Ряды маклорена вычисления с погрешностью. Разложение функции в ряд тейлора, маклорена, лорана. Приближенное решение задачи Коши для обыкновенного

Рассмотрим задачу разложения некоторой функции в степенной ряд.

Пусть задана функция, имеющая на некотором отрезке производные всех порядков, тогда она разлагается на этом отрезке в ряд вида

который называется рядом Тейлора. Здесь-- заданное число.

Формально ряд Тейлора можно написать для всякой функции, которая в окрестности точки имеет производные любого порядка. Однако этот ряд будет сходиться к породившей ее функции только при тех значениях, при которых остаток ряда стремиться к нулю:

.

Остаток ряда Тейлора записывается в форме Лагранжа следующим образом:

,

где заключено междуи.

Если
, то получаем частный случай ряда Тейлора, который называетсярядом Маклорена:

Рассмотрим ряды Маклорена для некоторых элементарных функций.

данный ряд называется биномиальным, поскольку при натуральном
из него получается бином Ньютона.

Подчеркнем, что степенные ряды для функций сходятся к соответствующим функциям при
, а степенные ряды для функций
и
сходятся лишь при
.

Задача №1.
.

Решение. В качестве исходной формулы возьмем разложение в ряд Маклорена

функции
:

.

Заменим на:

Ответ:

Задача №2. Написать разложение в степенной ряд функции
.

Решение. Запишем биномиальный ряд

и сделаем в нем замену
:

По условию
, подставим это значение в предыдущую формулу:

Степенные ряды широко используются в приближенных вычислениях. Рассмотрим применение рядов Тейлора для приближенного вычисления значений функций, значений определенных интегралов и приближенного решения дифференциальных уравнений.

Задача №3. Вычислить

Решение . Для любогоимеет место формула:

.

При получим

Оценим погрешность вычислений с помощью остаточного члена в форме Лагранжа:

.

,

где лежит междуи.

При имеем

,

где
.

Учитывая, что
, получим

.

При

При

Таким образом, для достижения требуемой точности достаточно взять
(или более):

.

Каждое слагаемое вычислим с одним дополнительным знаком после запятой, чтобы к нашей ошибке не добавлялись ошибки от округления:

Ответ: с точностью 0,0001
.

Задача №4. Вычислить
приближенно с точностью 0,0001.

Решение. Для вычисления
будем использовать биномиальный ряд, который сходится только при
, поэтому сначала преобразуем данный корень:

.

В биномиальном ряде положим
:

Данный знакочередующийся числовой ряд является рядом Лейбница. Чтобы определить, сколько взять первых членов ряда для вычисления
с точностью 0,0001, вычислим последовательно несколько первых членов ряда:

Согласно свойству ряда Лейбница, если оставить первые три слагаемые, то ошибка искомого приближенного значения корня будет меньше
:

следовательно,

Ответ: с точностью 0,0001

от некоторой функции
, первообразная которой не вычисляется в элементарных функциях. Следовательно, формулу Ньютона-Лейбница применить не удается. Если
разложима в степенной ряд на отрезке
, принадлежащем области сходимости ряда, то интеграл может быть вычислен приближенно. Иногда приближенного вычисления бывает достаточно и при наличии первообразной функции. Для решения такой задачи используются ряды Тейлора. Рассмотрим примеры.

Задача №5.
с точностью 0,01.

Решение. Заметим, что этот широко используемый интеграл не выражается в элементарных функциях.

В ряде Маклорена для функции
сделаем замену
:

Теперь воспользуемся теоремой о том, что степенной ряд можно почленно интегрировать по любому отрезку, принадлежащему интервалу сходимости. Данный ряд сходится на всей числовой прямой, следовательно, его можно интегрировать по любому отрезку, в том числе по отрезку
:

Мы получили числовой ряд, который равен значению определенного интеграла.

Оценим погрешность вычислений. Данный ряд – это ряд Лейбница, следовательно, погрешность вычислений не превосходит по модулю первого отброшенного члена ряда. Поэтому, вычисляя по порядку члены ряда, первым отбросим тот, который окажется по модулю меньше заданной точности:

,

.

Тогда 024=0,743.

Ответ:
0,743.

Задача №6. Вычислить определенный интеграл
с точностью 0,001.

Решение. Вычислить этот интеграл по формуле Ньютона-Лейбница нельзя, поскольку первообразная функции
не выражается в элементарных функциях. Используем для решения задачи степенной ряд. Запишем разложение в ряд Маклорена функции
:

.

Сделаем в этой формуле замену
:

Данный ряд можно почленно проинтегрировать по отрезку
:

Таким образом, вычисляемый определенный интеграл равен сумме знакочередующегося числового ряда, который удовлетворяет условиям признака Лейбница, следовательно, погрешность вычислений не превосходит модуля первого из отброшенных членов ряда.

,
.

Поэтому для достижения заданной точности необходимо оставить первые 3 слагаемые.

Ответ:
.

Задача №7. . Вычислить определенный интеграл
с точностью 0,001.

Решение. Распишем ряд Маклорена для функции
.

.

Поделим левую и правую часть формулы на :

. Полученный степенной ряд можно почленно проинтегрировать по отрезку
.

Получившийся числовой ряд сходится по признаку Лейбница, поэтому отбрасываем первым слагаемое, которое меньше объявленной точности:

,
.

Ответ:
.

Рассмотрим еще одно приложение степенных рядов, к приближенному решению дифференциальных уравнений. Решение дифференциального уравнения не всегда можно выразить в элементарных функциях. Интегралы многих дифференциальных уравнений могут быть представлены в виде степенного ряда, сходящегося в некотором интервале значений независимой переменной. В таком случае ряд, являющийся решением дифференциального уравнения можно найти с помощью рядов Тейлора.

Пусть необходимо найти частное решение дифференциального уравнения с заданными начальными условиями, т.е. решить задачу Коши.

Проиллюстрируем решение на примере.

Задача №8. Найти первые пять членов разложения в степенной ряд решения дифференциального уравнения

.

Решение. Будем искать частное решение дифференциального уравнения в виде ряда

Мы выбрали разложение в ряд Маклорена, поскольку в условии задачи нам даны значения искомой функции и ее первой производной в точке
. Для того, чтобы найти приближенное значение функции
, нам необходимо знать значения ее второй, третьей и четвертой производных в точке
. Значения самой функции и первой производной в нуле даны по условию.

Значение второй производной при
найдем из дифференциального уравнения, подставив начальные условия:

.

Для нахождения третьей производной продифференцируем данное дифференциальное уравнение:

.

При этом необходимо учесть, что -- это функция, а-- независимая переменная:

Теперь можно вычислить значение третьей производной в точке
:

Аналогично вычислим значение четвертой производной:

, или

Подставив в найденное равенство значения

Осталось подставить вычисленные в заданной точке значения производных в ряд Маклорена:

Ответ:
.

Задача №9. Найти первые четыре члена разложения в степенной ряд решения дифференциального уравнения
, удовлетворяющего начальным условиям

.

Решение. Начальные условия заданы в точке
, поэтому решение будем искать в виде ряда Тейлора:

Значения самой функции и ее первой производной даны в условии задачи. Вторую производную в точке
найдем из дифференциального уравнения:

Вычислим третью производную, продифференцировав дифференциальное уравнение:

или

.

Тогда значение третьей производной равно

Осталось записать искомый ряд.

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

f(x)=

В точке x 0 =
Количество элементов ряда 3 4 5 6 7
Использовать разложение элементарных функций e x , cos(x), sin(x), ln(1+x), (1+x) m

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .

Лекция 57

РАЗЛОЖЕНИЕ ФУНКЦИЙ В СТЕПЕННЫЕ РЯДЫ

Всякая функция, бесконечно дифференцируемая в интервале , т.е.
, может быть разложена в этом интервале в сходящийся к ней бесконечный степеннойряд Тейлора

,

если в этом интервале выполняется условие
, где
- остаточный член формулы Тейлора,.

При
получаем так называемыйряд Маклорена :.

Если в некотором интервале, содержащем точку , при любомвыполняется неравенство
, где
- положительная постоянная, то
и функция
разложима в ряд Тейлора.

Приведем разложения в ряд Тейлора следующих функций:

1)

2)

7)

8) биномиальный ряд:

Это последнее разложение применимо в следующих случаях:

при
если

при
если

при
если
.

В общем случае разложение функций в степенные ряды основано на использовании рядов Тейлора или Маклорена. На практике степенные ряды многих функций можно найти формально, используя ряды (1-8) или формулу для суммы членов геометрической прогрессии. Иногда при разложении полезно пользоваться почленным дифференцированием или интегрированием рядов. В интервале сходимости ряды сходятся к соответствующим функциям.

1.Разложить по степеням разности
функцию
.

Решение. Для того, чтобы воспользоваться формулой Тейлора при
, найдем:

и т.д.

Следовательно,

2.Разложить
в ряд по степеням
.

Решение. Воспользуемся равенством
. Правую часть этого равенства можно рассматривать как сумму бесконечно убывающей геометрической прогрессии с первым членом
и знаменателем
. Отсюда получаем

Так как
, то

3. Разложить в ряд Маклорена функцию

Решение. Разложим данную функцию на сумму простейших рациональных дробей:

Поскольку

то

Так как ряд
сходится при
, а ряд
сходится при
, то ряд
сходится к данной функции при
.

4.Разложить в степенной ряд функцию
.

Решение. Найдем значения функции и ее производных при

Так как
, то при фиксированномимеет место неравенство
при любом. Следовательно, функция может быть представлена в виде суммы ряда Тейлора:

.

В данном случае

Это разложение можно получить и иначе: достаточно в разложении
заменитьна
.

5. Разложить в степенной ряд функцию

.

Решение. В разложении

заменяем на
, получаем

6. Разложить
в ряд по степеням
.

Решение. В разложении

заменяем на
, получаем

7. Разложить в степенной ряд функцию
.

Решение. Заметим, что
.Рассмотрим ряд

Данный ряд сходится при
, значит, его можно почленно интегрировать на любом отрезке
. Следовательно,

, т.е получили ряд, сходящийся к данной функции при

8. Разложить по степеням
многочлен

9. Разложить по степеням
функцию
и найти область сходимости полученного ряда.

Ответ:

10. Разложить по степеням
функцию
и найти область сходимости этого ряда.

11. Разложить по степеням
функцию
. Найти область сходимости этого ряда.

Ответ

Разложить в ряд Маклорена функцию
. Указать область сходимости полученного ряда к этой функции.

12.
. Ответ:

13.
Ответ:
.

14.
. Ответ:
.

15.
. Ответ:

16.
Ответ:
.

17.
. Ответ:
.

18.
Ответ:

19.
.Ответ:
.

6.16. Применение степенных рядов в приближённых вычислениях

Вычисление значений функции . Пусть дан степенной ряд функции
. Задача вычисления значения этой функции заключается в отыскании суммы ряда при заданном значении аргумента. Ограничиваясь определенным числом членов ряда, находим значение функции с точностью, которую можно установить путем оценивания остатка числового ряда либо остаточного члена
формул Тейлора или Маклорена. Если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией. В случае знакочередующегося ряда используется оценка
, где
- первый из отброшенных членов ряда.

Пример 1. Вычислить с точностью до 0,0001 значение ln1,1.

Решение.

Для вычисления приближённых значений функции с заданной точностью удобно пользоваться рядами в том случае, когда соответствующий ряд является знакочередующимся; для знакочередующегося сходящегося ряда легко оценить погрешность приближённого значения суммы – она меньше абсолютного значения первого из отброшенных членов.

    Возьмём ряд для функции ln(1+x):

Который сходится к ln(1+x) в интервале (-1,1], и, полагая, x=0,1 , получим ряд для вычисления ln1,1 с любой точностью.

Абсолютное значение четвёртого члена этого ряда меньше 0,0001. Поэтому, согласно свойству знакочередующегося сходящегося ряда, для вычисления приближённого значения ln1,1 с точностью до 0,0001 достаточно взять сумму трёх первых членов ряда

.

Точность: 0,001.

В прикладных задачах важна оценка погрешности приближения.

Определение: Точность вычисления не превышает первого из отброшенных элементов ряда.

1.Оценить погрешность приближенного равенства

Решение. Погрешность этого приближенного равенства определяется суммой членов, следующих после
в разложении:

,

Заменив каждый из сомножителей
,… меньшей величиной
, получим неравенство

Просуммируем бесконечно убывающую геометрическую прогрессию, получим:

, т.е.

2.Вычислить
с точностью до 0,00001.

Решение. Используя разложение в ряд, получаем

Определим число так, чтобы погрешность приближенного равенства

не превышала 0,00001. Воспользуемся оценкой погрешности, данной в предыдущем примере. Полагаем
, тогда:

т.е.
.

Путем подбора определим, при каком значении будет выполняться неравенство
. Пусть
, тогда
, т.е.
. Пусть
, тогда
, т.е.
. Принимаем
..

Вычисляем каждое слагаемое с точностью до 0,000001, для того чтобы при суммировании не получить погрешность, превышающую 0,00001. Окончательно получаем
.

3. Вычислить
с точностью до 0,00001.

Решение. Имеем

Получен знакочередующийся ряд, удовлетворяющий условиям сходимости признака Лейбница, поэтому допускаемая погрешность по абсолютной величине должна быть меньше первого из отброшенных членов ряда. Нетрудно видеть, что
, поэтому первый из отброшенных членов равен
и
. Вычисляем сумму и получаем
.

4. Пользуясь разложением
в ряд, вычислить
с точностью до 0,0001 .

Решение. .

Достаточно взять три члена ряда, так как Тогда


5. Вычислить
с точностью до 0,0001.


в ряд, полагая
. Имеем

Четвертый и следующие за ним члены отбрасываем, так как четвертый член меньше 0,0001. Итак

6. Вычислить
с точностью до 0,001.

Решение. Так как является ближайшим к числу 130 кубом целого числа, то целесообразно число 130 представить в виде суммы двух слагаемых:
. Тогда

Четвертый член меньше
, поэтому его и следующие за ним члены можно отбросить. Итак,, т.е.
.

7. Вычислить
с точностью до 0,0001.

Решение. Воспользуемся разложением
в ряд:

или , откуда

Вычислить указанную величину приближенно с заданной степенью точности , воспользовавшись разложением в степенной ряд соответствующим образом подобранной функции.

8.
. Ответ: 3,017.

9.
Ответ: 0,340.

10.
. Ответ: 0,84147.

11.
. Ответ: 1,3956.

12.
,
. Ответ: 1,140.

13.
Ответ: 0,302.

14.
Ответ: 0,464.

15.
Ответ: 1,0986.

16.
,
Ответ: 0,999.

17.
Ответ: 0,3679.

Вычисление интегралов . Так как степенные ряды сходятся равномерно на любом отрезке, лежащем внутри их интервала сходимости, то с помощью разложений функций в степенные ряды можно находить неопределенные интегралы в виде степенных рядов и приближенно вычислять соответствующие определенные интегралы.

18. Вычислить
с точностью

Решение. Воспользуемся разложением . Заменив в немна, получим ряд.

Данный ряд сходится на всей числовой прямой, поэтому его можно всюду почленно интегрировать. Следовательно,

поскольку уже третий член полученного знакочередующегося ряда меньше

19. Найти интеграл
в виде степенного ряда и указать область его сходимости.

Решение. Воспользуемся разложением , получим ряд для подынтегральной функции

Он сходится на всей числовой прямой, и, следовательно, его можно почленно интегрировать:

Поскольку при интегрировании степенного ряда его интервал сходимости не изменяется, то полученный ряд сходится также на всей числовой прямой.

Используя разложение подынтегральной функции в степенной ряд, вычислить указанный определенный интеграл с точностью до
.

20.
. Ответ: 0,070.

21.
. Ответ: 0,223.

22.
. Ответ: 0,162.

23.
. Ответ: 0,480.

24.
. Ответ: 0,054.

25.
. Ответ: 0,484.

26.
. Ответ: 0,487.

27.
. Ответ: 0,156.

28.
. Ответ: 0,059.

29.
Ответ: 0,103.

Приближенное решение дифференциальных уравнений .

В случае, когда точно проинтегрировать дифференциальное уравнение с помощью элементарных функций не удается, его решение удобно искать в виде степенного ряда, например ряда Тейлора или Маклорена.

При решении задачи Коши
, используется ряд Тейлора
, где, а остальные производные
находятся путем последовательного дифференцирования уравнения
и подстановки начальных данных в выражения для этих производных.

Решение задачи Коши
для дифференциального уравнения можно также искать в виде разложения в степенной ряд

с неопределенными коэффициентами
.

30. Найти пять первых членов разложения в степенной ряд решения
, если
.

Решение. Из данного уравнения находим, что
. Дифференцируем исходное уравнение:

и т.д. Подставляя найденные значения производных в ряд Тейлора, получаем

На примере полученных нами конкретных разложений мы разъясним, как бесконечные ряды могут быть использованы для целей приближенных вычислений. Предпошлем ряд общих замечаний.

Если неизвестное нам число А разложено в ряд:

где - легко вычисляемые (обыкновенно рациональные) числа, и мы положим приближенно:

то поправка на отбрасывание всех остальных членов выразится остатком

При достаточно большом и эта погрешность станет сколь угодно малой, так что воспроизведет А с любой наперед заданной точностью.

Мы заинтересованы в возможности просто производить оценку остатка это позволило бы нам и вовремя остановиться при вычислении последовательных частичных сумм, когда уже будет получено приближение требуемой точности.

Если рассматриваемый ряд оказывается знакопеременным и притом с монотонно убывающими по абсолютной величине членами («цейбницевского типа»), то, как мы видели , остаток имеет знак своего первого члена и по абсолютной величине меньше его. Эта оценка в смысле простоты не оставляет желать лучшего.

Несколько сложнее обстоит дело в случае положительного ряда.

Тогда обыкновенно стараются найти легко суммируемый положительный же ряд, члены которого были бы больше членов интересующего нас остатка, и оценивают остаток суммой этого ряда.

Например, для ряда - можно получить:

[эта оценка совпадает с оценкой сверху, полученной в 373 (11) с помощью интегрирования], а для ряда

[этой оценкой мы фактически и пользовались при вычислении числа в 37].

Обыкновенно ищется десятичное приближение числа А, в то время как члены ряда могут и не быть выражены десятичными дробями. При обращении их в десятичную дробь, округление их служит источником новой погрешности, которую также следует учесть.

Наконец, отметим, что далеко не всякий ряд, имеющий суммой интересующее нас число А, пригоден для фактического вычисления этого числа (даже если его члены просты, и оценка остатка производится легко). Вопрос - в быстроте сходимости, т. е. в быстроте приближения частичной суммы к числу А.

Возьмем для примера ряды [см. 404 (16) и 405 (18)]:

дающие соответственно разложение чисел - и Для того чтобы с их помощью вычислить эти числа, скажем, с точностью до нужно было бы сложить пятьдесят тысяч членов в первом случае и сто тысяч - во втором; это, конечно, осуществимо лишь с помощью быстродействующих вычислительных машин.

Ниже мы без особого труда вычислим упомянутые числа даже с большей точностью, но использовав более подходящие рады.

Пусть требуется вычислить определенный интеграл $\int\limits_{a}^{b}f(x)dx$ с некоторой наперёд заданной точностью $\varepsilon$. Если непосредственное нахождение первообразной подынтегральной функции $f(x)$ чересчур громоздко, или же интеграл $\int f(x)dx$ вообще не берётся, то в этих случаях можно использовать функциональные ряды. В частности, применяются ряды Маклорена, с помощью которых получают разложение в степенной ряд подынтегральной функции $f(x)$. Именно поэтому в работе нам будет нужен документ с рядами Маклорена .

Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:

  1. Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
  2. Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
  3. Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $\varepsilon$.

Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $\varepsilon$.

Пример №1

Вычислить $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx$ с точностью до $\varepsilon=10^{-3}$.

Сразу отметим, что интеграл $\int e^{-x^2}dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^{-x^2}$ найти не удастся.

Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.

Развёрнутый вариант оформления

ряд Маклорена :

$$e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\ldots$$

$$e^{-x^2}=1-x^2+\frac{\left(-x^2\right)^2}{2}+\frac{\left(-x^2\right)^3}{6}+\ldots=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Интегрируем полученное разложение на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\left(1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots\right)dx=\\ =\left.\left(x-\frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42}+\ldots\right)\right|_{0}^{1/2}= \frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}-\frac{1}{42\cdot{2^7}}+\ldots$$

Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.

Согласно условию, точность $\varepsilon=10^{-3}$. Так как $\frac{1}{42\cdot{2^7}}=\frac{1}{5376}<10^{-3}$, то для достижения требуемой точности достаточно ограничиться первыми тремя членами знакочередующегося ряда:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}=\frac{443}{960}.$$

Погрешность полученного равенства не превышает $\frac{1}{5376}$.

Однако суммировать обычные дроби - дело утомительное, поэтому чаще всего расчёты ведут в десятичных дробях:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}5}-0{,}0417+0{,}0031\approx{0{,}461}.$$

Разумеется, в этом случае нужно учитывать погрешность округления. Первое слагаемое (т.е. $0{,}5$) было рассчитано точно, поэтому никакой погрешности округления там нет. Второе и третье слагаемые брались с округлением до четвёртого знака после запятой, посему погрешность округления для каждого из них не превысит $0,0001$. Итоговая погрешность округления не превысит $0+0{,}0001+0{,}0001=0{,}0002$.

Следовательно, суммарная погрешность равенства $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$ не превысит $0{,}0002+\frac{1}{5376}<10^{-3}$, т.е. значение интеграла вычислено с требуемой точностью.

Сокращённый вариант оформления

Запишем разложение функции $e^x$ в ряд Маклорена :

$$e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}$$

Данное разложение верно при всех $x\in{R}$. Подставим $-x^2$ вместо $x$:

$$e^{-x^2}=\sum\limits_{n=0}^{\infty}\frac{\left(-x^2\right)^n}{n!}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}$$

Интегрируем полученный ряд на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}dx= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\int\limits_{0}^{\frac{1}{2}}x^{2n}dx=\\ =\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\left.\frac{x^{2n+1}}{2n+1}\right|_{0}^{1/2}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot\left(\frac{1}{2}\right)^{2n+1}}{n!\cdot(2n+1)}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}$$

$$\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}=\frac{1}{2}-\frac{1}{24}+\frac{1}{320}-\frac{1}{5376}+\ldots$$

Все рассуждения, что были сделаны относительно погрешностей в развёрнутом варианте оформления остаются в силе, т.е. $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}461}$.

Чем сокращённый вариант записи лучше развёрнутого?

Во-первых, нам не нужно угадывать, сколько членов ряда взять в изначальном разложении, чтобы вычислить определенный интеграл с заданной точностью. Например, мы записали в самом начале решения:

$$e^{-x^2}=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Однако почему мы решили, что нужно взять именно четыре члена ряда? А вдруг нужно взять два члена ряда или пять, или сто? Если бы только шестой член ряда оказался меньше чем $\varepsilon$, - что тогда? А тогда пришлось бы возвращаться в самое начало решения, добавлять ещё пару членов ряда и интегрировать их. А если и этого не хватит, то проделать эту процедуру ещё раз.

Сокращённый вид записи таким недостатком не страдает. Мы получаем числовой ряд, записанный в общем виде, поэтому можем брать столько его членов, сколько потребуется.

Исходя из вышеперечисленных причин, я предпочитаю именно сокращённый способ записи. В дальнейнем все решения в этой теме будут оформлены в сокращённой форме.

Ответ : $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$.

Пример №2

Вычислить определённый интеграл $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx$ с точностью до $\varepsilon=10^{-3}$, разложив подынтегральную функцию в ряд Маклорена и проинтегрировав почленно.

Начнём с разложения подынтегральной функции $\frac{1-\cos\frac{5x}{3}}{x}$ в ряд Маклорена. Запишем разложение функции $\cos{x}$ в ряд Маклорена :

$$\cos{x}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{(2n)!}$$

Данное разложение верно при всех $x\in{R}$. Подставим вместо $x$ дробь $\frac{5x}{3}$:

$$\cos{\frac{5x}{3}}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{\left(\frac{5x}{3}\right)}^{2n}}{(2n)!}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}.$$

Теперь разложим $1-\cos\frac{5x}{3}$:

$$ 1-\cos\frac{5x}{3}=1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} $$

Забирая из суммы $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$ первый член, получим: $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$. Следовательно:

$$ 1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1-\left(1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}\right)=\\ =-\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} =\sum\limits_{n=1}^{\infty}\frac{-(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}. $$

Последнее, что остаётся - это разделить на $x$:

$$ \frac{1-\cos\frac{5x}{3}}{x}=\frac{1}{x}\cdot\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}. $$

Интегрируем данное разложение на отрезке $\left$:

$$ \int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx=\int\limits_{0}^{\frac{1}{5}}\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}dx= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\int\limits_{0}^{\frac{1}{5}}{x}^{2n-1}dx=\\ =\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\cdot\left.\frac{x^{2n}}{2n}\right|_{0}^{1/5}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}} $$

Получили знакочередующийся ряд. Запишем несколько первых членов этого ряда (до тех пор, пока записанный член не станет меньше $\varepsilon$):

$$\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}}=\frac{1}{36}-\frac{1}{7776}+\ldots$$

Так как $\frac{1}{7776}<\varepsilon$, то для вычисления интеграла с точностью $\varepsilon$ достаточно первого члена полученного числового ряда:

$$\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx\frac{1}{36}\approx{0{,}028}.$$

Ответ : $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx{0{,}028}$.

Продолжение темы вычисления интегралов с помощью рядов Маклорена продолжим во