Средние величины. Сущность и значение средних величин в статистике. Виды средних величин

Лекция 5. Средние величины

Понятие средней величины в статистике

Средняя арифметическая и ее свойства

Другие виды степенных средних величин

Мода и медиана

Квартили и децили

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и крайне важно е, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Средняя величина (в статистике) – обобщающий показатель, характеризующий типичный размер или уровень общественных явлений в расчете на единицу совокупности при прочих равных условиях.

С помощью метода средних решаются следующие основные задачи :

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально - экономических явлений.

4. Анализ размещения социально-экономических явлений в пространстве.

Статистические средние рассчитываются на базе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). При этом статистическая средняя будет объективна и типична, в случае если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). К примеру, в случае если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величинœе признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. К примеру, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста͵ формы обслуживания, здоровья и т.д.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов базовых. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и данный признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всœестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом крайне важно располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

Средняя арифметическая;

Средняя геометрическая;

Средняя гармоническая;

Средняя квадратическая;

Средняя хронологическая.

Понятие средней величины в статистике - понятие и виды. Классификация и особенности категории "Понятие средней величины в статистике" 2017, 2018.

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

    средняя арифметическая;

    средняя геометрическая;

    средняя гармоническая;

    средняя квадратическая;

    средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической .

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то
.

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая.

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где
- начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Метод средних величин

3.1 Сущность и значение средних величин в статистике. Виды средних величин

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности. Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности . Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности

Общие принципы применения средних величин :

    необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя величина;

    при определении средней величины нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь исследуемых признаков, а также имеющиеся для расчета данные;

    средние величины должны рассчитываться по качественно однородным совокупностям, которые получают методом группировок, предполагающим расчёт системы обобщающих показателей;

    общие средние должны подкрепляться групповыми средними.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних :

1) степенные средние (средняя арифметическая, гармоническая, геометрическая, средняя квадратическая и кубическая);

2) структурные (непараметрические) средние (мода и медиана).

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаютсятеорией средних .

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Формулы расчёта средних величин представлены в таблице 3.1.

Таблица 3.1 – Формулы расчёта средних величин

Виды средних величин

Формулы расчёта

простая

взвешенная

1. Средняя арифметическая

2. Средняя гармоническая

3. Средняя геометрическая

4. Средняя квадратическая

Обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Очевидно, что различные средние выводятся из общей формулы степенной средней (3.1) :

, (3.1)

при k = + 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = +2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называются величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность; в связи с этим каждый вариант приходится умножать на эту численность. «Весами» при этом выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

В итоге правильный выбор средней величины предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

3.2 Средняя арифметическая и её свойства и техника исчисления. Средняя гармоническая

Средняя арифметическая – самый распространенный вид средней величины; она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Важнейшие свойства средней арифметической :

1. Произведение средней на сумму частот всегда равно сумме произведений вариант (отдельных значений) на частоты.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число.

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то новая средняя увеличится (уменьшится) во столько же раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частностями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину. Этот способ расчета средней арифметической называется способом расчета от условного нуля .

Средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000).

Средняя квадратическая применяется для измерения вариации признака в совокупности (расчета среднего квадратического отклонения).

В статистике действует правило мажорантности средних:

Х гарм. < Х геом. < Х арифм. < Х квадр. < Х куб.

3.3 Структурные средние величины (мода и медиана)

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду

Мода - наиболее типичное, чаще всего встречаемое значение признака. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды интервального ряда, необходимо использовать формулу (3.2)

(3.2)

где Х Мо - нижняя граница модального интервала; i Мо - величина модального интервала; f Мо - частота модального интервала; f Мо-1 - частота интервала, предшествующего модальному; f Мо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Медиана - значение варьирующего признака, приходящееся на середину ранжированной совокупности. Дляранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 6, 7, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. четвёртая величина - 6. Дляранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10)/2= 8,5.

Т. о., для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формулам (3.3):

(если частот нет)

N Me =
(если частоты есть) (3.3)

где n - число единиц в совокупности.

Численное значение медианы интервального ряда определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы обычно определяют по формуле (3.4)

(3.4)

где x Ме - нижняя граница медианного интервала; iМе - величина интервала; SМе -1 - накопленная частота интервала, которая предшествует медианному; fМе - частота медианного интервала.

Внутри найденного интервала расчет медианы производится также по формуле Ме = xl е, где второй множитель в правой части равенства показывает расположение медианы внутри медианного интервала, а х - длина этого интервала. Медиана делит вариационный ряд пополам по частотам. Определяют ещеквартили , которые делят вариационный ряд на 4 равновеликие по вероятности части, идецили , делящие ряд на 10 равновеликих частей.

Большое распространение в статистике имеют средние величины. Средняя величина - это обобщающий показатель, в котором находят отражение действия общих условий и закономерностей изучаемого явления.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней, определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное, позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Статистические средние рассчитываются на основе данных, правильно организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. При этом, обобщая общее свойство совокупности, средняя затушевывает (занижает) одни показатели и завышает другие.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т. д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков в целом, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Важнейшим условием научного использования средних величин в статистическом анализе общественных явлений является однородность совокупности , для которой исчисляется средняя. Одинаковая по форме и технике вычисления, средняя в одних условиях (для неоднородной совокупности) фиктивная, а в других (для однородной совокупности) соответствует действительности. Качественная однородность совокупности определяется на основе всестороннего теоретического анализа сущности явления.

Существуют различные виды средних в форме простoй или взвешенной:

  • средняя арифметическая
  • средняя геометрическая
  • средняя гармоническая
  • средняя квадратическая
  • средняя хронологическая
  • структурные средние (мода, медиана)

Для определения средних величин используются следующие формулы:

(кликабельно)

Правило мажорантности средних: чем выше показатель степени m, тем больше величина средней.

Средняя арифметическая величина обладает следующими свойствами:

  • Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.
  • Если все значения признака (х ) увеличить (уменьшить) в одно и то же число K раз, то средняя увеличится (уменьшится) в K раз.
  • Если все значения признака (x ) увеличить (уменьшить) на одно и то же число A , то средняя увеличится (уменьшится) на это же число А.
  • Если все значения весов (f ) увеличить или уменьшить в одно и то же число раз, то средняя не изменится.
  • Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной.

Одновременное использование некоторых свойств позволяют упростить расчет средней арифметической: можно из всех значений признака вычесть постоянную величину А, разности сократить на общий множитель K , а все веса f разделить на одно и то же число и, по измененным данным, рассчитать среднюю. Затем, если полученное значение средней умножить на K , а к произведению прибавить А , то получим искомое значение средней арифметической по формуле:

Полученная, таким образом, преобразованная средняя, называется моментом первого порядка , а вышеизложенный способ расчета средней — способом моментов , или отсчетом от условного нуля.

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины, в качестве значения признака в группах, принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака необходимо определять экспертным путем, исходя из сущности свойств признака и совокупности. При отсутствии возможности экспертной оценки, значения признака в открытых интервалах для нахождения недостающей границы открытого интервала, применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»). Иными словами — ширину (шаг) открытого интервала определяют по величине рядом стоящего интервала.

Средние статистические величины имеют несколько видов, но все они относятся к классу степенных средних, т. е. средних, построенных из различных степеней вариантов: средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая и т. д.

Общий вид формулы степенной средней таков:

где х - средняя определенной степени (читается «икс с чертой»); х - варианты (меняющиеся значения признака); п - число вариант (число единиц в совокупности); т - показатель степени средней величины; Z - знак суммирования.

При расчете различных степенных средних все основные показатели, на основе которых осуществляется этот расчет (х, п ), остаются неизменными. Меняется только величина т и соответственно х.

Если т = 2, то получается средняя квадратическая. Ее формула:

Если т = 1, то получается средняя арифметическая. Ее формула:

Если т = - 1, то получается средняя гармоническая. Ее формула:

Если т = 0, то получается средняя геометрическая. Ее формула:

Различные виды средних при одних и тех же исходных показателях (значении вариант х и их числе п ) имеют в связи с разными значениями степени далеко не одинаковые численные значения. Рассмотрим их на конкретных примерах.

Предположим, что в поселке N в 1995 г. было зарегистрировано три автотранспортных преступления, а в 1996 г. - шесть. В этом случае х х = 3, х 2 = 6, а п (число вариант, лет) в обоих случаях равно 2.

При значении степени т = 2 получаем среднюю квадратическую величину:


При значении степени т = 1 получаем среднюю арифметическую величину:

При значении степени т = 0 получаем среднюю геометрическую величину:

При значении степени т = - 1 получаем среднюю гармоническую величину:

Произведенные расчеты показали, что разные средние образуют между собой следующую цепь неравенства:

Закономерность проста: чем меньше степень средней (2; 1; 0; -1), тем меньше значение соответствующей средней. Таким образом, каждая средняя приведенного ряда мажорантна (от фр. majeur - больший) в отношении средних, стоящих справа от нее. Это называется правилом мажорантности средних.

В приведенных упрощенных примерах значения вариант (х) не повторялись: значение 3 встречалось один раз и значение 6 - тоже. Статистические реалии более сложны. Значения вариантов могут повторяться по нескольку раз. Вспомним обоснование выборочного метода на основе экспериментального извлечения карточек, пронумерованных от 1 до 10. Некоторые номера карточек извлекались по два, три, пять, восемь раз. При расчете среднего возраста осужденных, среднего срока наказания, среднего срока расследования или рассмотрения уголовных дел одна и та же варианта (х), например возраст 20 лет или мера наказания пять лет, может повторяться десятки и даже сотни раз, т. е. с той или иной частотой (/). В этом случае в общую и специальные формулы расчета средних вводится символ / - частота. Частоты при этом называют статистическими весами, или весами средней, а сама средняя называется взвешенной степенной средней. Это означает, что каждая варианта (возраст 25 лет) как бы взвешивается по частоте (40 человек), т. е. умножается на нее.

Итак, общая формула взвешенной степенной средней имеет вид:

где х - взвешенная средняя степени т х - варианты (меняющиеся значения признака); т - показатель степени средней; I - знак суммирования; / - частоты вариант.

Формулы других взвешенных средних будут иметь такой вид:

средняя квадратическая -

средняя арифметическая -

средняя геометрическая -

средняя гармоническая -

Выбор обычной средней или взвешенной определяется статистическим материалом, а выбор вида степенной (арифметической, геометрической и т. д.) - целью исследования. Вспомним, когда рассчитывался среднегодовой прирост абсолютных показателей, мы прибегали к средней арифметической, а когда исчисляли среднегодовые темпы прироста (снижения), то вынуждены были обращаться к средней геометрической, поскольку средняя арифметическая эту задачу выполнить не могла, так как приводила к ошибочным выводам.

В юридической статистике самое широкое применение находит средняя арифметическая. Она используется при оценке нагрузки оперативных работников, следователей, прокуроров, судей, адвокатов, других сотрудников юридических учреждений; расчете абсолютного прироста (снижения) преступности, уголовных и гражданских дел и других единиц измерения; обосновании выборочного наблюдения и т. д.

Средняя геометрическая величина используется при вычислении среднегодовых темпов прироста (снижения) юридически значимых явлений.

Средний квадратичный показатель (средний квадрат отклонения, среднеквадратическое отклонение) играет важную роль при измерении связей между изучаемыми явлениями и их причинами, при обосновании корреляционной зависимости.

Некоторые из этих средних, широко применяемых в юридической статистике, а также мода и медиана будут более подробно рассмотрены в последующих параграфах. Средняя гармоническая, средняя кубическая, средняя прогрессивная (изобретение советского времени) в юридической статистике практически не применяются. Средняя гармоническая, например, которая в предыдущих учебниках по судебной статистике подробно излагалась на абстрактных примерах, оспаривается видными экономическими статистиками. Они считают среднюю гармоническую обратной величиной средней арифметической, и поэтому она, по их мнению, не имеет самостоятельного значения, хотя другие статистики видят в ней определенные преимущества . Не вникая в теоретические споры экономических статистиков, скажем, что средняя гармоническая нами подробно не излагается ввиду неприменения в юридическом анализе.

Кроме обычных и взвешенных степенных средних для характеристики среднего значения варианты в вариационном ряду могут быть взяты не расчетные, а описательные средние: мода (наиболее часто встречающаяся варианта) и медиана (срединная варианта в вариационном ряду). Они широко применяются в юридической статистике.

  • См.: Остроумов С. С. Указ. соч. С. 177-180.
  • См.: Пасхавер И. С. Средние величины в статистике. М., 1979. С. 134-150; Ряузов Н. Н. Указ. соч. С. 171-174.