Понять Вселенную: что такое квант и почему его так любят экстрасенсы. Траникус Сатр. Квантовая Вселенная

Элементарная частица, оказывается, может находиться одновременно в нескольких местах и моментально перемещаться с одного края Вселенной на другой. И даже если ее «поймать», то она может представлять собой и волну, и частицу, а иногда ни то и ни другое. Некоторые частицы настолько чувствительны, что сам процесс наблюдения меняет их характеристики.

Ученые шутят, что тот, кто поймет квантовую теорию — поймет все на свете. В этом есть своя соль. Книга «Квантовая Вселенная» , выпущенная издательством МИФ, поможет разобраться в устройстве мироздания на самом тонком уровне.

Частицы квантовой физики неизмеримо малы: даже ядро атома для них так же велико, как для песчинки — гора. Вакуум, который мы привыкли считать пустым пространством, на самом деле представляет собой кипучую субстанцию, где каждый миг мириады частиц появляются ниоткуда, сталкиваются, рождают новые и исчезают.

Например, бозоны Хиггса, которые так долго не удавалось обнаружить, пронизывают каждую точку пространства. Именно они «отвечают» за то, что у веществ существует масса. Если представить, как человек пробирается через плотное скопление людей, можно сравнить эту картину с действием бозонов на все частицы Вселенной — они их толкают, изменяют траекторию и тормозят. Только фотоны не взаимодействуют с бозонами Хиггса, а потому и передвигаются с такой невероятной скоростью — около 300000 километров в секунду. То есть скорость света — это скорость частиц, не имеющих массы.

Ученые подсчитали, что всего три грамма любого вещества, если превратить их в энергию, могут снабжать небольшой город в течение 100 лет. А теперь еще более интересная информация: сколько энергии спрятано в вакууме? Ответ поражает: вакуум настолько насыщен невидимыми частицами, что энергия 1 кубометра «пустоты» — это столько же, сколько Солнце производит за целую тысячу лет! По сравнению с этим дремлющим могуществом меркнет даже энергия ядерного распада, используемая в АЭС.


Примечательно, что книга «Квантовая Вселенная» , хоть и повествует о неуловимых и малопонятных объектах, тем не менее не отрывается от настоящего и рассказывает, как квантовые процессы помогают в самых обыденных вещах. Например, посмотрите на свой смартфон. Первый транзистор был создан в 1947 году, первый транзисторный компьютер в 1953 году состоял из 92 транзисторов — а теперь в мобильнике их около миллиарда! Работа транзистора — важное приложение квантовой теории, и весь современный мир построен на полупроводниковых технологиях.

В книге даны новейшие достижения науки в популярном, но не упрощенном изложении. Читатель сможет увидеть то, что скрыто от глаз и даже микроскопов: электроны — это не «маленькие планеты» вокруг ядра атома, а энергетические сферы с различной вероятностью нахождения в них самого электрона; цвет — это фотоны, испускаемые электронами при потере энергии; все частицы Вселенной «знают» друг о друге, и многое-многое другое. В сложных случаях, когда информация настолько непривычна, что кажется абсурдом, авторы книги прибегают к помощи графиков, формул, рисунков и неожиданных сравнений.

Так из чего же состоит этот мир: атомы и планеты, вакуум и звезды, окружающие нас предметы — и мы с вами?

Квантовая теория описывает Вселенную, в которой частица может находиться в нескольких местах одновременно и мгновенно перемещается из одного места в другое. Эта концепция кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Однако законы квантовой теории настолько просты, что их можно записать на обратной стороне конверта.

Как работает аудиосжатие

Разложение волны на составляющие ее волны-синусоиды - основа технологии аудиосжатия. Представьте себе звуковые волны, образующие вашу любимую мелодию. Эта сложная волна может быть разбита на составляющие. Для абсолютно точного воспроизведения исходного звука требуется множество отдельных волн-синусоид, но можно отказаться от многих из них, что совершенно не скажется на восприятии качества аудиозаписи.

«Пустые» атомы

Изнутри атом представляет собой нечто странное. Если вы встанете на протон и посмотрите оттуда во внутриатомное пространство, то увидите лишь пустоту. Электроны окажутся слишком малы, чтобы их разглядеть, даже если будут на расстоянии вытянутой руки, но и это вряд ли произойдет. Если вы стоите «на протоне» у побережья Англии, то расплывчатые пределы атома расположатся где-то на фермах северной Франции.

Вселенная размером с грейпфрут

Приятный бонус работы с элементарными фрагментами материи, не имеющими никакого размера, состоит в том, что мы без проблем можем представить, что вся видимая Вселенная когда-то была сжата в объект размером с грейпфрут или даже с булавочную головку. Как бы ни шла кругом голова от таких мыслей, нет никаких причин объявлять такое сжатие невозможным.

Квантовый скачок

Представьте, что мы помещаем электрон 1 в атом 1, а электрон 2 - в атом 2. Через некоторое время утверждение «электрон 1 все еще в атоме 1» не будет иметь смысла. Он может находиться и в атоме 2, потому что всегда есть вероятность того, что электрон совершил квантовый скачок. Все, что может произойти, действительно происходит, и электроны вполне могут за мгновение облететь всю Вселенную.

Бозоны Хиггса

Питер Хиггс предположил, что пустое пространство полно некими частицами. Они постоянно, без отдыха взаимодействуют со всеми массивными частицами во Вселенной, избирательно замедляя их движение и создавая массу. Результат взаимодействий между обычной материей и вакуумом, наполненным частицами Хиггса, состоит в том, что мир из бесформенного становится разнообразным, населенным звездами, галактиками и людьми.

Два английских физика, один из которых занимается изучением элементарных частиц (Брайан Кокс), а другой является профессором кафедры теоретической физики в университете г. Манчестер (Джефф Форшоу) знакомят нас с фундаментальной моделью устройства мира.

Используя доступный язык, многочисленные рисунки и удачные аналогии, авторы смогли объяснить трудные для понимания понятия квантовой физики.

Брайан Кокс, Джефф Форшоу:

Цель этой книги — сорвать покровы таинственности с квантовой теории — теоретической конструкции, в которой путаются слишком многие, включая даже самих первопроходцев в этой отрасли. Мы намерены использовать современную перспективу, пользуясь наработанными за век уроками непредусмотрительности и развития теории. Однако на старте путешествия мы перенесемся в начало XX века и исследуем некоторые проблемы, заставившие физиков радикально отклониться от того, что ранее считалось магистральным направлением науки.

1. Что-то странное грядет

Квантовая теория — возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

2. В двух местах одновременно

Самые необычные предсказания квантовой теории обычно проявляются в поведении малых объектов. Но поскольку большие объекты состоят из малых, при определенных обстоятельствах квантовая физика требуется для объяснения свойств одних из самых крупных объектов во Вселенной — звезд.

3. Что такое частица?

Определившись с тем, что описание электрона во многих отношениях подражает поведению волн, мы должны выработать более точные понятия о самих волнах. Начнем с описания того, что происходит в цистерне с водой, когда две волны встречаются, смешиваются и интерферируют друг с другом. Представим максимумы волн в виде циферблатов со стрелкой на 12 часов, а минимумы — в виде циферблатов со стрелкой на 6. Мы можем отобразить и промежуточные между минимумом и максимумом положения волн, нарисовав циферблаты с промежуточным временем, как и в случае с фазами между новой и полной Луной.

4. Все, что может случиться, действительно случается

Принцип неопределенности Гейзенберга

В своей оригинальной работе Гейзенберг сумел оценить отношения между точностью измерения положения и импульса частицы. Принцип неопределенности Гейзенберга — одна из самых неправильно понимаемых частей квантовой теории, тропинка, по которой всякие шарлатаны и поставщики вздора проталкивают свою философскую ерунду.

Вывод принципа неопределенности Гейзенберга из теории циферблатов

Три циферблата, показывающие одинаковое время и расположенные на одной линии, описывают частицу, в начальный момент находящуюся где-то в области этих циферблатов. Нас интересует, каковы шансы на то, чтобы найти частицу в точке X в некоторый последующий момент времени.

Краткая история постоянной Планка

Планк разрушил первые камни в основании Максвеллова представления о свете, показав, что энергия света, излучаемого нагретым телом, может быть описана, только если она испускается квантами.

Обратно, к принципу неопределенности Гейзенберга

Теория квантовой механики, которую мы разработали, предполагает, что, если поместить песчинку в какую-то точку, позднее она может оказаться в любом другом месте Вселенной. Но очевидно, что с настоящими песчинками так не происходит. Первый вопрос, на который нужно ответить, звучит так: сколько раз будут повернуты стрелки часов, если мы переместим частицу с массой песчинки на расстояние, например, 0,001 мм за одну секунду?

5. Движение как иллюзия

Задав начальную группу с помощью часов, показывающих разное, а не одинаковое время, мы пришли к описанию движущейся частицы. Интересно, что мы можем установить очень важную связь между часами со сдвинутыми стрелками и поведением волн.

Волновые пакеты

Частица с хорошо известным импульсом описывается большой группой циферблатов. Точнее говоря, частица с совершенно точно известным импульсом будет описана бесконечно длинной группой циферблатов, что означает бесконечно длинный волновой пакет.

6. Музыка атомов

Сейчас мы можем применить накопленные знания для решения вопроса, который ставил в тупик Резерфорда, Бора и других ученых в первые десятилетия XX века: что именно происходит внутри атома? …Здесь мы впервые попытаемся с помощью нашей теории объяснить явления реального мира.

Атомный ящик

Кажется, нам удалось выработать правильный взгляд на атомы. Но все же кое-что не совсем так. Не хватает последнего кусочка головоломки, без которого невозможно объяснить структуру более тяжелых атомов, чем водород. Если говорить более прозаично, нам также не удастся объяснить, почему мы, собственно, не проваливаемся сквозь землю, что создает проблемы для нашей замечательной теории природы.

7. Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)

Материя способна быть стабильной, только если электроны будут подчиняться так называемому принципу Паули — одному из самых удивительных явлений в нашей квантовой Вселенной.

8. Взаимозависимость

До этого времени мы уделяли пристальное внимание квантовой физике изолированных частиц и атомов. Однако наш физический опыт связан с восприятием множества сгруппированных между собой атомов, и уже поэтому пора начать разбираться с тем, что происходит, когда атомы группируются.

9. Современный мир

Транзистор — самое важное изобретение за последние 100 лет: современный мир построен на полупроводниковых технологиях и сформирован ими.

10. Взаимодействие

Начнем с формулировки законов первой открытой квантовой теории поля — квантовой электродинамики, сокращенно QED. Истоки этой теории восходят к 1920-м годам, когда Дираку с особенным успехом удалось поставить электромагнитную теорию Максвелла на квантовые рельсы.

Проблема измерения в квантовой теории

Мы можем двигаться вперед, считая, что мир необратимо изменился в результате измерения, даже если на самом деле ничего подобного не произошло. Но все это не так важно, когда дело доходит до серьезной задачи — вычисления вероятности, что нечто произойдет при постановке эксперимента.

Антиматерия

Электроны, движущиеся назад во времени, выглядят как «электроны с положительным зарядом». Такие частицы действительно существуют и называются «позитронами».

11. Пустое пространство не такое уж пустое

Вакуум — это очень интересное место, полное возможностей и препятствий на пути частиц.

Стандартная модель физики частиц

Стандартная модель действительно содержит лекарство от болезни повышенных вероятностей, и это лекарство известно под названием хиггсовского механизма. Если оно верно, то Большой адронный коллайдер должен обнаружить еще одну природную частицу — бозон Хиггса, после чего наши взгляды на содержимое пустого пространства должны кардинально измениться.

Происхождение массы

Вопрос о происхождении массы особенно замечателен тем, что ответ на него ценен и помимо нашего очевидного желания узнать, что такое масса. Попытаемся объяснить это довольно загадочное и странным образом сконструированное предложение более подробно

Эпилог: смерть звезд

Умирая, многие звезды заканчивают свой путь в качестве сверхплотных шаров ядерной материи, переплетенной с множеством электронов. Это так называемые белые карлики. Такой будет и судьба нашего Солнца, когда оно примерно через 5 миллиардов лет исчерпает запасы ядерного топлива

Для дальнейшего чтения

При подготовке этой книги мы использовали многие другие работы, и некоторые из них заслуживают особого упоминания и рекомендаций.

Кокс Б., Форшоу Д. Квантовая вселенная .
Как устроено то, что мы не можем увидеть. М.: МИФ. 2016.

Уже в три года Майкл Тэлбот удивлял своих родителей. Он в подробностях рассказывал и отказывался называть мисте­ра и миссис Тэлбот папой и мамой. Чудной ма­лыш предпочитал не соки; газировку или молоко, а… крепкий черный чай. Он садился на пол в позе лотоса и потягивал чай из пиалы.

Майкл «баловался» ясновидением, путешество­вал вне тела, общался с пришельцами. Он вспоми­нал: «Учась в колледже, я как-то ехал на машине и увидел летающую тарелку. Я остановился, вышел на дорогу и минут пять глазел на инопланетный корабль. Затем поехал дальше. Обычно дорога от того места, где я увидел НЛО, до дома занимала полчаса. Представляете, как я удивился, когда домашние набросились нa меня: «Куда ты пропал?!». Оказалось, прошли почти целые сутки!».

В надежде найти рациональное объяснение паранормальным явлениям, которые преследова­ли его, он обратился к науке. Ответы Майкл искал необычным способом: «Вместо здравого рассудка я использовал более глубокие интуитивные спо­собности. Я на первый взгляд бесцельно бродил мимо библиотечных стеллажей. Я ждал, когда нужная книга «позовет» меня. И действительно почувствовал настойчивое желание остановить­ся. Моя рука поднялась, взяла с полки книгу и от­крыла ее где-то на середине. Только после этого я взглянул на название – это была подшивка жур­налов Physics Today («Физика сегодня»), номер за сентябрь 1970 года со статьей физика Брюса де Витта «Квантовая механика и реальность».

В статье доказывался известный тезис: мир во­круг нас – это наши материализованные , мы видим лишь то, о чем думаем, что хотим видеть. Де Витт писал, что квантовая физика обнаружила зависимость реальности от человеческого разума. Публикация поразила Тэлбота, и он стал на­стоящим фанатом квантовой физики, изучающей субатомные частицы – кванты. Эти самые кванты поразительным образом общаются между собой, как близнецы, чувствующие друг друга на огром­ном расстоянии, информация от кванта к кванту передается мгновенно! Когда явление было под­тверждено, физики едва не свергли с пьедестала своего кумира – Эйнштейна, ведь по теории отно­сительности в мире нет ничего, что могло бы дви­гаться быстрее скорости света, но «мгновенно» как раз и означает «быстрее скорости света»!

Противоречие разрешил физик Дэвид Бом. Он доказал, что кванты не передают информацию через время и пространство, они просто обитают в таком измерении, где информация существует всюду и одновременно, то есть информация не локальна, а, напротив, тотальна, всеобъемлюща. Бом высказал сенсационное предположение о том, что поведение квантов неким загадочным образом связано с… мышлением ученыx, и наблюдающих за ними. Кванты ведут себя упорядоченно, «пристойно» в тот момент, когда за ними наблю­дают, однако стоит исследователю отвлечься на минутку, как в мир субатомных частиц возвраща­ется первозданный хаос! Увидеть реальные кван­ты, по мнению Дэвида Бома, также невозможно, как увидеть в зеркале реального себя. Ведь, подхо­дя к зеркалу, человек подсознательно готовится к встрече со своим отражением и в итоге отражает­ся таким, каким ожидает себя увидеть.

Но как же квантам удается предугадать экспериментаторов? На это Бом отвечает так: мозги ученых и всех прочих людей (как и вообще все во Вселенной) тоже состоят из субатомных частиц. Кванты живут в мире тотальной информа­ции, поэтому тем из них, за которыми и наблюдают, ничего не стоит узнать, чего хотят от них кванты, составляющие мозг наблюдающего:)

Субатомные частицы преподнесли физикам еще один сюрприз. Выяснилось, что сгруппирован­ные вместе в больших количествах они перестают вести себя как индивидуальности и демонстриру­ют самое настоящее коллективное сознание.

Бом пришел к выводу, что в каждом кванте за­кодирована одна и та же информация, причем до­статочная для воспроизведения всей Вселенной! Другими словами, Вселенная как некое целое со­держится в свернутом виде внутри каждой своей микроскопически малой части (в том числе и в ДНК каждого человека). Нечто подобное говорил Будда и в лирической форме высказывал поэт – романтик XVIII века Уильям Блейк:

В одном мгновеньи – видеть вечность,

Огромный мир – в зерне песка,

В единой горсти – бесконечность

И небо – в чашечке цветка..

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой - фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены. Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.

Что-то странное грядет.
Квант. Это слово одновременно взывает к чувствам, сбивает с толку и завораживает. В зависимости от точки зрения это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться с неотвратимой странностью субатомной сферы. Для физика квантовая механика - одна из трех великих опор, на которых покоится понимание природы (две другие - это общая и специальная теории относительности Эйнштейна). Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала с толку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности. Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий. В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы. Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.
Это не только впечатляюще, но и удивительно, и, если бы построение моделей было единственной заботой квантовой теории, вы могли бы с полным правом спросить, в чем же вообще проблема. Наука, разумеется, не обязана быть полезной, но многие техно-логические и общественные изменения, совершившие революцию в нашей жизни, вышли из фундаментальных исследований, проводимых современными учеными, которые руководствуются лишь желанием лучше понять окружающий мир. Благодаря этим, вызванным только любопытством, открытиям во всех отраслях науки мы имеем увеличенную продолжительность жизни, международные авиаперевозки, свободу от необходимости заниматься сельским хозяйством ради собственного выживания, а также широкую, вдохновляющую и открывающую глаза картину нашего места в бесконечном звездном море. Но все это в каком-то смысле побочные результаты. Мы исследуем из любопытства, а не потому, что хотим добиться лучшего понимания реальности или разработать более эффективные безделушки.

Содержание
Что-то странное грядет
В двух местах одновременно
Что такое частица?
Все, что может случиться, действительно случается
Движение как иллюзия
Музыка атомов
Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)
Взаимозависимость
Современный мир
Взаимодействие
Пустое пространство не такое уж пустое Эпилог: смерть звезд
Для дальнейшего чтения.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Квантовая вселенная, Как устроено то, что мы не можем увидеть, Кокс Б., Форшоу Дж., 2016 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать epub
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.