия – средний квадрат отклонений.
4. Среднеквадратичное отклонение – корень из дисперсии (среднего квадрата отклонений).
5. Коэффициент вариации – наиболее универсальный показатель, отражающий степень разброса значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных (расчет доверительных интервалов

Для расчетов средней геометрической простой используется формула:

Геометрическая взвешенная

Для определения средней геометрической взвешенной применяется формула:

редние диаметры колес, труб, средние стороны квадратов определяются при помощи средней квадратической.

Среднеквадратические величины используются для расчета некоторых показателей, например коэффициент вариации, характеризующего ритмичность выпуска продукции. Здесь определяют среднеквадратическое отклонение от планового выпуска продукции за определенный период по следующей формуле:

Эти величины точно характеризуют изменение экономических показателей по сравнению с их базисной величиной, взятое в его усредненной величине.

Квадратическая простая

Средняя квадратическая простая вычисляется по формуле:

Квадратическая взвешенная

Средняя квадратическая взвешенная равна:

22. Абсолютные показатели вариации включают:

размах вариации

среднее линейное отклонение

дисперсию

среднее квадратическое отклонение

Размах вариации (r)

Размах вариации - это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. Решение: размах вариации = 9 - 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение - этосредняя арифметическая из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере: лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

Среднее квадратическое отклонение

Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение () равно квадратному корню из среднего квадрата отклонений отдельных значений признака отсредней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций


Способ 2: вкладка «Формулы»


Способ 3: ручной ввод формулы

Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.


Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.