Удельный показатель преломления. От чего зависит показатель преломления вещества

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ (преломления коэффициент) - оптич. характеристика среды, связанная с преломлением света на границе раздела двух прозрачных оптически однородных и изотропных сред при переходе его из одной среды в другую и обусловленная различием фазовых скоростей распространения света и в средах. Величина П. п., равная отношению этих скоростейназ. относительным

П. п. этих сред. Если свет падает на вторую пли первую среду из (где скорость распространения света с) , то величинынназ. абсолютными П. п. данных сред. При этом а закон преломления может быть записан в виде где и- углы падения и преломления.

Величина абсолютного П. п. зависит от природы и строения вещества, его агрегатного состояния, темп-ры, давления и др. При больших интенсивностях П. п. зависит от интенсивности света (см. Нелинейная оптика) . У ряда веществ П. п. изменяется под действием внеш. электрич. поля (Керра эффект - в жидкостях и газах; электрооптич. Поккельса эффект - в кристаллах).

Для данной среды П. п. зависит от длины волны света l, причём в области полос поглощения эта зависимость носит аномальный характер (см. Дисперсия света ).В рентг. области П. п. практически для всех сред близок к 1, в видимой области для жидкостей и твёрдых тел - порядка 1,5; в ИК-области для ряда прозрачных сред 4,0 (для Ge).

Характеризуются двумя П. п.: обыкновенным (аналогично изотропным средам) и - необыкновенным, величина к-рого зависит от угла падения луча и, следовательно, направления распространения света в среде (см. Кристаллооптика ).Для сред, обладающих поглощением (в частности, для металлов), П. п. является комплексной величиной и может быть представлен в виде где га - обычный П. п., - показатель поглощения (см. Поглощение света, Металлооптика) .

П. п. является макроскопич. характеристикой среды и связан с её диэлектрической проницаемостью н магн. проницаемостью Классич. электронная теория (см. Дисперсия света )позволяет связать величину П. п. с микроскопич. характеристиками среды - электронной поляризуемостью атома (или молекулы) зависящей от природы атомов и частоты света, и среды: где N - число атомов в единице объёма. Действующее на атом (молекулу) электрич. полесветовой волны вызывает смещение оптич. электрона из положения равновесия; атом приобретает индуциров. дипольный момент изменяющийся во времени с частотой падающего света, и является источником вторичных когерентных волн, к-рые. интерферируя с падающей на среду волной, образуют результирующую световую волну, распространяющуюся в среде с фазовой скоростьюи потому

Интенсивность обычных (не лазерных) источников света относительно невелика, напряжённость электрич. полясветовой волны, действующего на атом, много меньше внутриатомных электрич. полей, и электрон в атоме можно рассматривать как гармонич. осциллятор. В этом приближении величина и П. п.

Являются величинами постоянными (на данной частоте), не зависящими от интенсивности света. В интенсивных световых потоках, создаваемых мощными лазерами, величина электрич. поля световой волны может быть соизмерима с внутриатомными элект-рич. полями и модель гармония, осциллятора оказывается неприемлемой. Учёт ангармоничности сил в системе электрон - атом приводит к зависимости поляризуемости атомаа следовательно и П. п., от интенсивности света. Связь межу иоказывается нелинейной; П. п. может быть представлен в виде

Где - П. п. при малых интенсивностях света; (обычно принятое обозначение) - нелинейная добавка к П. п., или коэф. нелинейности. П. п. зависит от природы среды, напр. для силикатных стёкол

На П. п. влияет высокая интенсивность ещё и в результате эффекта электрострикции , изменяющего плотность среды, высокочастотного для анизотропных молекул (в жидкости), а также в результате повышения темп-ры, вызванного поглощением

Эта статья раскрывает сущность такого понятия оптики, как показатель преломления. Приводятся формулы получения этой величины, дается краткий обзор применения явления преломления электромагнитной волны.

Способность видеть и показатель преломления

На заре зарождения цивилизации люди задавали вопросом: как видит глаз? Высказывались предположения, что человек испускает лучи, которые ощупывают окружающие предметы, или, наоборот, все вещи испускают такие лучи. Ответ на этот вопрос был дан в семнадцатом веке. Он содержится в оптике и связан с тем, что такое показатель преломления. Отражаясь от различных непрозрачных поверхностей и преломляясь на границе с прозрачными, свет дает человеку возможность видеть.

Свет и показатель преломления

Наша планета окутана светом Солнца. И именно с волновой природой фотонов связано такое понятие, как абсолютный показатель преломления. Распространяясь в вакууме, фотон не встречает препятствий. На планете свет встречает множество разных более плотных сред: атмосфера (смесь газов), вода, кристаллы. Будучи электромагнитной волной, фотоны света имеют в вакууме одну фазовую скорость (обозначается c ), а в среде - другую (обозначается v ). Соотношение первой и второй и является тем, что называют абсолютный показатель преломления. Формула выглядит так: n = c / v.

Фазовая скорость

Стоит дать определение фазовой скорости электромагнитной среды. Иначе понять, что такое показатель преломления n , нельзя. Фотон света - волна. Значит, его можно представить как пакет энергии, который колеблется (представьте отрезок синусоиды). Фаза - это тот отрезок синусоиды, который проходит волна в данный момент времени (напомним, что это важно для понимания такой величины, как показатель преломления).

Например, фазой может быть максимум синусоиды или какой-то отрезок ее склона. Фазовая скорость волны - это скорость, с которой движется конкретно эта фаза. Как поясняет определение показателя преломления, для вакуума и для среды эти величины различаются. Мало того, каждая среда обладает своим значением этой величины. Любое прозрачное соединение, каким бы ни был его состав, имеет показатель преломления, отличный от всех прочих веществ.

Абсолютный и относительный показатель преломления

Выше уже было показано, что абсолютная величина отсчитывается относительно вакуума. Однако с этим на нашей планете туго: свет чаще попадает на границу воздуха и воды или кварца и шпинели. Для каждой из этих сред, как уже было сказано выше, показатель преломления свой. В воздухе фотон света идет вдоль одного направления и имеет одну фазовую скорость (v 1), но, попадая в воду, меняет направление распространения и фазовую скорость (v 2). Однако оба эти направления лежат в одной плоскости. Это очень важно для понимания того, как формируется изображение окружающего мира на сетчатке глаза или на матрице фотоаппарата. Соотношение двух абсолютных величин дает относительный показатель преломления. Формула выглядит так: n 12 = v 1 / v 2 .

Но как же быть, если свет, наоборот, выходит из воды и попадает в воздух? Тогда эта величина будет определяться формулой n 21 = v 2 / v 1 . При перемножении относительных показателей преломления получаем n 21 * n 12 = (v 2 * v 1) / (v 1 * v 2) = 1. Это соотношение справедливо для любой пары сред. Относительный показатель преломления можно найти из синусов углов падения и преломления n 12 = sin Ɵ 1 / sin Ɵ 2 . Не стоит забывать, что углы отсчитывают от нормали к поверхности. Под нормалью подразумевается линия, перпендикулярная поверхности. То есть если в задаче дан угол α падения относительно самой поверхности, то надо считать синус от (90 - α).

Красота показателя преломления и его применение

В спокойный солнечный день на дне озера играют блики. Темно-синий лед покрывает скалу. На руке женщины бриллиант рассыпает тысячи искр. Эти явления - следствие того, что все границы прозрачных сред имеют относительный показатель преломления. Кроме эстетического наслаждения, это явление можно использовать и для практического применения.

Вот примеры:

  • Линза из стекла собирает пучок солнечного света и поджигает траву.
  • Лазерный луч фокусируется на больном органе и отрезает ненужную ткань.
  • Солнечный свет преломляется на древнем витраже, создавая особую атмосферу.
  • Микроскоп увеличивает изображение очень маленьких деталей
  • Линзы спектрофотометра собирают свет лазера, отраженный от поверхности изучаемого вещества. Таким образом, можно понять структуру, а потом и свойства новых материалов.
  • Существует даже проект фотонного компьютера, где передавать информацию будут не электроны, как сейчас, а фотоны. Для такого устройства однозначно потребуются преломляющие элементы.

Длина волны

Однако Солнце снабжает нас фотонами не только видимого спектра. Инфракрасные, ультрафиолетовые, рентгеновские диапазоны не воспринимаются человеческим зрением, но влияют на нашу жизнь. ИК-лучи согревают нас, УФ-фотоны ионизируют верхние слои атмосферы и дают возможность растениям с помощью фотосинтеза вырабатывать кислород.

И чему показатель преломления равен, зависит не только от веществ, между которыми пролегает граница, но и длине волны падающего излучения. О какой именно величине идет речь, обычно понятно из контекста. То есть если книга рассматривает рентген и его влияние на человека, то и n там определяется именно для этого диапазона. Но обычно подразумевается видимый спектр электромагнитных волн, если не указано нечто иное.

Показатель преломления и отражение

Как стало ясно из написанного выше, речь идет о прозрачных средах. В качестве примеров мы приводили воздух, воду, алмаз. Но как быть с деревом, гранитом, пластиком? Существует ли для них такое понятие, как показатель преломления? Ответ сложен, но в целом - да.

Прежде всего, следует учитывать, с каким именно светом мы имеем дело. Те среды, которые непрозрачны для видимых фотонов, прорезаются насквозь рентгеновским или гамма-излучением. То есть если бы мы все были суперменами, то весь мир вокруг был бы для нас прозрачен, но в разной степени. Например, стены из бетона были бы не плотнее желе, а металлическая арматура была бы похожа на кусочки более плотных фруктов.

Для других элементарных частиц, мюонов, наша планета вообще прозрачна насквозь. В свое время ученым доставило немало хлопот доказательство самого факта их существования. Мюоны миллионами пронзают нас каждую секунду, но вероятность столкновения хоть одной частицы с материей очень мала, и зафиксировать это очень сложно. Кстати, в скором времени Байкал станет местом «ловли» мюонов. Его глубокая и прозрачная вода подходит для этого идеально - особенно зимой. Главное, чтобы датчики не замерзли. Таким образом, показатель преломления бетона, например, для рентгеновских фотонов имеет смысл. Мало того, облучение вещества рентгеном - это один из наиболее точных и важных способов исследования строения кристаллов.

Также стоит помнить, что в математическом смысле непрозрачные для данного диапазона вещества обладают мнимым показателем преломления. И наконец, надо понимать, что температура вещества тоже может влиять на его прозрачность.

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Абсолютный показатель преломления зависит от марки стекла, так как на практике имеется огромное количество вариантов, отличающихся по составу и степени прозрачности. В среднем он составляет 1,5 и колеблется вокруг этого значения на 0,2 в ту или иную сторону. В редких случаях могут быть отклонения от этой цифры.

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

Относительный показатель для некоторых сред можно охарактеризовать так:

  • - показатель преломления стекла относительно воды составляет примерно 1,18;
  • - показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • - показатель преломления относительно спирта - 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Определить показатель преломления стекла на практике довольно сложно, потому что требуются высокоточные приборы для измерения начальных данных. Любая погрешность будет возрастать, так как при вычислении используются сложные формулы, требующие отсутствия ошибок.

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1. Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2. Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3. Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Преломления показатель

Показа́тель преломле́ния вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде . Также о показателе преломления иногда говорят для любых других волн, например, звуковых, хотя в таких случаях, как последний, определение, конечно, приходится как-то модифицировать.

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может еще более резко меняться в определенных областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Ссылки

  • RefractiveIndex.INFO база данных показателей преломления

Wikimedia Foundation . 2010 .

Смотреть что такое "Преломления показатель" в других словарях:

    Относительный двух сред n21, безразмерное отношение скоростей распространения оптического излучения (с в е т а) в первой (c1) и во второй (с2) средах: n21=с1/с2. В то же время относит. П. п. есть отношение синусов у г л а п а д е н и я j и у г л… … Физическая энциклопедия

    См. Показатель преломления …

    См. Показатель преломления. * * * ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ, см. Показатель преломления (см. ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ) … Энциклопедический словарь - ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ, величина, характеризующая среду и равная отношению скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Показатель преломления n зависит от диэлектрической e и магнитной m проницаемостей… … Иллюстрированный энциклопедический словарь

    - (см. ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    См. Преломления показатель … Большая советская энциклопедия

    Отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления 2 сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света по второй… … Большой Энциклопедический словарь