Правило сложения скоростей. Закон сложения скоростей в релятивистской механике

Пусть два фотона 1 и 2 движутся навстречу друг другу со скоростями, равными v 1 = с и v 2 = с (с - скорость света) относительно условно «неподвижной» системы отсчета Земля К (см. рис.). Найдем скорость 1-го фотона в системе отсчета К, связанной со 2-ым фотоном, используя классическую формулу для сложения скоростей:

Таблица 3

Таким образом, скорость одного фотона в системе отсчета, связанной со 2-ым, оказалась равной 2с, но согласно СТО ни одна частица не может двигаться со скоростью, большей скорости света.

При движении тел со скоростями, сопоставимыми со скоростью света в СТО был получена другая формула, которую называют релятивистской формулой сложения скоростей. Запишем формулы для простейшего случая движения систем в одном направлении.

u - скорость тела в неподвижной системе отсчета К

u - скорость тела в движущейся системе отсчета К

v - скорость системы К относительно системы К

(мы заменили буквы по сравнению с предыдущими формулами, чтобы не использовать индексы и еще больше не загромождать формулы)

Получим эти формулы.

Введем промежуточную переменную t

Найдем производную, используя преобразования Лоренца

Перемножим производные, учитывая, что

произведя алгебраические действия, найдем из этого уравнения u или u

Вычислим теперь скорость фотона из предыдущего примера по релятивистской формуле.

v 1 = u 1 = c-скорость 1-го фотона в К, v 1 = u 1 = c- скорость 1-го в К, v 2 = v - скорость 2-го фотона, т.е. скорость К в К. Таким образом по релятивистской формуле скорость фотона не превышает скорость света c.

Понятие о релятивистской динамике

При использовании преобразований Лоренца основной закон динамики m(dp/dt) = F оказывается инвариантным при условии, что импульс частицы записывается в виде:

Релятивистский импульс частицы

Основной закон релятивистской динамики

Тогда основной закон релятивистской динамики формально сохраняет такой же вид, как II закон Ньютона, но между ними имеется принципиальное различие. (см. ниже)

Величина m называется релятивистской массой, она зависит от скорости тела и не является инвариантом, т.е. имеет различное значение в разных ИСО.

m 0 - масса тела, называемая также массой покоя, является инвариантом и имеет одно и то же значение в любых ИСО.

В классической механике ускорение частицы и сила, вызвавшая это ускорение, всегда направлены одинаково. При скорости движения частицы сопоставимой со скоростью света, т.е. в релятивистском случае, направление ускорения и силы совпадают только в двух случаях: 1) когда сила параллельна скорости в каждый момент времени и 2) когда сила перпендикулярна скорости. В общем случае направления ускорения и силы не совпадают (см. рис)

Взаимосвязь массы и энергии в теории относительности.

Введем новые обозначения для энергии, которые чаще всего используются в СТО.

полная энергия

кинетическая энергия (будем использовать обозначение Т)

Найдем выражение для кинетической энергии в СТО, считая, что приращение кинетической энергии происходит за счет работы некоторой силы. Тело в начальный момент неподвижно и является свободным, т.е. не взаимодействует с другими телами и не обладает, таким образом, потенциальной энергией.

чтобы проинтегрировать и получить, нужно свести к одной переменной m, пока их две, и все равенства - скалярные произведения векторов,

вместо переменной р появились переменные

здесь уже нет векторных произведений т.к. , но остались две переменные

возведем в квадрат, выразим, подставим в и получим

теперь можно проинтегрировать, т.к. осталась одна переменная m

интегрируя, получим выражение для кинетической энергии в СТО

Релятивистская кинетическая энергия

Энергия покоя

Полная релятивистская энергия, т.е. энергия движущегося тела

Таким образом, из СТО следует, что любое неподвижное тело обладает запасом энергии, равной. Например, в теле массой 1 кг содержится энергия Е 0 = 1910 16 Дж. Этой энергией можно нагреть на 100 о С водоем с размерами 1 км 20 км 20 м. Проблема состоит в том, как выделить эту энергию. Даже при термоядерной реакции освобождается меньше 1% от полной энергии, соответствующей всей массе покоя. В классической механике понятие «энергия покоя» отсутствовало.

Выражение называется закон Эйнштейна взаимосвязи массы и энергии

Согласно этому закону, общий запас энергии тела (или системы тел), из каких бы видов энергии он ни состоял (кинетическая, потенциальная, тепловая, электрическая и пр.) связан с массой тела (системы тел) этим соотношением. Иначе говоря, если изменится масса тела, изменится и его энергия, и наоборот.

Пусть кусок железа массой 1 кг нагрели на 1000 о С. Вычислим, насколько должна при этом измениться масса куска.

изменение энергии тела на должно изменить его массу на

Q - теплота при нагревании, С - удельная теплоемкость нагреваемого вещества

не существует таких приборов, чтобы при массе 1 кг обнаружить такое маленькое ее изменение

Все формулы СТО переходят в классические при v<< c.Например, найдем кинетическую энергию тела при малых скоростях. Приближенное выражение, известное из математики

релятивистское выражение переходит в классическое

Из СТО следует возможность существования частиц с нулевой массой, но они не могут быть неподвижными, а должны непрерывно двигаться, причем только со скоростью света с - это фотоны и, возможно, нейтрино.

связь энергии и импульса для частиц с нулевой массой (фотонов) m 0 =0

Некоторые формулы из СТО, которые можно вывести из приведенных выше выражений

Связь кинетической энергии частицы с ее импульсом

Связь полной энергии частицы с ее импульсом

Связь полной энергии и энергии покоя с импульсом

Мы говорили, что скорость света - максимально возможная скорость распространения сигнала. Но что будет, если свет испускается движущимся источником в направлении его скорости V ? Согласно закону сложения скоростей, следующему из преобразований Галилея, скорость света должна быть равна c + V . Но в теории относительности это невозможно. Посмотрим, какой закон сложения скоростей следует из преобразований Лоренца. Для этого запишем их для бесконечно малых величин:

По определению скорости ее компоненты в системе отсчета K находятся как отношения соответствующих перемещений к временным интервалам:

Аналогично определяется скорость объекта в движущейся системе отсчета K" , только пространственные расстояния и временные интервалы надо взять относительно этой системы:

Следовательно, разделив выражение dx на выражение dt , получим:

Разделив числитель и знаменатель на dt" , находим связь x -компонент скоростей в разных системах отсчета, которая отличается от галилеевского правила сложения скоростей:

Кроме того, в отличие от классической физики, меняются и компоненты скоростей, ортогональные направлению движения. Аналогичные вычисления для других компонент скоростей дают:

Таким образом, получены формулы для преобразования скоростей в релятивистской механике. Формулы обратного преобразования получаются при замене штрихованных величин на нештрихованные и обратно и заменой V на –V .

Теперь мы можем ответить на вопрос, поставленный в начале данного раздела. Пусть в точке 0" движущейся системы отсчета K" установлен лазер, посылающий импульс света в положительном направлении оси 0"х" . Какой будет скорость импульса для неподвижного наблюдателя в системе отсчета К ? В этом случае скорость светового импульса в системе отсчета К" имеет компоненты

Применяя закон релятивистского сложения скоростей, находим для компонент скорости импульса относительно неподвижной системы К :

Мы получаем, что скорость светового импульса и в неподвижной системе отсчета, относительно которой источник света движется, равна

Тот же результат получится при любом направлении распространения импульса. Это естественно, так как независимость скорости света от движения источника и наблюдателя заложена в одном из постулатов теории относительности. Релятивистский закон сложения скоростей - следствие этого постулата.

Действительно, когда скорость движения подвижной системы отсчета V << c , преобразования Лоренца переходят в преобразования Галилея, мы получаем обычный закон сложения скоростей

При этом ход течения времени и длина линейки будут одинаковы в обеих системах отсчета. Таким образом, законы классической механики применимы, если скорости объектов много меньше скорости света. Теория относительности не зачеркнула достижения классической физики, она установила рамки их справедливости.

Пример. Тело со скоростью v 0 налетает перпендикулярно на стенку, двигающуюся ему навстречу со скоростью v . Пользуясь формулами для релятивистского сложения скоростей, найдем скорость v 1 тела после отскока. Удар абсолютно упругий, масса стенки намного больше массы тела.

Воспользуемся формулами, выражающими релятивистский закон сложения скоростей.

Направим ось х вдоль начальной скорости тела v 0 и свяжем систему отсчета K" со стенкой. Тогда v x = v 0 и V = –v . В системе отсчета, связанной со стенкой, начальная скорость v" 0 тела равна

Вернемся теперь назад в лабораторную систему отсчета К . Подставляя в релятивистский закон сложения скоростей v" 1 вместо v" x и учитывая опять же V = –v , находим после преобразований:

. Релятивистская механика

Урок 2/69

Тема. Релятивистский закон сложения скоростей

Цель урока: ознакомить учащихся с релятивістським законом сложения скоростей

Тип урока: изучение нового материала

План урока

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Вопрос к ученикам во время изложения нового материала

1. Что вы понимаете под инерциальными системами отсчета? Приведите примеры.

2. Принцип относительности классической физики.

3. В чем заключаются различия в формулировке принципа относительности Галилея и принцип относительности Эйнштейна?

4. Сравните понятия одновременности в классической физике и в теории относительности.

5. В каком случае понятия «раньше» и «позже» являются относительными, а в каком - абсолютными?

6. Два события в некоторой инерциальной системе отсчета происходят в одной точке одновременно. Будут ли эти события одновременными в другой инерциальной системе отсчета?

7. Можно утверждать, что пространственно разделенные события, одновременные в одной инерциальной системе отсчета, одновременные и во всех других инерциальных системах отсчета?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

Что мы узнали на уроке

Во всех инерциальных системах отсчета при одинаковых начальных условиях все механические явления протекают одинаково.

Классический закон сложения скоростей:

Релятивистский закон сложения скоростей:

Событие - это упрощенная модель такого явления, которое в заданной системе отсчета можно считать таким, что происходит в определенной точке пространства в определенный момент времени.

События, одновременные в одной системе отсчета, оказываются неодновременным в другой системе отсчета, которая движется равномерно и прямолинейно относительно первой, то есть одновременность - понятие относительное.

г1 ) - 22.5; 22.6;

р2) - 22.7; 22.20; 22.21;

г3 ) - 22.33, 22.34; 22.39.