Виды люминофоров. Большая энциклопедия нефти и газа. Что такое Люминофор

Cтраница 2


Катод, управляющий электрод, первый и второй аноды образуют в совокупности эмиссионно-фокусирующую систему - электронный прожектор. Цвет свечения экрана зависит от химического состава люминофора. Например, для визуальных наблюдений наиболее целесообразен люминофор с желто-зеленым цветом свечения, к которому наиболее чувствителен человеческий глаз.  

В электролюминесцентных индикаторах (ЭЛИ) свечение участков люминофоров обеспечивается приложенным непосредственно к нему электрическим полем. Напряженность поля определяет яркость свечения элемента, а химический состав люминофора - его цвет. Классифицируются ЭЛИ по типу люминофора (порошкового или пленочного), а также по виду управляющего напряжения - постоянного или переменного.  

Сумма факторов, которые форсируют утомление и выгорание, не противоречит предположению о единстве идущих при этом процессов. Как указано выше, к ним относятся: а) мощность возбуждения, Ь) особенности химического состава люминофора, с) присутствие щелочного биндера на экране и cl) особенности вакуумной обработки трубки. Роль мощности возбуждения уже разобрана выше.  

Катод, управляющий электрод, первый и второй аноды образуют в совокупности эмиссионно-фокусирую-щую систему - электронный прожектор. Экран электронно-лучевой трубки представляет собой стеклянную поверхность, покрытую тонким слоем специального вещества (люминофора), способного светиться при бомбардировке его электронами. Цвет свечения зависит от химического состава люминофора.  

Люминесценция широко используется в источниках света. В газосветных трубках используется электролюминесценция разреженных газов или паров. Люминофор, которым покрыты изнутри стенки лампы дневного света, поглощая ультрафиолетовое излучение, фосфоресцирует, испуская видимый свет. Химический состав люминофора подбирается таким образом, чтобы свет лампы был близок по составу к дневному свету. По экономичности такие лампы в 4 - 5 раз превосходят лампы накаливания.  

Люминесценция широко используется в источниках света. В газосветных трубках используется электролюминесценция разреженных газов или паров. Люминофор, которым покрыты изнутри стенки лампы дневного света, поглощая ультрафиолетовое излучение, фосфоресцирует, испуская видимый свет. Химический состав люминофора подбирается таким образом, чтобы свет лампы был близок по составу к дневному свету. ПЪ экономичности такие лампы в 4 - 5 раз превосходят лампы накаливания.  

Совместное же присутствие ионов Мп2 п SfcT - приводит к широкому спектру испускания фосфоресцептпогс материала, который охнатываег почти всю область белого света. Путем частичного замещения ионов F - во фтороапаткте ип ионы С) можно достигнуть некоторого изменения распределения длин волн в спектре испускания. Такой эффект объясняется тем, что подобное замещение ведет к изменению положении энергетических уровней ионов активатора и, следовательно, к изменению длин волн испускаемого излучения. Таким образом, варьирование химического состава люминофора - ьполнят эффективное средство достижения желаемой окраски при свс-чепии. В табл. 17.1 указаны люминофоры, используемые в люминесцентных лампах.  

Практика работы с катодолюминофорами показывает, что в результате эксплоатации трубки светоотдача экрана систематически падает. С чисто внешней стороны это сопровождается изменением окраски люминофора. Интенсивность ее с течением времени растет. В конечном счете окраска захватывает всю толщу люминофора и делает экран практически непрозрачным. Такое необратимое изменение экрана, сопровождающееся падением люминесцентной способности, носит в технике название ((выгорания. Основными факторами, которые определяют процесс выгорания, служат: а) химический состав люминофора, Ь) мощность возбуждения, с) способ нанесения экрана и d) особенности вакуумной обработки трубки.  

ЛЮМИНОФОРЫ

(от лат. lumen, род. падеж luminis - свет и греч. phoros - несущий), синтетич. в-ва, способные преобразовывать разл. виды энергии в световую - люминесцировать. По типу возбуждения подразделяются на фото-, катодо-, электро-, рентгено-, радио-, хемилюминофоры и др. (см. также Люминесценция, Хемилюминесценция ).
Неорганические Л. (фосфоры). Их свечение м. б. обусловлено как св-вами в-ва основы, так и наличием примесей - активаторов, к-рые образуют в осн. в-ве центры свечения, соактиватора и сенсибилизатора. Концентрация активатора обычно составляет 10 -1 -10 -3 %. Существуют самоактивир. Л., не содержащие активаторов, напр. CaWO 4 . Л. обозначают ф-лой основы с указанием активатора и сенсибилизатора, часто соактиватора, напр. ZnS: Ag, Ni; в-во после знака ":" - активатор, соактиватор или сенсибилизатор. Большинство неорг. Л. имеет кристаллич. структуру и относятся к кристаллофосфорам. Требования к Л. - яркость и цвет свечения, длительность послесвечения, дисперсность, и др. - определяются параметрами устройств, в к-рых их применяют. Л. обычно используют в виде относительно тонких поликристаллич. слоев (1-100 мкм), наносимых на внутр. пов-сть светящихся - экранов электровакуумных приборов. Состав нек-рых фото- и катодолюминофоров и области их применения представлены в таблице. Фотолюминофоры возбуждаются оптич. излучением в диапазоне от вакуумной УФ до ближней ИК области. наиб. широкое применение фотолюминофоры находят в люминесцентных лампах низкого давления. В лампах для общего освещения используют галофосфат Са -3[Са 3 (РО 4) 2 ].Са(Сl, F) 2: Sb, Mn, в лампах высокого давления с исправленной цветопередачей - смеси на основе фосфатов и силикатов, излучающие в синей, зеленой и красной областях спектра. Свечение возбуждается резонансной линией Hg с l = 253,7 нм. Световая отдача (отношение светового потока лампы к мощности) ламп с галофосфатным Л. составляет 85 Лм/Вт, ламп со смесями - от 50 до 60 Лм/Вт. Созданы лампы "нового поколения" с Л. на основе РЗЭ ( , фосфаты и др.), сочетающие высокую светоотдачу (~ 95 Лм/Вт) с высоким качеством цветопередачи. Фотолюминофоры применяют для исправления цветности ламп высокого давления, ламп, излучающих в УФ области, и т. д. (см. табл.). Катодолюминофоры возбуждаются пучком электронов; используются в экранах кинескопов, в электронных микроскопах, электроннолучевых и радиолокац. установках. В кинескопах цветного изображения применяют Л. с синим (l макс 455 нм), зеленым (l макс 525 нм) и красным (l макс 612 и 620 нм) цветом свечения. Их наносят на экран кинескопа в виде точек, расположенных треугольником, или чередующихся полос. Суммарный цвет изображения получается при сложении трех цветов свечения нанесенных Л. и зависит от соотношения их яркостей. Для получения хорошей цветопередачи цвет свечения исходных Л. должен быть по возможности более насыщенным, для чего поверхность "синего" Л. пигментируют СоАl 2 О 4 , а "красного" - Fe 2 O 3 .


* При напряжении 6 кВ. ** При напряжении 14 кВ. *** При напряжении 12 кВ.

Покрытие кинескопов черно-белого изображения состоит из смеси Л., имеющих синий и желто-зеленый (l макс 560 нм) цвет свечения, обеспечивающих в целом белый свет свечения кинескопа. Для повышения контрастности используют пигментирование "синего" Л. красителем. Электролюминофоры возбуждаются переменным или постоянным электрич. полем. Hаиб. распространенные электролюминофоры - ZnS: Сu и Zn(Cd)S(Se) : Сu. В зависимости от введенного дополнительно к Сu соактиватора (Сl, Аl, Вr, Са или Mn) получают Л., обладающие голубым, зеленым, желтым, оранжевым и красным цветом свечения. Рентгенолюминофоры возбуждаются рентгеновскими лучами; применяются при рентгенологич. обследованиях человека и в пром. дефектоскопии. Л. CaWO 4 нашел применение в мед. экранах, пром. рентгенографии с использованием малосeребряных материалов и дефектоскопии при высоких напряжениях. В разл. типах мед. рентгенологич. экранов применяют также BaSO 4: Pb; (Sr,Ba)SO 4: Eu; BaF,Cl: Eu; Ba 3 (PO 4) 2: Eu; LaOBr: Tb,Yb; ZnS: Ag; ZnS.CdS: Ag; CsI: Tl. Радиолюминофоры возбуждаются радиоактивным излучением; применяются для дозиметрии и радиометрии. При дозиметрии обычно используют св-во нек-рых Л. высвечивать при повышении т-ры энергию, запасенную при возбуждении. Для дозиметрии g- и рентгеновского излучения применяют LiF: Mg,Ti и MgB 4 O 7: Dy, для быстрых нейтронов - CaS: Na, Bi, Zn; для a-радиометрии - ZnS: Ag. Среди неорг. Л. большое практич. применение находят также люминесцирующие стекла. Их получают при варке стекла, добавляя в шихту активаторы, чаще РЗЭ или . Стекла обладают хорошей оптич. прозрачностью и могут применяться в качестве лазерных материалов, а также визуализаторов изображения.
Органические Л. (люминоры, органолюминофоры). Их свечение обусловлено хим. строением орг. соед. и сохраняется в разл. агрегатных состояниях. По хим. строению различают след. орг. Л.: ароматич. или их производные (полифенильные углеводороды, углеводороды с конденсированными ароматич. ядрами или арилэтиленовой и арилацетиленовой группировками), 5- и 6-членные гетероциклы и их производные, соед. с карбонильными группами; к орг. Л. относят также комплексы металлов с орг. лигандами. Орг. фотолюминофоры применяют в качестве флуоресцентных красок, свечение к-рых вызывается УФ и коротковолновым видимым излучением. Пигменты красок представляют собой твердые р-ры орг. Л. или их смесей с красителями в разл. смолах (чаще всего в составе карбамид-и меламиноформальдегилных смол, модифицированных одно- и многоатомными спиртами или арилсульфамидами). Для получения желтого цвета используют обычно 3-метоксибензантрон, голубого - арилэтиленовые замещенные 2,5-диарилоксазолов, оранжевого - смесь 3-метоксибензантрона с родаминами С и 6Ж. Нек-рые орг. Л. применяют для окрашивания пластмасс и синтетич. волокон, оптич. отбеливания тканей, бумаги, натуральных и искусств. волокон и разл. покрытий. Так, для окрашивания сополимеров винилхлорида применяют родамин С (красный цвет), 2,2"-дигидрокси-1,1"-нафтальазин (желтый), смесь 2,2"-дигидрокси-1,1"-нафтальазина с фталоцианином меди (зеленый), производные пиримидинантрона (красно-оранжевый), для окрашивания полистирола в оранжево-красные окраски - нафтоиленбензилимидазолы и его замещенные. При оптич. отбеливании Л., поглощая свет в ближней УФ-области, флуоресцируют в фиолетовой (l макс 415-429 нм), синей (430-440 нм) или зелено-синей (441-466 нм) частях видимой области спектра. Оптич. наложение их флуоресценции и желтых лучей, отраженных отбеливаемым материалом, вызывает ощущение белизны. При оптич. отбеливании используют производные стильбена, кумарина, пиразолина, нафталимида, бензоксазола и др. Орг. Л., способные испускать свет под действием радиоактивных излучений, применяют в качестве сцинтилляторов. Существуют монокристаллич. ( , тетрацен, карбазол, арилзамещенные этилена и оксазола), жидкие (полифенильные углеводороды, 2,5-диарилзамешенные оксазола) и пластмассовые орг. сцинцилляторы. Последние представляют собой твердые р-ры жидких сцинцилляторов в полимерных основах (полистироле, поливинилксилоле). Многие орг. Л. - активные среды жидкостных лазеров, напр. цианиновые, полиметиленовые и др. красители, люминесцентные индикаторы. Кроме того, орг. Л. применяют в люминесцентной дефектоскопии и аналит. химии (см. Люминесцентный анализ ), а также в мол. биологии и медицине (флуоресцеин, и др.) в качестве меток или зондов (см., напр., Липидные зонды ). О хеминолюминофорах см. Хемилюминесценция. Лит.: Гугель Б. М., Люминофоры для электровакуумной промышленности, М.. 1967; Неорганические люминофоры, М., 1975; Карнаухов В. Н., Люминесцентный клетки, М., 1978; Красовицкий Б. М., Болотин Б. М., Органические люминофоры, 2 изд., М., 1984; Тезисы докладов 5-го Всесоюзного совещания "Синтез, свойства, исследования, технология и применение люминофоров", ч. 1-2. Ставрополь. 1985. И. Ф. Голубев.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ЛЮМИНОФОРЫ" в других словарях:

    - (от лат. lumen, род. п. luminis свет и греч. phoros несущий), твёрдые и жидкие в ва, способные люминесцировать под действием разл. рода возбуждений (см. ЛЮМИНЕСЦЕНЦИЯ). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры,… … Физическая энциклопедия

    - (от лат. lumen свет и греч. phoros несущий) органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (см. Люминесценция). Важнейший вид люминофоров кристаллофосфоры. Люминофоры используют в… … Большой Энциклопедический словарь

    Современная энциклопедия

    Вещества, способные светиться (люминесцировать) под влиянием различных возбуждений. Используются в лампах дневного света, электронно лучевых трубках, как источники аварийного освещения в различных указателях и т. д. EdwART. Толковый Военно… … Морской словарь

    люминофоры - Вещества, способные светиться под действием внешних факторов. Тематики машиностроение в целом … Справочник технического переводчика

    Люминофоры - ЛЮМИНОФОРЫ, органические и неорганические вещества, способные светиться под воздействием различных факторов (смотри Люминесценция). Используют для изготовления телевизионных и других светящихся экранов, индикаторов, люминесцентных красок, ламп… … Иллюстрированный энциклопедический словарь

    ЛЮМИНОФОРЫ - твёрдые и жидкие вещества, в которых под действием внешних физ. факторов возникает (см.). По хим. природе Л. разделяются на органические и неорганические. Их используют в люминесцентном анализе, при производстве светящихся красок, в химии,… … Большая политехническая энциклопедия

    - (от лат. lumen свет и греч. phorós несущий), органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (смотри Люминесценция). Важнейший вид люминофоров кристаллофосфоры. Люминофоры используют … Энциклопедический словарь

    - (от лат. lumen свет и греч. phoros несущий) вещества, способные преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). По химической природе люминофоры разделяются на неорганические, большинство из которых относится к… … Википедия

    Люминофоры - (от лат. lumen свет и греч. phoros несущий) твердые и жидкие вещества, способные люминесцировать под действием разного рода возбуждений, т. е. иметь дискретные (разделенные зонами запрещенных энергий) спектры излучения.… … Энциклопедический словарь по металлургии

Книги

  • Химические понятия и химические изобретения. Книга 3. Новые принципы выявления патентоспособных химических объектов , Е. А. Устинова. В книге 3 монографии представлены новый подход к выявлению патентоспособных технических решений и результаты применения его на практике. Метод основан на глубокомисследовании химической…

Классификация люминофоров по виду поглощаемой энергии.

Акту люминесценции предшествует акт поглощения энергии.

Люминофоры, возбуждаемые ультрафиолетовым видимым или инфракрасным светом, называются фотолюминофорами , а, соответствующая этому виду люминесценция – называется фотолюминесценцией .

Рентгенолюминофоры – это люминофоры, которые эффективно поглощают и возбуждаются рентгеновскими лучами.

Радиолюминофоры наиболее эффективно поглощают и возбуждаются: α – β – γ – лучами.

Катодолюминофоры – это люминофоры, светящиеся под воздействием потока электронов.

Электролюминофоры – вещества, эффективно излучающие при поглощении энергии электрического поля. Они подразделяются на люминофоры постоянного поля и люминофоры переменного поля.

Хемолюминофоры – вещества, использующие в качестве источника энергию химических реакций. Соответствующая им люминесценция, называется хемолюминесценцией .

Люминофоры предназначены для использования в приборах или устройствах определенного типа. К таким устройствам относятся: люминесцентные лампы, экраны телеприемников, мониторы компьютеров, счетчики квантов, рентгеновские усиливающие экраны и т.д.

Эти приборы должны по своим характеристикам удовлетворять определенным требованиям или стандартам, в том числе требованиям по светотехническим параметрам. Для достижения параметров прибора необходимо применять люминофоры с требуемым набором свойств, и, следовательно, предъявлять к люминофорам специальные требования.

Такие технические требования разрабатываются изготовителями приборов и в обязательном порядке согласовываются с изготовителем люминофоров. Они фиксируются в документе, который называется «Технические условия».

Рассмотрим наиболее важные и применяемые из них.

Экраны телеприемников, люминесцентные лампы или другое устройство должны иметь хорошие яркость, цвет, четкость изображения. Эти параметры устройства определяются конструкцией прибора и, в большей степени, свойствами люминофора

Одним из основных параметров является яркость свечения. Люминофор преобразует энергию с каким-то коэффициентом полезного действия. Доля поглощенной мощности, выделяемая в виде света, называется энергетическим выходом или эффективностью. Отношение величины излучаемого светового потока к падающей на него мощности называется светоотдачей люминофора. Она измеряется в люменах/Ватт (lm/W).

В случае фотолюминесценции мощность, поглощаемую и излучаемую люминофором можно выразить числом фотонов или квантов света. Отношение числа квантов света излучаемых в единицу времени к числу поглощенных за это время квантов называется квантовым выходом люминесценции. Энергия испускаемого кванта, как правило, всегда меньше энергии поглощаемого кванта (правило Стокса). Следовательно, излучение всегда находится в более длинноволновой области спектра, чем поглощение. Так как в реальных кристаллах излучение и поглощение не монохроматично, то возможно перекрытие длинноволновой части спектра поглощения и коротковолновой части спектра излучения. Однако, среднее значение энергии поглощения всегда выше среднего значения энергии люминесценции.


Основным энергетическим параметром технических условий является относительная яркость или интенсивность люминесценции . Это яркость или интенсивность испытуемого образца, измеренная относительно стандартного образца. При этом потребитель и изготовитель люминофора имеют одинаковые стандартный образец, методику испытаний и аппаратуру для проведения испытаний.

Цвет люминесценции определяется спектральным составом излучения. Спектральный состав описывается зависимостью спектральной плотности излучения от длин волны, либо от энергии фотона. В технические условия вносят такие спектральные параметры как положение максимума длины волны излучения, полуширину максимума излучения или определенную интенсивность излучения при фиксированных длинах волн.

Для некоторых типов приборов необходимо достижение определенных кинетических характеристик люминесценции: время спада интенсивности излучения до определенного уровня, или время возрастания интенсивности излучения до определенного уровня. В технические условия к таким люмиофорам вводится параметр «послесвечение» - время спада интенсивности излучения до определенного уровня.

Кроме уже рассмотренных параметров есть еще ряд параметров, необходимость введения которых, обусловлена требованиями к прибору по контрастности и разрешающей способности экрана. К ним относятся требования к коэффициентам отражения люминофора при определенных длинах волн и требования к размеру частиц или гранулометрическому составу люминофоров. Способ нанесения люминофора на экран или подложку, способ изготовления устройства, условия эксплуатации люминофора в устройстве также приводят к необходимости введения дополнительных параметров в технические условия.

Пункт «гранулометрический состав » включает:

Средний размер частиц люминофора, мкм;

Массовая доля частиц размером менее D1мкм, % не более;

Массовая доля частиц размером менее D2 мкм, % не более.

Этот параметр определяется с учетом вида возбуждения, необходимой разрешающей способности и режимом работы экрана.

Параметр «седиментационный объем » - объем занимаемый единицей массы люминофора в суспензии определенного типа (см3/г).

Параметры «гидроемкость » или «маслоемкость » - количество воды или масла адсорбированных поверхностью единицы массы люминофора (мл/г).

Эти параметры характеризуют склонность частиц люминофора объединяться в объемные агломераты. Они также характеризуют склонность частиц люминофора к плотной и равномерной упаковке по поверхности подложки.

Параметр «потеря яркости » после отжига люминофора при определенной температуре (как правило 350-450 С) в вакууме, на воздухе или смеси газов, обусловлен технологией изготовления устройства.

Необходимость введения параметра «отсутствие посторонних включений и частиц светящихся иным цветом » в ТУ практически всех люминофоров очевидна.

1.5 Основные операции синтеза люминофоров .

Как мы уже знаем, люминофоры являются веществами, оптические свойства которых чрезвычайно сильно зависят от наличия примесных и собственных дефектов. Поэтому для достижения заданных светотехнических параметров необходимо тщательное соблюдение режимов технологических операций при синтезе люминофоров и использование сырья и вспомогательных материалов с малым содержанием примесей.

Помещения должны быть чистыми. Они имеют систему приточной и вытяжной вентиляции. Воздух, поступающий из приточной системы очищен от пыли.

Технологическое оборудование, например, реакторы, выпарные чаши, не должно быть источником загрязнения. Оно изготавливается из химически стойких сортов стали. Применяется футеровка эмалью или тефлоном. Термическое оборудование также не должно являться источником примесей, поэтому нагреватели и внутренняя футеровка печей, сушильных аппаратов изготавливаются из материалов устойчивых к воздействию высоких температур и компонентов газовой среды (атмосферы), в которой идет термообработка.

Одним из основных компонентов в производстве люминофоров является вода. К ней предъявляются жесткие требования по содержанию примесей. Например, массовая доля ионов железа не должна превышать величину 1*10 -6 %, меди – 1*10 -6 %, никеля – 1*10 -6 %, кобальта – 5*10 -6 %, органических веществ - 1*10 -2 %. Удельное электрическое сопротивление должно быть не менее 18 Мом. Для получения такой чистой воды применяются специальные методы очистки: ультрафильтрация, обратный осмос, электродиализ, дистилляция, очистка в ионообменных колоннах.

Применяемое сырье (исходные материалы) также должно быть чистым. Как правило, в производстве люминофоров используют реактивы следующих квалификаций:

Особочистые (ос.ч),

Химически чистые для люминофоров (хч/дл),

Химически чистые (х/ч),

Чистые для анализа (ч.д.а.).

Реактивы более низкой квалификации должны подвергаться дополнительной очистке.

Рассмотрим последовательность технологических операций или технологических стадий, применяемых в производстве люминофоров.

1. Подготовка основных и вспомогательных материалов и оборудования. Эта стадия включает: уборку помещения, промывку и очистку оборудования, выбор исходных материалов требуемой квалификации.

2. Приготовление растворов. На этой стадии изготавливаются растворы тех реактивов, которые применяются в жидком виде. Как правила это растворы активатора, соактиватора, плавней (минерализаторов) или основных материалов. На этой стадии возможна доочистка материалов, например методами перекристаллизации, экстракции или фильтрации.

3. Осаждение или соосаждение. На этой стадии из растворов получают, например, оксалаты, сульфиды, гидроксиды, фторида или фосфаты материалов, которые являются основой люминофора. В случае соосаждения полученные полуфабрикаты в своем составе содержат и активатор. В ходе выполнения контролируется полнота осаждения.

4. Приготовление шихты (смеси). Операция включает тщательное смешивание полуфабрикатов (полупродуктов), или исходных материалов, растворов активатора, минерализатора и сушку смеси, в том случае, если применяются растворы. Иногда эта операция заключается только в смешивании сухих материалов. На этой стадии смесь контролируется на соответствие рецептуре.

5. Подготовка шихты к термообработке . На этой стадии проводят взвешивание шихты или ее части, снаряжение (наполнение) тиглей, кювет, ампул или иных контейнеров шихтой и вспомогательными материалами, которые необходимы для создания требуемой среды (атмосферы) в процессе термообработки (прокаливания) шихты.

6. Термообработка (прокаливание) Эта операция проводится в печах при температурах, лежащих в диапазоне 750 -1800 С. На этой стадии контролируется температура, время (длительность) и состав газовой атмосферы.

7. Разбраковка. После охлаждения контейнера, в котором проводили прокалку, полученный материал – люминофор осматривают под УФ излучением и вручную удаляют посторонние включения или части прокаленной шихты, которые не светятся или светятся отличающимся от требуемого цветом.

8. Просев (мокрый просев ). Люминофор просевают через крупное сито из капроновой ткани для того, чтобы разрушить не прочные образования – комки. Эта операция облегчает удаление минерализатора на следующей стадии.

9. Отмывка. На этой стадии осуществляется удаление минерализаторов (плавней) из состава люминофора. Как правило для отмывки используют дистиллированную или деионизованную воду, иногда органические растворители – этиловый спирт, ацетон, октан и т.п. Отмывку проводят в реакторах с мешалкой. Перемешивают не менее 20 – 30 минут, затем дают осесть твердой части суспензии. Промывочную жидкость декантируют. Операцию повторяют 3 – 5 раз. На этой стадии контролируется рН суспензии и иногда, концентрация некоторых элементов.

10. Дезагрегация. Целью операции является разрушение агломератов, которые образовались при прокаливании люминофора. Операцию проводят в реакторе с мешалкой. К суспензии люминофора в воде при перемешивании добавляют поверхностно-активное вещество (ПАВ), - соединение обладающее создавать на поверхности частиц люминофора заряд. Частицы, образующие агломерат, отталкиваются друг от друга за счет возникновения потенциала на поверхности. Одноименный заряд на поверхности частиц препятствует образованию повторных агломератов. При этом на люминофор оказывают и механическое воздействие различными способами. Наиболее распространенным способом является перемешивание суспензии, в которую помимо ПАВ добавлены шары из легкого материала, например, полиметилметакрилата. Механическое разрушение агломератов в суспензии может осуществляться также воздействием ультразвука с частотой 18-20 кГц, либо путем пропускания суспензии через распылительную форсунку. После проведения дезагрегации проводят отмывку суспензии от избытка ПАВ путем 2-3-х кратной отмывки деионизованной водой. На этой стадии контролируется параметр «Седиментационный объем». Чем он меньше, тем успешнее прошла дезагрегация.

11. Классификация или разделение частиц по размерам. Цель операции – удаление частиц с размером больше или меньше заданного. Операция проводится несколькими методами. Наиболее простой метод – просев через сито с заданным размером отверстий. Частицы требуемого размера можно выделить методом седиментации – осаждения. Водную суспензию перемешивают, затем останавливают мешалку, и дают осесть части суспензии. Частицы большего размера оседают на дно реактора в первую очередь. Частицы, которые не осели, передаются в другой реактор. Разделение частиц по размерам можно проводить в восходящем потоке жидкости или газа. Для разделения частиц по размерам также применяют и гидроциклон. Контролируемый параметр – гранулометрический состав.

12. Модифицирование поверхности. Цель операции – нанесение на поверхность частиц люминофора модифицирующего покрытия, которое решает задачи повышения термостойкости, гидролитической устойчивости, уменьшения повторной агломерации люминофора, увеличения срока службы люминофора в приборах. Для этого на поверхность частиц наносят тонкий слой соединения имеющего, например, высокую температуру плавления. Это могут быть силикаты, алюминаты металлов. Как разновидность модифицирования для люминофоров неустойчивых к воздействию влаги применяют капсулирование – нанесение на поверхность частиц сплошного слоя, например легкоплавкого стекла.

13. Отмывка. В том случае, если модифицирование проводили в суспензии, люминофор отмывают от избытка компонентов модифицирующего покрытия деионизованной водой или какой-либо другой жидкостью.

14. Фильтрация. Частицы люминофора отделяют от жидкости с применением нутч-фильтров, барабанных вакуумных фильтров, центробежных фильтров.

15. Сушка. Люминофор сушат при 80-150 С с применением сушильных шкафов, вращающихся сушильных печей, вакуумных сушилок.

Cтраница 1


Люминофор типа Р15 оказывается малопригодным вследствие особенностей его характеристики спадания послесвечения.  

Пластмассовые люминофоры типа Р - терфинила можно изготовить сколь угодно больших объемов, но они имеют низкую плотность и малый средний атомный номер, а следовательно, пониженную эффективность.  

У люминофоров рекомбинационного типа зависимость между интенсивно-стями излучения и возбуждения является более сложной [ 4, с. Последнее обусловлено тем, что при возбуждении подобных люминофоров центры свечения и элементы решетки основы ионизуются. При этом электроны могут захватываться ловушками, освобождаться и рекомбинировать с центрами свечения, дырками или повторно захватываться ловушками.  

Кроме вышеуказанных, был также исследован люминофор типа Ferrarti L-3. Этот люминофор имеет очень хорошую кривую послесвечения - в виде прямоугольной гистерезисной петли. Такая характеристика позволяет получать свободные от мельканий изображения при очень низкой частоте обновления изображений. Так, например, свободные от мельканий изображения наблюдались при частоте обновления 8 гц. Главным недостатком люминофора L-3 является его склонность к выгоранию при низкой плотности мощности. Несмотря на большое увеличение времени послесвечения, частота обновления, требуемая для получения свободных от мельканий изображений, изменилась незначительно.  

По выключении возбуждающего света затухание свечения люминофоров рекомбинационного типа носит сложный характер [ 2, с. После возбуждения электрон покидает центр свечения и может либо рекомби-нировать с каким-нибудь ионизованным центром, либо быть захваченным ловушкой. Послесвечение обусловлено тем, что электроны могут теплом освобождаться пз ловушек и рекомбинировать с ионизованными центрами до тех пор, пока не опустошатся все ловушки. Следует отметить, что послесвечение у таких люминофоров как ZnS - Cu, ZnS - Си - Со, SrS - Си - Bi может длиться часами после выключения возбуждения.  

В цветной трубке Гудмана проволочные индикаторные полоски предложено заменить люминофором типа Р-16 , дающим ультрафиолетовое излучение. В таком варианте трубки сцинтиллятор не требуется: ультрафиалетовое излучение просто проходит через световод и детектируется.  

Перечень наиболее известных люминофоров и их общих характеристик дан в табл. 8.1. Из этой группы люминофоров наиболее полно были изучены люминофоры типов Р-1 , Р-7 А, P - 7N, Р-19, Р-25, Р-26 и Р-31. Последний люминофор Р-31 (зеленый) в таблицу не включен.  

За последние годы во Всесоюзном научно-исследовательском светотехническом институте (ВНИСИ) в ряде разработок ламп, обладающих высокой световой отдачей и обеспечивающих хорошую цветопередачу, используется ортофосфатный люминофор типа Л-42 ДН.  

Цвет является важным фактором повышения информационной емкости индикаторов. Практически используются двухцветные экраны типа Е, состоящие из перемещающихся полосок люминофора типов Д и С.  

Многие частные вопросы, например, такие, как природа центров свечения самоактивированных люминофоров типа CaWO4 и MgWCU, еще ждут своего решения. Некоторые из господствующих в настоящее время взглядов будут, видимо, постепенно в той или иной мере видоизменяться. Ознакомление будущих специалистов с этими представлениями, с их экспериментальным и логическим обоснованием и составляет задачу дайной книги.  


Необходимость поиска новой более эффективной зеленой компоненты возникла лишь в связи с разработкой эффективных красных люминофоров редкоземельного типа, в результате чего для получения белого цвета в трехцветных приемных трубках большая часть тока луча стала приходиться на зеленый люминофор. Поэтому были исследованы люминофоры, полученные путем активации YVO4 и YP04 этими элементами.  

Скважинная измерительная установка метода ННМ-НТ отличается от скважинного прибора ННМ-Т счетчиками регистрируемых частиц. Индикаторами иадтепловых нейтронов служат пропорциональные борфтористые газоразрядные счетчики и сцинтилляционные счетчики тепловых нейтронов (люминофоры типа ЛДН), окруженные снаружи парафин-кадмиевым или парафин-борным фильтром. Принцип работы таких счетчиков состоит в следующем. Из окружающей среды на скважшгаый прибор поступают нейтроны тепловых и лад-тепловых энергий.  


Фотоэлектрояные умножители монохромных и цветных систем с разверткой бегущим лучом должны иметь конструкцию, обеспечивающую попадание максимального количества света на них и высокую чувствительность. Спектральная чувствительность фотоумножителя должна быть согласована с падающим на него светом. В монохромной системе с люминофором типа Р16 фотоумножитель должен иметь максимальную чувствительность в ультрафиолетовой области, а баллон его должен быть сделан из стекла, пропускающего ультрафиолетовые лучи. В цветных системах спектральные характеристики красного, синего и зеленого фотоумножителей должны быть согласованы со спектром падающего на каждый из них света. Особенно критичным является согласование характеристик фотоумножителя красного канала, так как люминофоры, обычно применяемые в системах с разверткой бегущим лучом, излучают недостаточно энергии в красной области спектра.  

φορός - несущий) - вещество, способное преобразовывать поглощаемую им энергию в световое излучение (люминесцировать).

Основные сведения

По химической природе люминофоры разделяются на неорганические (фосфо ́ры), большинство из которых относится к кристаллофосфо ́рам, и органические (органолюминофоры). Свечение неорганических люминофоров (кристаллофосфо ́ров) обусловлено в большинстве случаев присутствием посторонних катионов , содержащихся в малых количествах (от 2 % до 0,0001 %).

) обычно являются ионами металлов; например, свечение сульфида цинка активируется ионом меди . Неорганические люминофоры применяют в люминесцентных лампах , электронно-лучевых трубках , для изготовления рентгеновских экранов, служат индикаторами радиации и др. Органические люминофоры (люмогены) применяют для изготовления ярких флуоресцентных красок, текстиля, пластмасс, украшений, типографии, полимерной глины, обоев, тату пигментов, косметики, люминесцирующих материалов, используют в чувствительном люминесцентном анализе в химии , биологии , медицине и криминалистике .

Разновидности

Существует несколько разновидностей люминофоров. Из них стоит выделить следующие:

  1. Фотолюминофоры - разновидность люминофоров, которые обладают свойствами сохранения накопленной энергии при возбуждении, и её отдачи, с обладанием собственного послесвечения какой-либо продолжительности после прекращения возбуждения в виде светового излучения в видимой, ультрафиолетовой или инфракрасной зоне.

См. также

Напишите отзыв о статье "Люминофор"

Примечания

Литература

  • Жиров Н. Ф. Люминофоры. - М .: Гос. изд-во оборонной пром-ти, . - 480 с.
  • Казанкин О.Н., Марковский Л.Я., Миронов И.А. . - 1975. - 192 с.

Отрывок, характеризующий Люминофор

Николай с удивлением смотрел на ее лицо. Это было то же лицо, которое он видел прежде, то же было в нем общее выражение тонкой, внутренней, духовной работы; но теперь оно было совершенно иначе освещено. Трогательное выражение печали, мольбы и надежды было на нем. Как и прежде бывало с Николаем в ее присутствии, он, не дожидаясь совета губернаторши подойти к ней, не спрашивая себя, хорошо ли, прилично ли или нет будет его обращение к ней здесь, в церкви, подошел к ней и сказал, что он слышал о ее горе и всей душой соболезнует ему. Едва только она услыхала его голос, как вдруг яркий свет загорелся в ее лице, освещая в одно и то же время и печаль ее, и радость.
– Я одно хотел вам сказать, княжна, – сказал Ростов, – это то, что ежели бы князь Андрей Николаевич не был бы жив, то, как полковой командир, в газетах это сейчас было бы объявлено.
Княжна смотрела на него, не понимая его слов, но радуясь выражению сочувствующего страдания, которое было в его лице.
– И я столько примеров знаю, что рана осколком (в газетах сказано гранатой) бывает или смертельна сейчас же, или, напротив, очень легкая, – говорил Николай. – Надо надеяться на лучшее, и я уверен…
Княжна Марья перебила его.
– О, это было бы так ужа… – начала она и, не договорив от волнения, грациозным движением (как и все, что она делала при нем) наклонив голову и благодарно взглянув на него, пошла за теткой.
Вечером этого дня Николай никуда не поехал в гости и остался дома, с тем чтобы покончить некоторые счеты с продавцами лошадей. Когда он покончил дела, было уже поздно, чтобы ехать куда нибудь, но было еще рано, чтобы ложиться спать, и Николай долго один ходил взад и вперед по комнате, обдумывая свою жизнь, что с ним редко случалось.
Княжна Марья произвела на него приятное впечатление под Смоленском. То, что он встретил ее тогда в таких особенных условиях, и то, что именно на нее одно время его мать указывала ему как на богатую партию, сделали то, что он обратил на нее особенное внимание. В Воронеже, во время его посещения, впечатление это было не только приятное, но сильное. Николай был поражен той особенной, нравственной красотой, которую он в этот раз заметил в ней. Однако он собирался уезжать, и ему в голову не приходило пожалеть о том, что уезжая из Воронежа, он лишается случая видеть княжну. Но нынешняя встреча с княжной Марьей в церкви (Николай чувствовал это) засела ему глубже в сердце, чем он это предвидел, и глубже, чем он желал для своего спокойствия. Это бледное, тонкое, печальное лицо, этот лучистый взгляд, эти тихие, грациозные движения и главное – эта глубокая и нежная печаль, выражавшаяся во всех чертах ее, тревожили его и требовали его участия. В мужчинах Ростов терпеть не мог видеть выражение высшей, духовной жизни (оттого он не любил князя Андрея), он презрительно называл это философией, мечтательностью; но в княжне Марье, именно в этой печали, выказывавшей всю глубину этого чуждого для Николая духовного мира, он чувствовал неотразимую привлекательность.