Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона). Уравнение Клапейрона — Менделеева

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

В этом разделе мы знакомимся с уравнением состояния идеального газа.

Эксперименты показали, что при условиях не слишком отличающихся от нормальных (температура порядка сотен кельвинов, давление порядка одной атмосферы) свойства реальных газов близки к свойствам идеального газа.

Пример. На примере водяного пара покажем, что при обычных условиях свойства реальных газов близки к свойствам идеального. По таблице Менделеева можно определить массу моля Н 2 0 :

Плотность воды в жидком состоянии

Отсюда можно найти объем одного моля воды:

Один моль любого вещества содержит одно и то же число молекул (число Авогадро):

Получаем отсюда объем V 1 , приходящийся на одну молекулу воды:

В конденсированном состоянии молекулы располагаются вплотную друг к другу, то есть в сущности V 1 есть объем молекулы воды, откуда следует оценка ее линейного размера (диаметра):

С другой стороны, известно, что объем V m одного моля любого газа при нормальных условиях равен

Поэтому на одну молекулу водяного пара приходится объем

Это значит, что газ можно нарезать мысленно на кубики с длиной ребра

и в каждом таком кубике окажется одна молекула. Иными словами, L - среднее расстояние между молекулами водяного пара. Мы видим, что L на порядок превосходит размер D молекулы. Аналогичные оценки получаются и для других газов, так что с хорошей точностью можно считать, что молекулы не взаимодействуют друг с другом, и при нормальных условиях газ идеален.

Как уже говорилось, уравнение состояния, имеющее вид, позволяет выразить один термодинамический параметр через два других. Конкретный вид этого уравнения зависит от того, какое вещество и в каком агрегатном состоянии рассматривается. Уравнение состояния идеального газа объединяет ряд экспериментально установленных частных газовых законов. Каждый из них описывает поведение газа при условии, что изменяются лишь два параметра.

1. Закон Бойля - Мариотта . Описывает процесс в идеальном газе при постоянной температуре.

Изотермический процесс - это термодинамический процесс, протекающий при постоянной температуре.

Закон Бойля - Мариотта гласит:

Для данной массы газа при постоянной температуре Т = const произведение давления газа на занимаемый им объем является постоянной величиной

Графически изотермический процесс в различных координатах изображен на рис. 1.7.

Рис.1.7. Изотермический процесс в идеальном газе: 1 - в координатах p V ; 2 - в координатах p - T ; 3 - в координатах T V

Показанные на рис. 1.7-1 кривые представляют собой гиперболы

располагающиеся тем выше, чем выше температура газа.

Экспериментальное исследование закона Бойля - Мариотта можно выполнить с помощью установки, показанной на рис. 1.8. В цилиндре, находящемся при постоянной температуре (что видно из показаний термометра), при перемещении поршня изменяется объем газа. Давление газа измеряется с помощью манометра. Результаты измерений давления и объема газа представляются на диаграмме p = p (V ) .

Рис. 1.8. Экспериментальное изучение изотермического процесса в газе

2. Закон Гей-Люссака. Описывает тепловое расширение идеального газа при постоянном давлении.

Закон Гей-Люссака гласит:

Объем данной массы определенного газа при постоянном давлении пропорционален его абсолютной температуре

Графически изобарный процесс в различных координатах показан на рис. 1.9.

Рис. 1.9. Изобарный процесс в газе: 1 - в координатах p – V; 2 - в координатах V – T; 3 - в координатах P – T

Экспериментальное изучение закона Гей-Люссака можно выполнить с помощью установки, показанной на рис. 1.10. В цилиндре газ нагревается с помощью горелки. Давление газа в процессе нагревания остается неизменным, что видно из показаний манометра. Температура газа измеряется с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме V = V(Т) .

Рис. 1.10. Экспериментальное изучение изобарного процесса в газе

3. Закон Шарля. Описывает изменение давления идеального газа с ростом температуры при постоянном объеме.

Изохорный процесс - это процесс, протекающий при постоянном объеме.

Закон Шарля гласит:

Давление данной массы определенного газа при постоянном объеме пропорционально термодинамической температуре

Графически изохорный процесс в различных координатах показан на рис. 1.11.


Рис.1.11. Изохорный процесс в газе: 1 - в координатах p – V; 2 - в координатах p – T; 3 - в координатах V – T

Экспериментальное исследование закона Шарля можно выполнить с помощью установки, показанной на рис. 1.12. В цилиндре газ занимает постоянный объем (поршень неподвижен). При нагревании давление газа увеличивается, а при охлаждении уменьшается. Величина давления измеряется с помощью манометра, а температура газа - с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме p=p(Т) .

Рис. 1.12. Экспериментальное изучение изохорного процесса в газе

Если объединить рассмотренные частные газовые законы, то получим уравнение состояния идеального газа (для одного моля)

(1.5)

в которое входит универсальная газовая постоянная R = 8,31 Дж/(моль· К). При одних и тех же значениях объема и температуры системы давление газа пропорционально числу молей вещества

Поэтому для произвольной массы газа m уравнение состояния идеального газа (1.6) примет вид

(1.6)

Это уравнение называют уравнением Клапейрона - Менделеева.

Дополнительная информация:

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. – стр. 162–166, - сводная таблица свойств всевозможных изопроцессов с идеальным газом;

http://kvant.mirror1.mccme.ru/1990/08/gazovye_zakony_i_mehanicheskoe.htm - журнал Квант, 1990 г. № 8, стр. 73–76, Д. Александров, Газовые законы и механическое равновесие;

http://www.alleng.ru/d/phys/phys62.htm - Тульчинский М.Е. Качественные задачи по физике, Изд. Просвещение, 1972 г.; задачи № 489, 522, 551 на законы идеального газа;

http://marklv.narod.ru/mkt/str4.htm - школьный урок с картинками по модели идеального газа;

http://marklv.narod.ru/mkt/str7.htm - школьный урок с картинками по изопроцессам с идеальным газом.

Как уже указывалось, состояние некоторой массы определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния .

Французский физик Б.Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта и Гей-Люссака.

1) изотермического (изотерма 1-1¢),

2) изохорного (изохора 1¢-2).

В соответствии с законами Бойля-Мариотта (1.1) и Гей-Люссака (1.4) запишем:

(1.5)

Исключив из уравнений (1.5) и (1.6) p 1 " , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина остается постоянной, т.е.

. (1.7)
Выражение (1.7) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д.И.Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.7) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная В будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной . Уравнению

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа , называемым также уравнением Менделеева-Клапейрона .

Числовое значение молярной газовой постоянной определим из формулы (1.8), полагая, что моль газа находится при нормальных условиях (р 0 =1,013×10 5 Па, Т 0 =273,15 К, V m =22,41×10 -3 м 3 /моль): R=8,31 Дж/(моль К).

От уравнения (1.8) для моля газа можно перейти к уравнению Клапейрона-Менделеева для произвольной массы газа. Если при некотором заданном давлении и температуре один моль газа занимает объем V m , то при тех же условиях масса m газа займет объем , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона-Менделеева для массы m газа

, (1.9)

где - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана :

.

Исходя из этого, уравнение состояния (1.8) запишем в виде

,

где - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

р=nkT (1.10)
следует, что давление идеального газа при данной температуре прямо пропор-ционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмидта :

.

Основное уравнение молекулярно-кинетической

Теории идеальных газов

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между ними пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис.50) и вычислим давление, оказываемое на эту площадку.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой Dt (рис. 50).

Число этих молекул равно nDSDt (n-концентрация молекул). Необходимо, однако, учитывать, что реально молекулы движутся к площадке DS под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина (1/6) движется вдоль данного направления в одну сторону, половина- в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6nDS Dt. При столкновении с площадкой эти молекулы передадут ей импульс

Берём формулу и подставляем в неё . Получаем:

p = nkT.

Вспомним теперь, что A , где ν - число молей газа:

,

pV = νRT. (3)

Соотношение (3) называется уравнением Менделеева - Клапейрона . Оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа - давления, объёма и температуры. Поэтому уравнение Менделеева - Клапейрона называется ещё уравнением состояния идеального газа .

Учитывая, что , где m - масса газа, получим другую форму уравнения Менделеева - Клапейрона:

(4)

Есть ещё один полезный вариант этого уравнения. Поделим обе части на V :

Но - плотность газа. Отсюда

(5)

В задачах по физике активно используются все три формы записи (3)-(5).

Изопроцессы

На протяжении этого раздела мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

µ = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением , объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.

2. Изобарный процесс идёт при постоянном давлении газа: p = const.

3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

При изотермическом процессе температура газа постоянна. В ходе процесса меняются только давление газа и его объём.



Установим связь между давлением p и объёмом V газа в изотермическом процессе. Пусть температура газа равна T . Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p 1 ,V 1 ,T , а во втором - p 2 ,V 2 ,T . Эти значения связаны уравнением Менделеева - Клапейрона:

Как мы сказали с самого начала, масса газа m и его молярная масса µ предполагаются неизменными. Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части: p 1V 1 = p 2V 2.

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

pV = const.

Данное утверждение называется законом Бойля - Мариотта . Записав закон Бойля - Мариотта в виде

p = ,

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

§2 Уравнение Менделеева-Клапейрона

Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объёмом и т.д.

Величины p , V , T и др. характеризующие состояние системы, называются параметрами состояния.

Если какой-либо из параметров меняется внутри системы от точки к точке, то такое состояние называется неравновесным . Если параметры системы во всех точках одинаковы при неизменных внешних условиях, то такое состояние называется равновесным .

Всякий процесс, т.е. переход системы из одного состояния в другое связанно с нарушением равновесия системы. Однако бесконечно медленный процесс будет состоять из последовательности равновесных состояний. Такой процесс называется равновесным . При достаточно медленном протекании реальные процессы могут приближаться к равновесному. Равновесный процесс является обратимым, т.е. система переходит из состояния 1 в состояние 2 и обратно 2 - 1, пр о ходя через одни и те же промежуточные состояния.

Процесс, при котором система, пройдя ряд промежуточных состояний, возвращается в исходное состояние, называется круговым процессом или циклом : процесс 1-2-3-4-1 на рисунке.

Связь между параметрами состояния называется уравнением состояния : f (p , V , T )=0

Клапейрон, используя законы Бойля-Мариотта и Шарля вывел уравнение состояния идеального газа.

1 - 1’: T = const - закон Бойля - Мариотта: p 1 V 1 = p 1 ’ V 2 ;

1’ - 2: V = const - закон Шарля:

т.к. состояния 1и 2 выбраны произвольно, то для данной массы газа величина остается постоянной

- уравнение Клапейрона

В- газовая постоянная, различая для различных газов.

Менделеев объединил уравнение Клапейрона с законом Авогадро

() V m - молярный объём

Уравнение Менделеева-Клапейрона

R - универсальная (молярная) газовая постоянная.

p = const; ;

Физический смысл R : численно равна работе, совершаемой газом при изобарическом (p = const ) нагревании одного моля газа () на один Кельвин (?Т=1 К)

Введем постоянную Больцмана

тогда

p = n k T

p - давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых p и T все газы содержат в единице объёма одинаковое число молекул.

n - концентрация молекул (число молекул в единице объёма). Число молекул, содержащихся при нормальных условиях в 1 м 3 называется числом Лошмидта

§3 Основное уравнение молекулярно-кинетической теории (м.к.т.) газов.

При беспорядочном движении частицы газа сталкиваются между собой и со стенками сосуда. Механическое действие этих ударов о стенки сосуда воспринимается как давление на стенки. Выделим на стенке сосуда некую элементарную площадку ΔS и найдем давление, оказываемое на эту площадку.

Импульс, получаемый рассматриваемой стенкой, в результате удара одной молекулы будет равен

m 0 - масса одной молекулы