Природа света. Спонтанное и вынужденное излучение. Инверсия заселенности энергетических уровней. Принцип работы лазера. Инверсная населенность энергетических уровней Возможность усиления в средах с инверсной населенностью

Вернемся к записанному выше условию термодинамического равновесия (2.4). Это условие означает, что всякая равновесная квантовая система поглощает энергию внешнего поля. В самом деле, согласно (2.2), внизу частиц всегда больше, чем вверху (см. рис. 2.1). Излучаемая в единицу времени энергия равна:

I изл = n 2 W 21 hn » n 2 W ИНД hn

Поглощаемая в единицу времени энергия равна:

I погл = n 1 W 12 hn

dr / dt = (n 2 – n 1) W инд hn (2.10)

Отсюда видно, что в равновесном состоянии всегда dr / dt < 0 в силу n 2 < n 1 . Для того, чтобы dr / dt > 0, необходимо, чтобы n 2 > n 1 . Это возможно только при нарушении термодинамического равновесия. Выражаясь языком квантовой электроники, необходима инверсная населенность рабочих уровней . Для этого нужно, чтобы переходы с испусканием излучения преобладали над переходами с поглощением.

Таким образом, мы подошли ко второму принципу, лежащему в основе работы лазера: для усиления электромагнитного излучения в квантовой системе необходимо создать инверсию населенностей пары квантовых уровней.

Формально подстановка такого соотношения населенностей в формулу Больцмана (2.2) ведет к отрицательному значению температуры Т . Поэтому системы с инверсной населенностью иногда называли системами с отрицательной температурой. Такое название следует признать неудачным по следующим причинам.

Нельзя забывать о том, что квантование энергии имеет место в связанных состояниях, где набор разрешенных значений энергии обязательно ограничен сверху. Поэтому, в силу целого ряда запрещающих факторов, квантовой системе невозможно сообщить произвольную энергию так, чтобы она, во-первых, осталась в равновесии, а во-вторых, продолжала существовать в связанном состоянии. Она либо перестанет существовать, либо потеряет равновесие. Деструкция системы нас, разумеется, не устраивает - то, что мы хотим от нее получить, никоим образом не есть увеличение беспорядка. А вот нарушение термодинамического равновесия, т.е. резонансная подкачка энергии на верхний уровень при возможно меньшем возмущении системы в целом - это именно то, что нужно. Так что отождествление инверсной населенности с отрицательной температурой - условность, поскольку само создание инверсии означает нарушение термодинамического равновесия, а понятие температуры как таковой с необходимостью предполагает наличие термодинамического равновесия.

Рассмотрим возможность усиления электромагнитного излучения при прохождении через среду с инверсной населенностью. Обозначим Dn л = 1/2pt 0 , где t 0 - время жизни верхнего уровня. Величина Dn л характеризует полосу частот, в пределах которой двухуровневая система эффективно взаимодействует с внешним полем. Ввиду конечности времени жизни верхнего уровня приходится учитывать частотную зависимость вероятности индуцированного перехода в (2.8) даже при монохроматическом внешнем поле. Именно:

Здесь q(n) - функция, описывающая частотную зависимость вероятности индуцированного перехода. В случае учета только конечности времени жизни верхнего уровня q(n) имеет лоренцеву форму (подробнее об этом ниже). Для монохроматического внешнего поля:

r n = r d (n -n 0),

где d - дельта-функция Дирака; n 0 = (Е 2 - Е 1) / h - частота внешнего поля, совпадающая с центральной частотой перехода Е 2 ® Е 1 .

q(n 0)B 21 r = 2/pDn л (2.12)

Учет ширины линии верхнего уровня необходим для того, чтобы связать W ИНД, входящую в dr / dt , с самой величиной r . Используя (2.10)-(2.12), можно непосредственно описать усиление внешнего поля за счет индуцированного излучения. Введем величину:

называемую показателем усиления . Здесь I - плотность мощности, или интенсивность излучения, пропорциональная квадрату амплитуды поля или числу фотонов. Видно, что α совпадает с точностью до знака с поглощением излучения при распространении вдоль координаты z . Поскольку речь идет о распространении электромагнитной волны, I ~ r и dz = cdt . Тогда:

(2.14)

Используя (2.10) и (2.12), получим:

(2.15)

В силу свойств индуцированного излучения получаемое при усилении в инверсной среде излучение когерентно. Среда с инверсной населенностью называется в квантовойэлектронике активной средой . Формула (2.15) дает показатель усиления активной среды в линейном приближении, т.е. в случае, когда α не зависит от интенсивности излучения r (или I ). Фактически это реализуется при достаточно малых интенсивностях, или в том случае, когда излучение не вызывает заметных отклонений распределения числа частиц по уровням от исходного.

Возможность усиления электромагнитного излучения в среде с инверсией населенности была показана В.А. Фабрикантом в 1940 г. , но не была должным образом оценена. Практически эта возможность была реализована при создании квантовых генераторов микроволнового диапазона советскими учеными А.М. Прохоровым и Н.Г. Басовым и группой американских ученых во главе с Ч. Таунсом в 1955 г., за что трое поименованных были удостоены Нобелевской премии. Созданный ими прибор получил название мазер M icrowave A mplification by S timulated E mission of R adiation».


В дальнейшем были реализованы условия для усиления и генерации в среде с инверсной населенностью излучения оптического диапазона. Соответствующий источник излучения получил название лазер ― аббревиатура английского термина «L ight A mplification by S timulated E mission of R adiation». Следует признать неудачность и этого термина, в котором не отражена особенность лазера как источника электромагнитного излучения с уникальными свойствами, то есть как генератора . В аббревиатуре слово «генератор» отсутствует. Стремление подчеркнуть достоинства лазера как автоколебательной системы привело к появлению в СССР в 60-е годы термина «оптический квантовый генератор» (ОКГ), в настоящее время вышедшего из употребления. Тогда же сформировались две точки зрения на работу лазера, условно называемые радиофизической и оптической .


С оптической же точки зрения лазером с одинаковым успехом можно называть любое устройство, в котором на выходе преобладает индуцированное излучение , независимо от того, реализован при этом автоколебательный режим или нет.


Длительное время (вплоть до 90-х годов минувшего века) преобладала радиофизическая точка зрения, наиболее последовательно изложенная впервые в классической работе У. Лэмба-младшего в 1964 г. «Теория оптических мазеров» . В последнее время в связи с технологическим прогрессом, небывало расширившим сферу практического применения «подпороговых» источников когерентного излучения в виде сверхизлучающих светодиодов, оптическая точка зрения получила «второе дыхание», хотя ни одной концептуальной работы, «уравнивающей в правах» оптическую точку зрения с радиофизической, в литературе не появилось.

Процесс создания инверсной населенности называется в квантовой электронике накачкой .

Для представления о результатах исторических исследований , ставших основой создания первого источника когерентного излучения, рассмотрим устройство мазера (первого квантового генератора, где в качестве активных центров использовались молекулы аммиака NH 3).

Молекула аммиака имеет форму пирамиды с треугольным основанием. В вершине пирамиды расположен атом азота, а в углах основания ― атомы водорода (см. рисунок 2.3а). При этом атом азота в молекуле может занимать два равноправных положения выше и ниже основания пирамиды. Это ведет к тому, что у молекулы появляются два энергетических состояния, разность энергий между которыми соответствует частоте ν =23 870 МГц. В электрическом поле из-за явления Штарка разница между энергиями уровней Е 2 -Е 1 увеличивается по мере роста напряженности поля Е (рисунок 2.3б). Таким образом, с ростом напряженности электрического поля энергия верхнего состояния Е 2 растет, а нижнего Е 1 уменьшается. Рассмотрим квадрупольный конденсатор, образованный четырьмя параллельными стержнями (рисунок 2.3в). При указанной на рисунке полярности заряда конденсаторе напряжен



ность на оси конденсатора равна нулю.

Рисунок 2.3. К устройству мазера на пучке молекул аммиака.

Поскольку в соответствии с законами механики любая система испытывает силу, направленную в сторону уменьшения ее потенциальной энергии, при помещении молекул аммиака в квадрупольный конденсатор молекулы, находящиеся в верхнем энергетическом состоянии, будут стремиться к оси конденсатора, тогда как молекулы, находящиеся в нижнем состоянии будут уходить от оси. Таким образом, если вдоль оси квадрупольного конденсатора пустить струю газа, то возбужденные молекулы будут «фокусироваться» вдоль оси конденсатора, и на выходе из него получится струя газа (пучок молекул) с инверсной населенностью между состояниями, разделенными энергией , которая может быть (и с успехом была) использована для усиления резонансного электромагнитного излучения. В данном случае (ν = 23 870 МГц) частота этого излучения располагается в микроволновом диапазоне.

Возможно создание инверсной населенности за счет возбуждения активных центров интенсивным излучением оптического диапазона. Такая накачка используется в системах с высокой концентрацией активных центров ― в активированных кристаллах, стеклах и растворах. Однако при этом необходимо соблюдение дополнительных условий.

В случае двухуровневой системы (см. рисунок 2.2) внешнее резонансное излучение может привести всего лишь к выравниванию населенностей уровней. Действительно, до облучения населенность нижнего уровня n 1 больше населенности верхнего уровня n 2 , поэтому число вынужденных переходов на верхний уровень n 1 W 12 будет превышать число вынужденных переходов в обратном направлении n 2 W 21 . В начальный момент резонансное излучение максимально поглощается. В последующие моменты времени виду преобладания переходов снизу вверх разность населенностей n 1 ─n 2 будет стремиться к нулю, и вещество перестает поглощать резонансное излучение (просветляется). Иначе говоря, происходит насыщение поглощения на рабочем переходе.

Таким образом, с помощью оптической накачки невозможно создать инверсную населенность в двухуровневой системе. Но это оказывается возможным в более сложных квантовых системах, имеющих число уровней больше двух (см. рисунок 2.4).



Рисунок 2.4. Трехуровневые (а, б) и четырехуровневая (в) схемы возбуждения

активной среды

Рассмотрим систему активных центров, имеющих три энергетических уровня (рисунок 2.4а), характеризующуюся тем, что уровень с энергией Е 3 за счет релаксационных переходов имеет малое время жизни относительно перехода на уровень Е 2 , который, в свою очередь, характеризуется большим временем жизни и называется за это «метастабильным». В равновесном состоянии большинство активных центров оказывается на уровне 1, который называют основным уровнем, иначе говоря, в основном состоянии.

Пусть на такую систему подается излучение с частотой . Тогда за счет вынужденных переходов активные центры будут переходить в состояние с энергией Е 3 , а за счет релаксационных переходов «сваливаться» с уровня Е 3 на метастабильный уровень с энергией Е 2 . Если частота релаксационных переходов 3®2 будет превышать частоту релаксационных переходов 2®1, то активные центры будут накапливаться на метастабильном уровне 2, и его населенность n 2 может превысить населенность нижнего уровня n 1 . То есть будет создана инверсная населенность, которая может быть использована для усиления за счет вынужденных переходов излучения, резонансного переходу 2®1.Заметим, что только для выравнивания населенностей на этих уровнях необходимо перебросить наверх как минимум половину активных центров. Затраченная на это энергия не может быть использована для усиления резонансного излучения. Однако, поскольку для переброски на уровень 3 требуется большая энергия накачки (речь идет о большом числе активных центров и, соответственно, о больших световых потоках излучения накачки), возникшая инверсия может обеспечить большую энергию, высвечиваемую на рабочем переходе. Такой режим работы с радиофизических позиций называется «жестким» режимом возбуждения (трудно выполнить условия генерации, но в случае их выполнения автоколебания возникают с большой интенсивностью).

Возможна другая ситуация (рисунок 2.4б), когда короткоживущим оказывается уровень 2. В этом случае активные центры, заброшенные возбуждающим излучением на уровень 3, могут создать на нем инверсную населенность относительно уровня 2. Действительно, центры, оказавшиеся на уровне 2 за счет вынужденных переходов 3®2, будут «скатываться» за счет быстрой релаксации на уровень 1 (в основное состояние), откуда излучением накачки будут вновь переведены на уровень 3. В отличие от предыдущего случая, инверсия создается на переходе 3→2, и для выполнения условия самовозбуждения не требуется переброски более половины активных центров в состояние 3 из основного состояния. Такой режим называется «мягким» режимом возбуждения, поскольку инверсию создать относительно легко, но получить большую выходную мощность на рабочем переходе трудно.

И, наконец, наиболее эффективной оказывается четырехуровневая схема (рисунок 2.4в). В ней сильны (т.е. имеют малое время релаксации) релаксационные переходы 4®3 и 2®1, причем желательно, чтобы уровень 2 был расположен достаточно высоко над основным состоянием 1, так что его исходная населенность мала в соответствии с формулой Больцмана. В этом случае даже незначительное количество активных центров, заброшенных накачкой на уровень 4 и свалившихся на метастабильный уровень 3 за счет релаксации, могут создать инверсную населенность относительно уровня 2. В свою очередь, уровень 2 быстро опустошается, поскольку оказавшиеся на нем активные центры сбрасываются релаксацией в основное состояние. Поскольку в принципе уровень 2 (нижний рабочий уровень) может быть сколь угодно мало заселен, инверсия на рабочем переходе 3→2 получается значительно проще, чем в любой из трехуровневых схем. Недостатком четырехуровневой схемы можно считать относительно малую квантовую эффективность (отношение энергии рабочего перехода к энергии накачки hν 14 , ), поскольку рабочие уровни 2,3 расположены далеко от основного состояния.

Описанный способ накачки (оптический) целесообразно применять в случае конденсированных активных сред , когда плотность активных центров велика. Если же плотность активных центров мала (а это имеет место в случае газовой активной среды), то более эффективны другие способы накачки.

Наиболее распространенный способ накачки такой активной среды ― электрический разряд в разреженных газах. Если в запаянной трубке, заполненной разреженным газом, расположить два электрода и подать на них напряжение достаточной величины, то в пространстве между электродами может возникнуть стационарный тлеющий разряд. Электроны, вылетающие с катода, будут разгоняться электрическим полем и при соударении с частицами газа (атомами, молекулами) отдавать им энергию. При этом часть атомов будут ионизироваться, порождая вторичные электроны, а часть, получив энергию от электронов за счет неупругого соударения, возбудятся, то есть перейдут в более высокое энергетическое состояние.

Таким образом, в тлеющем разряде присутствуют три сорта частиц: ионы, электроны и нейтральные атомы (молекулы). В стационарном состоянии концентрацию каждой из этих компонент разряда можно считать постоянной, хотя при изменении условий их соотношение может меняться (имеет место динамическое равновесие). Очевидно при этом, что наличие различных коллективных компонент означает отсутствие термодинамического равновесия, поскольку для каждой их них существует свое квазиравновесное распределение по энергиям, характеризуемое своей «парциальной температурой». Если различием температур ионов и нейтральных частиц можно пренебречь (их массы различаются незначительно), то температура электронов будет существенно превышать температуру тяжелых частиц. Тем самым необходимое условие создания инверсии населенностей на какой-то паре возбужденных уровней ― отсутствие термодинамического равновесия ― в тлеющем разряде заведомо выполнено.

Дальше процессы могут проходить аналогично описанной выше оптической накачке, только роль возбуждающего фактора будет играть не поглощение излучения накачки, а столкновения частиц в разряде с преобладанием роли электронов. Именно так происходит накачка в большинстве газовых лазеров (на нейтральных атомах инертных газов , наиболее типичным представителем которых является гелий-неоновый; ионных , где наиболее примечателен лазер на ионах аргона; молекулярных , где наибольшее распространение получил СО 2 -лазер). Как видно из наименования, для каждого из перечисленных газовых лазеров в качестве рабочих используются переходы соответствующих активных центров. Ниже о каждом из этих типов лазеров будет рассказано подробнее, в связи с преобладанием их медицинских применений.

Если на стенки разрядной трубки нанести проводящие электроды и подать на них высокочастотный сигнал, то возникающий при этом тлеющий разряд в активной среде с высокой эффективностью воспринимает мощность от образованной электродами полосковой линии . Использование высокочастотного разряда для накачки газовой активной среды позволяет повысить КПД, уменьшить габариты блока питания и избавиться от высоких напряжений, представляющих опасность для обслуживающего персонала.

В газах инверсная населенность может быть получена не только за счет возбуждения электрического разряда, но и за счет нагрева активной смеси (в том числе и за счет процессов в камере сгорания) и быстрого ее охлаждения при истечении через сверхзвуковое сопло. Такой способ накачки лежит в основе действия газодинамических лазеров .

В последнее время наиболее быстро расширяется сфера применения полупроводниковых лазеров , работающих на межзонных переходах полупроводниковых кристаллов. Наиболее эффективным способом накачки в таких лазерах является инжекция, т.е. пропускание электрического тока через p-n переход. Ввиду исключительной перспективности применения полупроводниковых лазеров в медицине им в дальнейшем будет уделено особенно пристальное внимание.

Принцип минимума потенциальной энергии:

Любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна. Такое состояние является энергетически выгодным и наиболее устойчивым.

В соответствии с этим принципом, количество атомов активного вещества лазера, находящихся на нижнем энергетическом уровне, всегда больше, чем количество возбужденных атомов. При отключенной системе накачки населенность нижнего энергетического уровня максимальна, а наверху, на возбужденном уровне, атомов вообще нет или их крайне мало.

При включении накачки положение начинает меняться: часть атомов переходит в категорию «возбужденные». Чем больше мощность накачки, тем больше становится населенность верхнего уровня и меньше – нижнего.

Чем больше становится возбужденных атомов, тем больше вероятность переходов обратного направления, за счет спонтанного и индуцированного излучения. Но фотонные лавины возникать еще не могут.

Мы обсуждаем двухуровневую систему накачки: система накачивает атомы энергией, переводя их в возбужденное состояние, а они, спонтанно или через индуцированное излучение, соскакивают обратно, вниз.

Теория и практика показали, что максимум достижимого при работе двухуровневой системы накачки – динамическое равновесие при достижении численного равенства населенностей верхнего и нижнего энергетических уровней.

Но для работы лазера этого мало! «Наверху» атомов должно быть больше, чем «внизу».

Инверсная населенность - состояние активного вещества, при котором атомов, находящихся на возбужденном энергетическом уровне, больше , чем на нижнем, основном уровне .

Преодолеть ограниченные возможности двухуровневой системы накачки удалось с помощью системы трехуровневой. Появились и системы, имеющие большее число уровней.

Естественной для атомов является длительность их пребывания в возбужденном состоянии порядка τ 1 = 10 -8 с. Преодолеть такую быстроту возврата возбужденных атомов в устойчивое основное состояние удалось благодаря тому, что в квантовых системах могут существовать метастабильные состояния, с временем жизни τ , много большим, чем τ 1 = 10 -8 с. Метастабильное состояние (от греч. μετα «через» и лат. stabilis «устойчивый») – состояние квазиустойчивого равновесия, в котором система может находиться длительное время.

Длительность метастабильного состояния возбужденных атомов может достигать  2 = 10 -3 с. Обратите внимание: τ 2 > τ 1 в 100000 раз; и за такое время вполне удается создавать инверсную населенность, «перехитрив» принцип минимума потенциальной энергии. На рис. 3 представлена схема энергетических уровней трехуровневой системы накачки.

Рис. 3 Схема трехуровневой системы накачки.

Трехуровневая система накачки переводит атомы активного вещества на уровни Е 2 и Е 3 . При этом активное вещество имеет в окрестностях уровня Е 3 множество близко расположенных энергетических уровней с коротким временем жизни возбужденного состояния τ 3 . На схеме они не показаны; Е 3 – среднее значение их энергии.

Кванты, близкие к Е 3 , имеют повышенную вероятность быть поглощенными: любой квант энергии системы накачки на каком-нибудь из этих многих уровней пригодится, будет поглощен. Суммарный эффект: система накачки эффективно работает на повышение населенности энергетического уровня Е 3 благодаря тому, что он «широк по вертикали» за счет семейства близких уровней.

На схеме рис. 3 наклонной стрелкой показан переход с уровня Е 3 на уровень Е 2 , что символизирует безизлучательный переход возбужденных атомов на уровень Е 2 , благо обстановка позволяет: вместо большого перепада Е 3 – Е 2 имеется нечто в роде лесенки близких уровней.

Вклад «узкого» уровня Е 2 в создание своей же инверсной населенности есть, но он – гораздо скромнее.

При хаотическом тепловом движении распределение энергии среди атомов неравномерно. Некоторая часть атомов возбуждена, что соответствует их нахождению на более высоких, чем основной, уровнях энергии. В условиях теплового равновесия и при отсутствии внешнего электромагнитного поля большая часть атомов обладает минимумом энергии. Образно говоря, населенность верхних уровней меньше населенности нижних.

Под влиянием энергетических воздействий - повышения температуры, освещения, бомбардировки быстрыми частицами - доля возбужденных атомов возрастает, т. е. населенность верхних уровней увеличивается. Этот процесс иллюстрируется рисунком 102, а, б.

Казалось бы, по мере повышения температуры можно получить такое распределение частиц по уровням, при котором населенность верхних уровней больше, чем нижних. Но это не так. Ведь возбужденное состояние неустойчиво. По мере увеличения заселенности верхних уровней увеличивается вероятность спонтанных переходов, которые сопровождаются излучением.

В 1939 г. советский физик В. А. Фабрикант высказал предположение о возможности создания такого распределения частиц по энергиям, при котором число возбужденных атомов больше числа атомов, находящихся в основном состоянии (рис. 102, в). Такое состояние называют состоянием с инверсной населенностью уровней (от латинского inversio - переворачивать).

Выясним, какие особые свойства присущи состоянию с инверсной населенностью уровней.

При распространении света в веществе обычно происходит поглощение света. Это происходит потому, что в состоянии термодинамического равновесия число невозбужденных атомов в веществе много больше, чем число возбужденных, и, следовательно, фотоны чаще взаимодействуют с невозбужденными атомами, т. е. поглощаются веществом.

В веществе же с инверсной населенностью уровней число возбужденных атомов больше числа невозбужденных. При этом уменьшается вероятность встречи фотонов с невозбужденным атомом, т. е. уменьшается вероятность поглощения фотонов. Вещество становится более прозрачным или даже способным усиливать свет. Действительно, если в нем движется фотон, энергия которого в точности равна разности энергий атомов в состояниях (рис. 102, в), то, взаимодействуя с возбужденным атомом, такой фотон вызовет индуцированное излучение. В результате появится второй такой же фотон. Взаимодействуя с другими двумя возбужденными атомами, эти два фотона вызовут высвечивание еще двух атомов. В конечном счете вместо одного фотона из вещества выйдет много фотонов, что является усилением света. Усилению света способствует то обстоятельство, что фотоны с частотой

слабо поглощаются веществом. Среду называют активной, если в ней число индуцированных фотонов превышает число поглощенных.

Эти особенности сред с инверсной населенностью уровней были установлены в 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Бутаевой.

В 1964 г. Государственный комитет по делам изобретений и открытий выдал этим ученым диплом на открытие, в котором, в частности, говорится: «Установлено неизвестное ранее явление усиления электромагнитных волн при прохождении через среду, в которой концентрация частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям, избыточна по сравнению с концентрацией в равновесном состоянии».


На первый взгляд инверсию населенности можно создать в среде с двумя энергетическими уровнями Е 1 и Е 2 >Е 1. Например, это можно попытаться сделать путём облучения среды фотонами с частотой . Т.к. в нормальных условиях N 2 Е 2 , чем Е 2 => Е 1 .

Однако, когда населенности окажутся равными N 2 =N 1, процессы вынужденного излучения и поглощения будут компенсировать друг друга и инверсию создать будет невозможно.

Поэтому для лазеров применяют среды, в которых частицы могут занимать не два, а три или четыре уровня

С случае трехуровневой системы (рис.) уровень Е 2 должен быть метастабильными, т.е. время жизни частицы на этом уровне намного превышает время жизни на других уровнях возбуждённого состояния. Это означает, что W 21 <N 1 , которая используется для генерации лазерного излучения за счёт перехода Е 2 => Е 1 . Причём переход Е 3 => Е 2 происходит без излучения с передачей энергии кристаллической решетке в виде тепла. Пример такой среды – рубин с примесью ионов хрома.

В случае четырехуровневой системы метастабильным является уровень Е 2 , при этом W 21 <N 1 , которая используется для генерации лазерного излучения - за счёт перехода с Е 2 на Е 1 . Затем происходит быстрый переход с Е 1 на Е 0 без излучения. В четырехуровневой системе создать инверсию населенностей проще, т.к. уровень Е 1 первоначально заселен очень мало и уже при незначительном переводе частиц на уровень Е 2 создается инверсия населенностей. Пример – стекло с неодимом, а также газовая активная среда, применяемая в газовых СО 2 - лазерах. Создание инверсии населенностей в активной среде называется процессом накачки (или просто накачкой ).

Накачка осуществляется, как правило, одним из двух способов: оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных или жидкостных лазеров. Механизмы уширения линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно имеют дело не с накачкой уровней, а с накачкой полос поглощения. Эти полосы поглощают заметную долю света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что уних спектральная ширина линий поглощения невелика, а лампы накачки дают широкополосное излучение, осуществлять оптическую накачку довольно трудно. Оптическую накачку весьма эффективно было бы использовать для полупроводниковых лазеров. дело в том, что у полупроводников имеет полоса сильного поглощения. Однако применение в данном случае электрической накачки оказывается более удобным, поскольку через полупроводник очень легко проходит электрический ток.

Еще один способ накачки – химическая. Есть два достойный внимания вида химической накачки: 1) ассоциативная реакция, ведущая к образованию молекулы АВ в возбужденном колебательном состоянии, и 2) диссоциативная реакция, , ведущая к образованию частицы В (атома или молекулы) в возбужденном состоянии.

Другим способом накачки газовой молекулы является сверхзвуковое расширение газовой смеси, содержащей данную молекулу (гадодинамическая накачка). Следует упомянуть также о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера (лазерная накачка). Свойства направленного лазерного луча делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветлителей, как в случае (некогерентой) оптической накачки. Благодаря монохроматичности излучения лазера накачки ее применение не ограничивается твердотельными и жидкостными лазерами, но ее можно также использовать для накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства лазеров дальнего ИК-диапазона.

В случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы предается активной среде. На рис. 1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях среда имеет форму цилиндрического стержня. Изображенная на рис. 1а лампа имеет форму спирали; при этом свет попадает в активную среду либо непосредственно, либо после отражения от зеркальной цилиндрической поверхности (на рис. Цифра 1). Такая конфигурация использовалась при создании первого рубинового лазера и до сих пор иногда применяется для импульсных лазеров. на рис. 1б лампа имеет форму цилиндра (линейная лампа), радиус и длина которого приблизительно те же, что и у активного стержня. Лампа размещается вдоль одной из фокальных осей F1 зеркально отражающего эллиптического цилиндра (1), а лазерный стержень располагается вдоль другой фокальной оси F2. Большая часть света, излучаемого лампой, благодаря отражению от эллиптического цилиндра попадает в лазерный стержень. На рис. 1в изображен пример так называемой конфигурации с плотной упаковкой. Лазерный стержень и линейная лампа располагаются как можно ближе друг к другу и плотно окружаются цилиндрическим отражателем (1). Эффективность конфигурации с плотной упаковкой обычно ненамного ниже, чем в случае эллиптического цилиндра. Часто вместо зеркально отражающих рефлекторов в схемах на рис 1а и в применяются цилиндры, изготовленные из диффузно отражающих материалов. Применяются и сложные типы осветителей, в конструкции которых использованы более чем один эллиптический цилиндр или несколько ламп в конфигурации с плотной упаковкой.


Определим КПД накачки непрерывного лазера как отношение минимальной мощности накачки Pm, необходимой для создания определенной скорости накачки, к электрической мощности накачки Р, фактически подведенной к лампе. Минимальная мощность накачки может быть записана в виде: , где V – объем активной среды, vp – разность частот между основным и верхним лазерными уровнями. Распространение скорости накачки по активному стержню является во многих случаях неоднородным. Поэтому более правильно определять среднюю минимальную мощность накачки , где усреднение производится по объему активной среды. Таким образом

Для импульсного лазера по аналогии средний КПД накачки имеем

где интеграл по времени берется в пределах от начала до конца импульса накачки, а Е – электрическая энергия, подведенная к лампе.

Процесс накачки можно рассматривать состоящим из 4 различных этапов: 1) испускания излучения от лампы, 2) переноса этого излучения к активному стержню, 3) поглощения его в стержне и 4) передачи поглощенной энергии верхнему лазерному уровню.

Из выражения (1) или (!а) можно найти скорость накачки Wp:

Электрическая накачка применяется в газовых и п/п лазерах. Электрическая накачка газового лазера осуществляется пропусканием через газовую смесь постоянного, высокочастотного (ВЧ) или импульсного тока. Вообще говоря, ток через газ может протекать либо вдоль оси лазера (продольный разряд, рис. 2а), либо поперек ее (поперечный разряд, рис. 2б). В лазерах я продольным разрядом электроды нередко имеют кольцеобразную форму, причем, чтобы ослабить деградацию материала катода вследствие столкновения с ионами, площадь поверхности катода делается намного больше, чем у анода. В лазерах же с поперечным разрядом электроды вытягиваются на всю длину лазерной среды. В зависимости от типа лазера применяют самые различные конструкции электродов. Схемы с продольным разрядом используются обычно для непрерывных лазеров, в то время как поперечный разряд применяется как для накачки постоянным, так и импульсным и ВЧ током. Поскольку поперечные размеры лазера обычно существенно меньше продольных, в одной и той же газовой смеси напряжение, которое необходимо приложить в случае поперечной конфигурации, значительно ниже, чем напряжение для продольной конфигурации. Однако продольный разряд, когда он происходит в диэлектрической (пр., стеклянной) трубке (рис. 2а) позволяет получить более однородное и стабильное распределение накачки.

В электрическом разряде образуются ионы и свободные электроны, а поскольку они приобретают дополнительную энергию от приложенного электрического поля, они могут возбуждать при столкновении нейтральные атомы. Положительные ионы благодаря своей большой массе ускоряются значительно хуже, чем электроны, и поэтому не играют существенной роли в процессе возбуждения.

5.20. Оптические резонаторы. Гауссовские пучки света .

В открытых структурах типа интерферометра Фабри-Перо существуют характерные колебательные моды. К настоящему времени известно большое число модификаций открытых резонаторов, отличающихся друг от друга конфигурацией и взаимным расположением зеркал. Наибольшей простотой и удобством отличается резонатор, образованный двумя сферическими отражателями с равной кривизной, обращенными вогнутыми поверхностями навстречу друг другу и расположенные на расстоянии радиуса кривизны, равного радиусу сфер, друг от друга. Фокусное расстояние сферического зеркала равно половине радиуса кривизны. Поэтому фокусы отражателей совпадают, вследствие чего резонатор называется конфокальным (рис. 1). Интерес в конфокальному резонатору обусловлен удобством его юстировки не требующей сорогой параллельности отражателей друг другу. Необходимо лишь, чтобы ось конфокального резонатора пересекала каждый отражатель достаточно далеко от его края. В противном случае дифракционные потери могут быть слишком большими.

Рассмотрим конфокальный резонатор более подробно.

Пусть все размеры резонатора велики по сравнению с длиной волны. Тогда моды резонатора, распределение полей в нем и дифракционные потери можно получить на основе принципа Гюйгенса-Френеля путем решения соответствующего интегрального уравнения. Если отражатели конфокального резонатора имеют квадратное сечение со стороной 2а, которая мала по сравнению с расстоянием между зеркалами l, равным их радиусу кривизны R, а числа Френеля велики, то собственные функции интегрального уравнения типа Фокса и Ли аппроксимируются произведениями полиномов Эрмита Hn(x) на гауссову функцию .

В декартовой системе координат, начало которой помещено в центр резонатора, а ось z совпадает с осью резонатора (рис. 1), поперечное распределение поля дается выражением

где определяет размер той области поперечного сечения, при выходе на которой интенсивность поля в резонаторе, пропорциональная S2, падает в е раз. Другими словами – это ширина распределения интенсивности.

Полиномы Эрмита нескольких первых степеней имеют вид:

Собственными функциями уравнения, дающим поперечное распределение (1), соответствуют собственные частоты, определяемые условием

На рис. 2 графически представлены три первые функции Эрмита-Гаусса для одной из поперечных координат, построенные по формуле (1) с учетом (2). Эти графики наглядно показывают характер изменения поперечного распределения поля с увеличением поперечного индекса n.

Резонансы в конфокальном резонаторе имеют место только для целых значений . Спектр мод к.р. вырожден, увеличение m+n на две единицы и уменьшение q на единицу дает то же значение частоты. Основной является мода ТЕМ00q, поперечное распределение поля определяется простой гауссовой функцией . Ширина распределения интенсивности меняется вдоль оси z по закону

где , а имеет смысл радиуса пучка в фокальной плоскости резонатора. Величина определяется длиной резонатора и составляет

На поверхности зеркала площадь пятна основной моды, как видно из (4) и (5), вдвое больше, чем площадь сечения шейки каустики.

Решение (1) получено для поля внутри резонатора. Но когда одно из зеркал частично прозрачно, как это бывает в случае активных лазерных резонаторов, то выходящая наружу волна является бегущей волной с поперечным распределением (1).

По существу, выделение основной моды активного конфокального резонатора – это способ получения гауссова пучка монохроматического света. Рассмотрим их более подробно.) ширина , чему соответствует угловая расходимость

В результате основная часть энергии гауссова пуска сосредоточена в телесном угле

Таким образом, расходимость лазерного излучения в основной моде определяется не поперечным, а продольным размером резонатора лазера.

По существу, формула (8) описывает дифрагированную волну, являющуюся результатом самодифракции гауссова пуска. Дифракционная картина, описываемая (8), характеризуется монотонным уменьшением интенсивности при отходе от осевого направления, т.е. полным отсутствием каких-либо осцилляций в яркости дифракционной картины, а также быстрым спаданием интенсивности волны на крыльях распределения. Такой характер имеет дифракция гауссова пучка на любой апертуре, лишь бы размер ее в достаточной мере превышал ширину распределения интенсивности пучка.