Что такое значение производной. Найти производную: алгоритм и примеры решений

Что такое производная?
Определение и смысл производной функции

Многие удивятся неожиданному расположению этой статьи в моём авторском курсе о производной функции одной переменной и её приложениях. Ведь как оно было ещё со школы: стандартный учебник в первую очередь даёт определение производной, её геометрический, механический смысл. Далее учащиеся находят производные функций по определению, и, собственно, только потом оттачивается техника дифференцирования с помощью таблицы производных .

Но с моей точки зрения, более прагматичен следующий подход: прежде всего, целесообразно ХОРОШО ПОНЯТЬ предел функции , и, в особенности, бесконечно малые величины . Дело в том, что определение производной базируется на понятии предела , которое слабо рассмотрено в школьном курсе. Именно поэтому значительная часть молодых потребителей гранита знаний плохо вникают в саму суть производной. Таким образом, если вы слабо ориентируетесь в дифференциальном исчислении либо мудрый мозг за долгие годы успешно избавился от оного багажа, пожалуйста, начните с пределов функций . Заодно освоите/вспомните их решение.

Тот же практический смысл подсказывает, что сначала выгодно научиться находить производные , в том числе производные сложных функций . Теория теорией, а дифференцировать, как говорится, хочется всегда. В этой связи лучше проработать перечисленные базовые уроки, а может и стать мастером дифференцирования , даже не осознавая сущности своих действий.

К материалам данной страницы рекомендую приступать после ознакомления со статьёй Простейшие задачи с производной , где, в частности рассмотрена задача о касательной к графику функции. Но можно и повременить. Дело в том, что многие приложения производной не требуют её понимания, и неудивительно, что теоретический урок появился достаточно поздно – когда мне потребовалось объяснять нахождение интервалов возрастания/убывания и экстремумов функции. Более того, он довольно долго находился в теме «Функции и графики », пока я всё-таки не решил поставить его раньше.

Поэтому, уважаемые чайники, не спешите поглощать суть производной, как голодные звери, ибо насыщение будет невкусным и неполным.

Понятие возрастания, убывания, максимума, минимума функции

Многие учебные пособия подводят к понятию производной с помощью каких-либо практических задач, и я тоже придумал интересный пример. Представьте, что нам предстоит путешествие в город, до которого можно добраться разными путями. Сразу откинем кривые петляющие дорожки, и будем рассматривать только прямые магистрали. Однако прямолинейные направления тоже бывают разными: до города можно добраться по ровному автобану. Или по холмистому шоссе – вверх-вниз, вверх-вниз. Другая дорога идёт только в гору, а ещё одна – всё время под уклон. Экстремалы выберут маршрут через ущелье с крутым обрывом и отвесным подъемом.

Но каковы бы ни были ваши предпочтения, желательно знать местность или, по меньшей мере, располагать её топографической картой. А если такая информация отсутствует? Ведь можно выбрать, например, ровный путь, да в результате наткнуться на горнолыжный спуск с весёлыми финнами. Не факт, что навигатор и даже спутниковый снимок дадут достоверные данные. Поэтому неплохо бы формализовать рельеф пути средствами математики.

Рассмотрим некоторую дорогу (вид сбоку):

На всякий случай напоминаю элементарный факт: путешествие происходит слева направо . Для простоты полагаем, что функция непрерывна на рассматриваемом участке.

Какие особенности у данного графика?

На интервалах функция возрастает , то есть каждое следующее её значение больше предыдущего. Грубо говоря, график идёт снизу вверх (забираемся на горку). А на интервале функция убывает – каждое следующее значение меньше предыдущего, и наш график идёт сверху вниз (спускаемся по склону).

Также обратим внимание на особые точки. В точке мы достигаем максимума , то есть существует такой участок пути, на котором значение будет самым большим (высоким). В точке же достигается минимум , и существует такая её окрестность, в которой значение самое маленькое (низкое).

Более строгую терминологию и определения рассмотрим на уроке об экстремумах функции , а пока изучим ещё одну важную особенность: на промежутках функция возрастает, но возрастает она с разной скоростью . И первое, что бросается в глаза – на интервале график взмывает вверх гораздо более круто , чем на интервале . Нельзя ли измерить крутизну дороги с помощью математического инструментария?

Скорость изменения функции

Идея состоит в следующем: возьмём некоторое значение (читается «дельта икс») , которое назовём приращением аргумента , и начнём его «примерять» к различным точкам нашего пути:

1) Посмотрим на самую левую точку: минуя расстояние , мы поднимаемся по склону на высоту (зелёная линия). Величина называется приращением функции , и в данном случае это приращение положительно (разность значений по оси – больше нуля). Составим отношение , которое и будет мерИлом крутизны нашей дороги. Очевидно, что – это вполне конкретное число, и, поскольку оба приращения положительны, то .

Внимание! Обозначение являются ЕДИНЫМ символом, то есть нельзя «отрывать» «дельту» от «икса» и рассматривать эти буквы отдельно. Разумеется, комментарий касается и символа приращения функции.

Исследуем природу полученной дроби содержательнее. Пусть изначально мы находимся на высоте 20 метров (в левой чёрной точке). Преодолев расстояние метров (левая красная линия), мы окажемся на высоте 60 метров. Тогда приращение функции составит метров (зелёная линия) и: . Таким образом, на каждом метре этого участка дороги высота увеличивается в среднем на 4 метра …не забыли альпинистское снаряжение? =) Иными словами, построенное отношение характеризует СРЕДНЮЮ СКОРОСТЬ ИЗМЕНЕНИЯ (в данном случае – роста) функции.

Примечание : числовые значения рассматриваемого примера соответствуют пропорциям чертежа лишь приблизительно.

2) Теперь пройдём то же самое расстояние от самой правой чёрной точки. Здесь подъём более пологий, поэтому приращение (малиновая линия) относительно невелико, и отношение по сравнению с предыдущим случаем будет весьма скромным. Условно говоря, метров и скорость роста функции составляет . То есть, здесь на каждый метр пути приходится в среднем пол метра подъёма.

3) Маленькое приключение на склоне горы. Посмотрим на верхнюю чёрную точку, расположенную на оси ординат. Предположим, что это отметка 50 метров. Снова преодолеваем расстояние , в результате чего оказываемся ниже – на уровне 30-ти метров. Поскольку осуществлено движение сверху вниз (в «противоход» направлению оси ), то итоговое приращение функции (высоты) будет отрицательным : метров (коричневый отрезок на чертеже). И в данном случае речь уже идёт о скорости убывания функции: , то есть за каждый метр пути этого участка высота убывает в среднем на 2 метра. Берегите одежду на пятой точке.

Теперь зададимся вопросом: какое значение «измерительного эталона» лучше всего использовать? Совершенно понятно, 10 метров – это весьма грубо. На них запросто уместится добрая дюжина кочек. Да что там кочки, внизу может быть глубокое ущелье, а через несколько метров – другая его сторона с дальнейшим отвесным подъёмом. Таким образом, при десятиметровом мы не получим вразумительной характеристики подобных участков пути посредством отношения .

Из проведённого рассуждения следует вывод – чем меньше значение , тем точнее мы опишем рельеф дороги. Более того, справедливы следующие факты:

Для любой точки подъемов можно подобрать значение (пусть и очень малое), которое умещается в границах того или иного подъёма. А это значит, что соответствующее приращение высоты будет гарантированно положительным, и неравенство корректно укажет рост функции в каждой точке этих интервалов.

– Аналогично, для любой точки склона существует значение , которое полностью уместится на этом склоне. Следовательно, соответствующее приращение высоты однозначно отрицательно, и неравенство корректно покажет убыль функции в каждой точке данного интервала.

– Особо интересен случай, когда скорость изменения функции равна нулю: . Во-первых, нулевое приращение высоты () – признак ровного пути. А во-вторых, есть другие любопытные ситуации, примеры которых вы видите на рисунке. Представьте, что судьба завела нас на самую вершину холма с парящими орлами или дно оврага с квакающими лягушками. Если сделать небольшой шажок в любую сторону, то изменение высоты будет ничтожно мало, и можно сказать, что скорость изменения функции фактически нулевая. В точках наблюдается именно такая картина.

Таким образом, мы подобрались к удивительной возможности идеально точно охарактеризовать скорость изменения функции. Ведь математический анализ позволяет устремить приращение аргумента к нулю: , то есть сделать его бесконечно малым .

По итогу возникает ещё один закономерный вопрос: можно ли для дороги и её графика найти другую функцию , которая сообщала бы нам обо всех ровных участках, подъёмах, спусках, вершинах, низинах, а также о скорости роста/убывания в каждой точке пути?

Что такое производная? Определение производной.
Геометрический смысл производной и дифференциала

Пожалуйста, прочитайте вдумчиво и не слишком быстро – материал прост и доступен каждому! Ничего страшного, если местами что-то покажется не очень понятным, к статье всегда можно вернуться позже. Скажу больше, теорию полезно проштудировать несколько раз, чтобы качественно уяснить все моменты (совет особенно актуален для студентов-«технарей», у которых высшая математика играет значительную роль в учебном процессе).

Естественно, и в самом определении производной в точке заменим на :

К чему мы пришли? А пришли мы к тому, что для функции по закону ставится в соответствие другая функция , которая называется производной функцией (или просто производной) .

Производная характеризует скорость изменения функции . Каким образом? Мысль идёт красной нитью с самого начала статьи. Рассмотрим некоторую точку области определения функции . Пусть функция дифференцируема в данной точке. Тогда:

1) Если , то функция возрастает в точке . И, очевидно, существует интервал (пусть даже очень малый), содержащий точку , на котором функция растёт, и её график идёт «снизу вверх».

2) Если , то функция убывает в точке . И существует интервал, содержащий точку , на котором функция убывает (график идёт «сверху вниз»).

3) Если , то бесконечно близко около точки функция сохраняет свою скорость постоянной. Так бывает, как отмечалось, у функции-константы и в критических точках функции , в частности в точках минимума и максимума .

Немного семантики. Что в широком смысле обозначает глагол «дифференцировать»? Дифференцировать – это значит выделить какой-либо признак. Дифференцируя функцию , мы «выделяем» скорость её изменения в виде производной функции . А что, кстати, понимается под словом «производная»? Функция произошла от функции .

Термины весьма удачно истолковывает механический смысл производной :
Рассмотрим закон изменения координаты тела , зависящий от времени , и функцию скорости движения данного тела . Функция характеризует скорость изменения координаты тела, поэтому является первой производной функции по времени: . Если бы в природе не существовало понятия «движение тела», то не существовало бы и производного понятия «скорость тела».

Ускорение тела – это скорость изменения скорости, поэтому: . Если бы в природе не существовало исходных понятий «движение тела» и «скорость движения тела», то не существовало бы и производного понятия «ускорение тела».

Исследование функций. В этой статье мы поговорим о задачах, в которых рассматриваются функции и в условии стоят вопросы связанные с их исследованием. Рассмотрим основные теоретические моменты, которые необходимо знать и понимать для их решения.

Это целая группа задач входящих в ЕГЭ по математике. Обычно ставится вопрос о нахождении точек максимума (минимума) или определения наибольшего (наименьшего) значения функции на заданном интервале. Рассматриваются:

— Степенные и иррациональные функции.

— Рациональные функции.

— Исследование произведений и частных.

— Логарифмические функции.

— Тригонометрические функции.

Если вы поняли теорию пределов, понятие производной, свойства производной для исследования графиков функций и её , то такие задачи никакого затруднения у вас не вызовут и вы решите их с лёгкостью.

Информация ниже — это теоретические моменты, понимание которых позволит осознать, как решать подобные задачи. Постараюсь изложить их именно так, чтобы даже тот, кто эту тему пропустил или изучил слабо, смог без особых затруднений решать подобные задачи.

В задачах данной группы, как уже сказано, требуется найти либо точку минимума (максимума) функции, либо наибольшее (наименьшее) значение функции на интервале.

Точки минимума, максимума. Свойства производной.

Рассмотрим график функции:


Точка А – это точка максимума, на интервале от О до А функция возрастает, на интервале от А до В убывает.

Точка В – это точка минимума, на интервале от А до В функция убывает, на интервале от В до С возрастает.

В данных точках (А и В) производная обращается в нуль (равна нулю).

Касательные в этих точках параллельны оси ox .

Добавлю, что точки, в которых функция меняет своё поведение с возрастания на убывание (и наоборот, с убывания на возрастание), называются экстремумами.

Важный момент:

1. Производная на интервалах возрастания имеет положительный знак (п ри подстановке значения из интервала в производную получается положительное число).

Значит, если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак (при подстановке значения из интервала в выражение производной получается отрицательное число).

Значит, если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

Это надо чётко уяснить!!!

Таким образом, вычислив производную и приравняв её к нулю, можно найти точки, которые разбивают числовую ось на интервалы. На каждом из этих интервалов можно определить знак производной и далее сделать вывод о её возрастании или убывании.

*Отдельно следует сказать о точках, в которых производая не существует. Например, можем получить производную, знаменатель которой при определённом х обращается в нуль. Понятно, что при таком х производная не существует. Так вот, данную точку также необходимо учитывать при определени интервалов возрастания (убывания).

Функция в точках, где производная равна нулю меняет свой знак не всегда. Об этом будет отдельная статья. На самом ЕГЭ таких задач не будет.

Вышеизложенные свойства необходимы для исследования поведения функции на возрастание и убывание.

Что ещё необходимо знать для решения оговоренных задач: таблицу производных и правила дифференцирования. Без этого никак. Это базовые знания, в теме производной. Производные элементарных функций вы должны знать на отлично.

Вычисляя производную сложной функции f (g (x )), представьте, что функция g (x ) это переменная и далее вычисляйте производную f ’(g (x )) по табличным формулам как обычную производную от переменной. Затем полученный результат умножьте на производную функции g (x ) .

Посмотрите видеоурок Максима Семенихина о сложной функции:

Задачи на нахождение точек максимума и минимума

Алгоритм нахождения точек максимума (минимума) функции:

1. Находим производную функции f ’(x ).

2. Находим нули производной (приравниванием производную к нулю f ’(x )=0 и решаем полученное уравнение). Также находим точки в которых производная не существует (в частности это касается дробно-рациональных функций).

3. Отмечаем полученные значения на числовой прямой и определяем знаки производной на этих интервалах путём подстановки значений из интервалов в выражение производной.

Вывод будет один из двух:

1. Точка максимума это точка, в которой производная меняет значение с положительного на отрицательное.

2. Точка минимума это точка, в которой производная меняет значение с отрицательного на положительное.

Задачи на нахождение наибольшего или наименьшего значения

функции на интервале.

В другом типе задач требуется найти наибольшее или наименьшее значение функции на заданном интервале.

Алгоритм нахождения наибольшего (наименьшего) значения функции:

1. Определяем, есть ли точки максимума (минимума). Для этого находим производную f ’(x ) , затем решаем f ’(x )=0 (пункты 1 и 2 из предыдущего алгоритма).

2. Определяем, принадлежат ли полученные точки заданному интервалу и записываем лежащие в его пределах.

3. Подставляем в исходную функцию (не в производную, а в данную в условии) границы данного интервала и точки (максимума-минимума), лежащие в пределах интервала (п.2).

4. Вычисляем значения функции.

5. Выбираем из полученных наибольшее (наименьше) значение, в зависимости от того, какой вопрос был поставлен в задаче и далее записываем ответ.

Вопрос: для чего в задачах на нахождение наибольшего (наименьшего) значения функции необходимо искать точки максимума (минимума)?

Ответ лучше всего это проиллюстрировать, посмотрите схематичное изображение графиков, задаваемых функций:



В случаях 1 и 2 достаточно подставить границы интервала, чтобы определить наибольшее или наименьшее значение функции. В случаях 3 и 4 необходимо найти нули функции (точки максимума-минимума). Если мы подставим границы интервала (не находя нули функции), то получим неверный ответ, это видно по графикам.

И всё дело в том, что мы по заданной функции не можем увидеть как выглядит график на интервале (имеет ли он максимум или минимум в пределах интервала). Потому находите нули функции обязательно!!!

Если уравнение f’(x )=0 не будет иметь решения, это значит, что точек максимума-минимума нет (рисунок 1,2), и для нахождения поставленной задачи в данную функцию подставляем только границы интервала.

Ещё один важный момент. Помните, что ответом должно быть целое число или конечная десятичная дробь. При вычислении наибольшего и наименьшего значения функции вы будете получать выражения с числом е и Пи, а также выражения с корнем. Запомните, что до конца вам их вычислять не нужно, и так понятно, что результат таких выражений ответом являться не будет. Если возникнет желание вычислить такое значение, то сделайте это (числа: е ≈ 2,71 Пи ≈ 3,14).

Много написал, запутал наверное? По конкретным примерам вы увидите, что всё просто.

Далее хочу открыть вам маленький секрет. Дело в том, что многие задания можно решить без знания свойств производной и даже без правил дифференцирования. Об этих нюансах я вам обязательно расскажу и покажу как это делается? не пропустите!

Но тогда зачем же я вообще изложил теорию и ещё сказал, что её нужно знать обязательно. Всё верно – знать надо. Если её поймёте, тогда никакая задача в этой теме в тупик вас не поставит.

Те «хитрости», о которых вы узнаете, помогут вам при решении конкретных (некоторых) прототипов задач. К ак дополнительный инструмент эти приёмы использовать, конечно, удобно. Задачу можно решить в 2-3 раза быстрее и сэкономить время на решение части С.

Всего доброго!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажите о сайте в социальных сетях.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Производная функции одной переменной.

Введение.

Настоящие методические разработки предназначены для студентов факультета промышленное и гражданское строительство. Они составлены применительно к программе курса математики по разделу «Дифференциальное исчисление функций одного переменного».

Разработки представляют собой единое методическое руководство, включающее в себя: краткие теоретические сведения; «типовые» задачи и упражнения с подробными решениями и пояснениями к этим решениям; варианты контрольной работы.

В конце каждого параграфа дополнительные упражнения. Такая структура разработок делает их пригодными для самостоятельного овладения разделом при самой минимальной помощи со стороны преподавателя.

§1. Определение производной.

Механический и геометрический смысл

производной.

Понятие производной является одним из самых важных понятий математического анализа.Оно возникло еще в 17 веке. Формирование понятия производной исторически связано с двумя задачами: задачей о скорости переменного движения и задачей о касательной к кривой.

Эти задачи, несмотря на их различное содержание, приводят к одной и той же математической операции, которую нужно провести над функцией.Эта операция получила в математике специальное название. Она называется операцией дифференцирования функции. Результат операции дифференцирования называется производной.

Итак, производной функцииy=f(x) в точкеx0 называется предел (если он существует) отношения приращения функции к приращению аргумента
при
.

Производную принято обозначать так:
.

Таким образом, по определению

Для обозначения производной употребляются также символы
.

Механический смысл производной.

Если s=s(t) – закон прямолинейного движения материальной точки, то
есть скорость этой точки в момент времениt.

Геометрический смысл производной.

Если функция y=f(x) имеет производную в точке, то угловой коэффициент касательной к графику функции в точке
равен
.

Пример.

Найдите производную функции
в точке=2:

1) Дадим точке =2 приращение
. Заметим, что.

2) Найдем приращение функции в точке =2:

3) Составим отношение приращения функции к приращению аргумента:

Найдем предел отношения при
:

.

Таким образом,
.

§ 2. Производные от некоторых

простейших функций.

Студенту необходимо научиться вычислять производные конкретных функций: y=x,y=и вообщеy=.

Найдем производную функции у=х.

т.е. (x)′=1.

Найдем производную функции

Производная

Пусть
тогда

Легко заметить закономерность в выражениях производных от степенной функции
приn=1,2,3.

Следовательно,

. (1)

Эта формула справедлива для любых действительных n.

В частности, используя формулу (1), имеем:

;

.

Пример.

Найдите производную функции

.

.

Данная функция является частным случаем функции вида

при
.

Используя формулу (1), имеем

.

Производные функций y=sin x и y=cos x.

Пусть y=sinx.

Разделим на ∆x, получим

Переходя к пределу при ∆x→0, имеем

Пусть y=cosx .

Переходя к пределу при ∆x→0, получим

;
. (2)

§3. Основные правила дифференцирования.

Рассмотрим правила дифференцирования.

Теорема 1 . Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx,то в этой точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых: (u+v)"=u"+v".(3)

Доказательство: рассмотрим функцию y=f(x)=u(x)+v(x).

Приращению ∆x аргумента x соответствуют приращения ∆u=u(x+∆x)-u(x), ∆v=v(x+∆x)-v(x) функций u и v. Тогда функция y получит приращение

∆y=f(x+∆x)-f(x)=

=--=∆u+∆v.

Следовательно,

Итак, (u+v)"=u"+v".

Теорема 2. Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx, то в той же точке дифференцируемо и их произведение.При этом производная произведения находится по следующей формуле: (uv)"=u"v+uv". (4)

Доказательство: Пусть y=uv, где u и v – некоторые дифференцируемые функции от x. Дадим x приращение ∆x;тогда u получит приращение ∆u, v получит приращение ∆v и y получит приращение ∆y.

Имеем y+∆y=(u+∆u)(v+∆v), или

y+∆y=uv+u∆v+v∆u+∆u∆v.

Следовательно, ∆y=u∆v+v∆u+∆u∆v.

Отсюда

Переходя к пределу при ∆x→0 и учитывая, чтоuиvне зависят от ∆x, будем иметь

Теорема 3 . Производная частного двух функций равна дроби, знаменатель которой равен квадрату делителя, а числитель- разности между произведением производной делимого на делитель и произведением делимого на производную делителя, т.е.

Если
то
(5)

Теорема 4. Производная постоянной равна нулю, т.е. если y=C, где С=const, то y"=0.

Теорема 5. Постоянный множитель можно выносить за знак производной, т.е. если y=Cu(x), где С=const, то y"=Cu"(x).

Пример 1.

Найдите производную функции

.

Данная функция имеет вид
, гдеu=x,v=cosx. Применяя правило дифференцирования (4), находим

.

Пример 2.

Найдите производную функции

.

Применим формулу (5).

Здесь
;
.

Задачи.

Найдите производные следующих функций:

;

11)

2)
; 12)
;

3)
13)

4)
14)

5)
15)

6)
16)

7 )
17)

8)
18)

9)
19)

10)
20)