Классификация органических соединений функциональные группы. Функциональные группы органических соединений. Список использованной литературы

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Каждый период развития органической химии отмечен попытками ученых каким-то образом привести разнообразие химических соединений в единую систему.

Важнейшими признаками, которые положены в основу современной классификации органических соединений, являются строение углеродной цепи и природа функциональных групп.

Классификация по строению углеродной цепи

В зависимости от расположения углеродных атомов в молекуле органические соединения делят на несколько больших групп.

Различают два типа органических соединений: ациклические и циклические. Ациклические или алифатические (отдревнегреч. алифар– жир) – вешества с открытой (незамкнутой) цепью, другое их название – соединения жирного ряда. По строению углеводородной цепи среди ациклических соединений различают; насыщенные (предельные) вешества, содержащие только простые углерод-углеродные связи и ненасыщенные (непредельные) алифатические – структуры с кратными (двойными,тройными) углерод-углеродными связями.

К циклическим относятся соединения, содержащие в своей структуре замкнутые цепи атомов – циклы (от греч. циклос – круг). Природа атомов, входящих в цикл, лежит в основе деления всех циклических соединений на две большие группы: карбоци клические и гетеро циклические. В молекулах карбоциклических соединений цикл состоит только из атомов углерода. Гетероциклические соединения имеют в своей структуре циклы, содержащие наряду с атомами углерода атомы других элементов, чаще всего О, S, N.

Карбоциклические соединения в свою очередь делятся на алициклические и ароматические,

Алициклические структуры подобно алифатическим соединениям по степени насыщенности подразделяются на насыщенные и ненасыщенные:

Среди гетероциклических соединений различают насыщенные, ненасыщенные и ароматические структуры:

Соединения, молекулы которых состоят только из атомов углерода и водорода, называются углеводородами. Замещение одного или нескольких атомов водорода на функциональные группы ведет к образованию других классов органических соединений.

Классификация по природе функциональной группы

Функциональная группа – структурный фрагмент молекулы, характеризующий свойства соединений данного класса. Например, свойства карбоновых кислот характеризуются наличием карбоксильной группы -СООН; в спиртах функциональная группа – спиртовый гидроксил –ОН; к аминам относятся соединения, содержащие группу -NH 2 и т. д.

По количеству и однородности функциональных групп органические соединения делят на моно-, поли- и гетерофункциональные.

Вещества с одной функциональной группой называют монофункциональными, с несколькими одинаковыми функциональными группами – полифункциональными. Соединения, содержащие несколько различных функциональных групп, – гетерофункциональные.

Соединения одного класса объединены в гомологические ряды. Гомологический ряд – это ряд органических соединений с одинаковыми функциональными группами и однотипным строением, каждый представитель гомологического ряда отличается от предыдущего на постоянную единицу (–СН 2 –), которую называют гомологической раз ностью. Члены гомологического ряда называются гомологами.


НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИИ

Химическая номенклатура – совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления их названий.

Соблюдать соответствия между существующей классификацией веществ и их наименованиями позволяют номенклатурные системы.

Номенклатура органических соединений складывалась на протяжении всего периода возникновения и становления органической химии как науки. Для названий органических соединений применяют несколько номенклатурных систем: тривиальную, рациональную, международную (ИЮПАК),

Тривиальная номенклатура

На первых этапах развития органической химии соединения назывались случайно. Это было связано с их нахождением в природе; щавелевая кислота, яблочная кислота и другие, или с источником их получения: древесный спирт, муравьиная кислота и др. Многие тривиальные названия прочно укоренились и до сих пор широко применяются.

Рациональная номенклатура

В основе рациональной номенклатуры используется принцип деления органических соединений на гомологические ряды. Вещества рассматриваются как производные простейшего представителя данного ряда: для алканов -- метана, алкенов – этилена, алкинов – ацетилена и т. д., например:

В настоящее время применение рациональной номенклатуры ограничено. Основные ее принципы нашли свое отображение в радикало-функциональной номенклатуре.

Международная номенклатура (ИЮПАК)

Первая попытка создать номенклатурную систему, которая позволяла бы дать однозначное название любому органическому соединению, была предпринята химиками в 1892 году на международном конгрессе в Женеве (женевская номенклатура). Правила современной номенклатуры были разработаны на XIX конгрессе Международной: союза теоретической и прикладной химии в 1957 году. Эти правила известны под названием номенклатуры ИЮПАК.

Номенклатурные правила ИЮПАК предусматривают несколько способов образования названий органических соединений. Наиболее широко применяются заместительная и радикало-функииональная номенклатуры.

Заместительная номенклатура

Прежде чем перейти к рассмотрению заместительной номенклатуры, дадим определение основным понятиям.

Родоначальная структура – структурный фрагмент молекулы (молекулярный остов), лежащий в основе названия соединения: главная углеродная цепь атомов для ациклических соединений, для карбо- и гетероциклических – цикл:

Родоначальное название может быть систематическим, тривиальным или полусистематическим.

В органической химии для sp3-гибрилизованного углерода существует такое понятие, как первичный, вторичный, третичный.

Атом углерода, связанный σ-связью только с одним атомом углерода, называется первичным, с двумя – вторичным, стремя – третичным.

Радикал – остаток углеводорода, образующийся в результате удаления одного или нескольких атомов водорода. Свободную валентность в радикалах обозначают черточкой.

По количеству свободных валентностей различают одно-, двух-, трехвалентные радикалы:

В зависимости оттого, у какого атома углерода находится свободная валентность, различают первичные, вторичные и третичные радикалы:

Заместителем называют любой атом или группу атомов, включая радикал и функциональную группу, которые не входят в родоначальную структуру.

Положение заместителей в молекуле указывают с помощью цифр или букв, которые называют локантами. Для обозначения нескольких одинаковых заместителей или кратных связей в данной молекуле применяют множительные (умножающие) приставки: ди- (два), три- (три), тетра- (четыре), пента- (пять) и т д.

Согласно заместительной номенклатуре органические соединения рассматривают как производные углеводородов, в молекулах которых один или несколько атомов водорода замешены на другие атомы или атомные группы.

Составление названий проводят в определенном порядке:

1. Среди всех функциональных групп, имеющихся в соединении, выбирают старшую. Следующие группы перечисляют в порядке уменьшения их старшинства:

В названии органического вещества лишь старшая функциональная группа обозначается в суффиксе, все остальные – в префиксе, но некоторые функциональные группы всегда находят свое отражение в префиксе:

Их не рассматривают по старшинству.

2. Устанавливают родоначальную структуру. Если соединение содержит кратные связи, то они должны войти в родоначальную структуру,

3. Проводят нумерацию атомов родоначальной структуры таким образом, чтобы старшая функциональная группа получила по возможности меньший номер,

4. Составляют название соединения в целом: первым указывают в алфавитном порядке функциональные группы (кроме старшей) и углеводородные радикалы в префиксе, затем – название родоначальной структуры в корне и в конце названия – старшую функциональную группу в суффиксе.

Степень насыщенности обозначается специальными суффиксами: -ан – для насыщенных, -ен – для двойной, -ин – для тройной связи.

Локанты, буквенные или цифровые, и множительные приставки располагают перед названием заместителей или кратных связей.

Пример составления названий:


Радикало-функцыональнан номенклатура

В основе радикало-функииональной номенклатуры лежит название класса (спирт, кетон и др), перед которым перечисляют названия радикалов и функциональных групп (кроме старшей), например:

Родоначальную структуру чаще обозначают с помощью тривиального названия, а положение радикалов – с помощью буквенных локантов; α, β, γ, δ (греческий алфавит). Буквой α обозначают ближайший к старшей функциональной группе атом углерода.

В дальнейшем при изучении различных классов органических соединений мы расширим приведенные краткие пояснения на многочисленных примерах.


2. ХИМИЧЕСКАЯ СВЯЗЬ. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Остановимся на одном из важнейших вопросов химии, как осуществляется связь атомов в молекулах? Используя знания, полученные в курсе неорганической химии, рассмотрим вопросы природы химической связи между атомами или типы химических связей.

Современная теория химической связи базируется на квантово-механических представлениях о строении молекулы. предложили в 1916 г. немецкий ученый В. Косселъ и американский ученый Дж. Н.Льюис, Авторы электронной теории выдвинули идею о том, что химическая связь – результат взаимодействия внешних электронных оболочек атомов. Согласно электронной теории химической связи, образуя химическую связь, каждый атом стремится заполнить внешнюю электронную оболочку до конфигурации, присущей инертным газам. При этом он принимает участие в образовании общей электронной пары, отдает или принимает электроны. Принцип заполнения валентных оболочек до конфигурации инертных газов получил название октетное правило.

Первый подход – по природе углеводородного скелета

I. Ациклические или алифатические соединения - не содержат цикл:

    предельные (насыщенные, парафиновые)

    непредельные (ненасыщенные) с двойными, тройными связями.

II. Карбоциклические (в цикле только углерод) соединения:

    алициклические – насыщенные и ненасыщенные циклические углеводороды;

    ароматические – сопряженные циклические соединения с особыми ароматическими свойствами.

III. Гетероциклические соединения - в составе цикла гетероатомы (heteros – иной).

Второй подход – по природе функциональной группы, определяющей химические свойства соединения.

Функциональная группа

Название

Углеводороды

Ацетилен

Галогенсодержащие соединения

Галогенопроизводные

–Hal (halogen)

Хлористый этил, этилхлорид

Кислородосодержащие соединения

Спирты, фенолы

CH 3 CH 2 OH

Этиловый спирт, этанол

Простые эфиры

CH 3 –O–CH 3

Диметиловый эфир

Альдегиды

Уксусный альдегид, этаналь

Ацетон, пропанон

Карбоновые кислоты

Уксусная кислота, этановая кислота

Сложные эфиры

Этиловый эфир уксусной кислоты, этилацетат

Галогенангидриды

Хлорангидрид уксусной кислоты, ацетилхлорид

Ангидриды

Ангидрид уксусной кислоты

Амид уксусной кислоты, ацетамид

Азотосодержащие соединения

Нитросоединения

Нитрометан

Этиламин

Ацетонитрил, нитрил уксусной кислоты

Нитрозосоединения

Нитрозобензол

Гидразосоединения

Фенилгидразин

Азосоединения

C 6 H 5 N=NC 6 H 5

Азобензол

Диазонивые соли

Фенилдиазоний хлорид

Номенклатура органических соединений

1) 1892 г. (Женева, Международный химический конгресс) - женевская ;

2) 1930 г. (Льеж, Международный союз теоретической и прикладной химии - International Union of Pure and Applied Chemistry (IUPAC) - льежская ;

Тривиальная номенклатура : названия дают случайно.

Хлороформ, мочевина.

Древесный спирт, винный спирт.

Муравьиная кислота, янтарная кислота.

Глюкоза, сахароза и т.д.

Рациональная номенклатура : в основе «рациональное звено» - название простейшего представителя класса + названия заместителей (начиная с простейшего) с указанием количества при помощи приставок ди-, три-, тетра-, пента- .

Встречается для простых органических соединений, особенно в старой химической литературе.

Положение заместителей указывают латинскими буквами

или словами “симметричный” (симм -), “несимметричный” (несимм -), орто -(о- ), мета - (м -), пара -(п -),

буквами N–(у азота), О–(у кислорода).

Номенклатура IUPAC (международная)

Основные принципы этой системы номенклатуры следующие.

1. В основе - самая длинная углеводородная цепь со старшей функциональной группой, обозначаемой суффиксом.

2. Атомы углерода в цепи нумеруются последовательно с того конца, к которому ближе расположена старшая функциональная группа.

При нумерации предпочтение (при прочих равных условиях) имеет двойная, затем тройная связь.

Если оба варианта нумерации равнозначны, то направление выбирается таким образом, чтобы сумма цифр, указывающих положение заместителей, была наименьшей (правильней – в которой первой стоит меньшая цифра).

3. К основе названия добавляются, начиная с простейшего, названия заместителей, при необходимости – с указанием их количества при помощи приставок ди-, три-, тетра-, пента-.

При этом для каждого заместителя указывают его номер в цепи.

Положение, название заместителей указывают в префиксе перед названием цепи, отделяя цифры дефисом.

Для функциональных групп цифра может стоять перед названием цепи или после названия цепи перед или после названия суффикса с отделением дефисом;

4. Названия заместителей (радикалов) могут быть системные и тривиальные.

Алкильные радикалы называют, изменяя окончание -ан на -ил в названии соответствующего алкана.

В названии радикала отражается тип атома углерода, имеющего свободную валентность: атом углерода, связанный

с одним углеродным атомом, называется первичным –СН 3 ,

с двумя – вторичным
,

с тремя – третичным

с четырьмя – четвертичным .

Другие радикалы, имея или не имея окончание -ил , обычно носят тривиальное название.

Двухвалентные радикалы имеют окончание -ен или -иден.

Базовое соединение

Название

Структура радикала

Название

Одновалентные радикалы

CH 3 –CH 2 –

CH 3 –CH 2 –CH 3

СH 3 –CH 2 –CH 2 –

Изопропил (втор -пропил)

CH 3 –CH 2 –CH 2 –CH 3

CH 3 –CH 2 –CH 2 –CH 2 –

втор -Бутил

Изобутан

Изобутил

трет -Бутил

CH 3 (CH 2) 3 CH 3

CH 3 (CH 2) 3 CH 2 –

(н -амил)

Изопентан

Изопентил (изоамил)

Неопентан

Неопентил

CH 2 =CH–CH 2 –

CH 3 –CH=CH–

Пропенил

Базовое соединение

Название

Структура радикала

Название

о -Толил

m -Толил

м -Толил

n -Толил

п -Толил

Уксусная кислота

Бензойная кислота

Гидрокси (окси ж)

Двухвалентные радикалы

Этилиден

–CH 2 –CH 2 –

Бензилиден

Примеры применения номенклатуры IUPAC:

Органические соединения классифицируют по двум основным признакам: строению углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных атомов и подразделяются на алициклические и ароматические. К алициклическим относятся все карбоциклические соединения, кроме ароматических. Ароматические соединения содержат циклогексатриеновый фрагмент (бензольное ядро).

Гетероциклические соединения - содержат циклы, включающие наряду с атомами углерода один или несколько гетероатомов.

По природе функциональных групп органические соединения делят на классы .

Таблица 2.1. Основные классы органических соединений.

Функциональная группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

Галоген

F, -Cl, -Br, -I (–Hal)

Галогенпроизводные

R-Hal

Гидроксильная

Спирты и фенолы

R-OH

Алкоксильная

Простые эфиры

R-OR

Амино

NH 2 , >NH, >N-

Амины

RNH 2 , R 2 NH, R 3 N

Нитро

Нитросоединения

RNO 2

Карбонильная

Альдегиды и кетоны

Карбоксильная

Карбоновые кислоты

Алкоксикарбонильная

Сложные эфиры

Карбоксамидная

Амиды

карбоновых кислот

Тиольная

Тиолы

R-SH

Сульфо

Сульфокислоты

R-SO 3 H

2. Номенклатура органических соединений.

В настоящее время в органической химии общепринятой является систематическая номенклатура, разработанная Международным союзом чистой и прикладной химии (IUPAC ). Наряду с ней сохранились и используются тривиальная и рациональная номенклатуры.

Тривиальная номенклатура состоит из исторически сложившихся названий, которые не отражают состава и строения вещества. Они являются случайными и отражают природный источник вещества (молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая кислота), способ получения (пировиноградная кислота, серный эфир), имя первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения (аскорбиновая кислота). Преимуществом тривиальных названий являетсяих лаконичность, поэтому употребление некоторых из них разрешено правилами IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение соединения. Название соединения выражается при помощи сложного слова, составные части которого отражают определенные элементы строения молекулы вещества. В основе правил номенклатуры IUPAC лежат принципы заместительной номенклатуры , согласно которой молекулы соединений рассматриваются как производные углеводородов, в которых атомы водорода замещены на другие атомы или группы атомов. При построении названия в молекуле соединения выделяют следующие структурные элементы.

Родоначальная структура – главная цепь углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток формульного обозначения углеводорода со свободными валентностями (см. таблицу 2.2).

Характеристическая группа – функциональная группа, связанная с родоначальной структурой или входящая в ее состав (см. таблицу 2.3).

При составлении названия последовательно выполняют следующие правила.

    1. Определяют старшую характеристическую группу и указывают ее обозначение в суффиксе (см. таблицу 2.3).
    2. Определяют родоначальную структуру по следующим критериям в порядке падения старшинства: а) содержит старшую характеристическую группу; б) содержит максимальное число характеристических групп; в) содержит максимальное число кратных связей; г) имеет максимальную длину. Родоначальную структуру обозначают в корне названия в соответствии с длиной цепи или размером цикла: С 1 – “мет”, С 2 – “эт”, С 3 – “проп”, С 4 – “бут”, С 5 и далее – корни греческих числительных.
    3. Определяют степень насыщенности и отражают ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” – тройная связь.
    4. Устанавливают остальные заместители (углеводородные радикалы и младшие характеристические группы) и перечисляют их названия в префиксе в алфавитном порядке.
    5. Устанавливают умножающие префиксы – “ди”, “три”, “тетра”, указывающие число одинаковых структурных элементов (при перечислении заместителей в алфавитном порядке не учитываются).
    6. Проводят нумерацию родоначальной структуры так, чтобы старшая характеристическая группа имела наименьший порядковый номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед префиксами и перед суффиксами.


Таблица 2.2. Названия алканов и алкильных радикалов, принятые систематической номенклатурой IUPAC.

Алкан

Название

Алкильный радикал

Название

CH 4

Метан

СН 3 -

Метил

CH 3 CH 3

Этан

CH 3 CH 2 -

Этил

Пропан

CH 3 CH 2 CH 2 -

Пропил

Изопропил

CH 3 CH 2 СН 2 CH 3

н-Бутан

CH 3 CH 2 СН 2 CH 2 -

н- Бутил

втор- Бутил

Изобутан

Изобутил

трет- Бутил

CH 3 CH 2 СН 2 CH 2 СН 3

н-Пентан

CH 3 CH 2 СН 2 CH 2 СН 2 -

н- Пентил

Изопентан

Изопентил

Неопентан

Неопентил

Таблица 2.3. Названия характеристических групп (перечислены в порядке убывания старшинства).

Группа

Название

в префиксе

в суффиксе

-(C)OOH *

овая кислота

COOH

карбокси

карбоновая кислота

SO 3 H

сульфо

сульфоновая кислота

-(C)HO

оксо

аль

формил

карбальдегид

>(C)=O

оксо-

он

ОН

гидрокси

ол

меркапто

тиол

NH 2

амино

амин

OR **

алкокси, арокси

F, -Cl, -Br, -I

фтор, хлор, бром, иод

NO 2

нитро

* Атом углерода, заключенный в скобки, входит в состав родоначальной структуры.

** Алкокси-группы и все следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка старшинства.

Рациональная (радикально-функциональная) номенклатура и спользуется для названий простых моно- и бифункциональных соединений и некоторых классов природных соединений. Основу названия составляет название данного класса соединений или одного из членов гомологического ряда с указанием заместителей. В качестве локантов, как правило, используются греческие буквы.

В настоящее время известно более 10 млн органических соединений. Такое громадное количество соединений требует строгой классификации и единых международных номенклатурных правил. Этому вопросу уделяется особое внимание в связи с использованием компьютерных технологий для создания разнообразных баз данных.

1.1. Классификация

Строение органических соединений описывается с помощью структурных формул.

Структурной формулой называют изображение последовательности связывания атомов в молекуле при помощи химических символов.

С понятием последовательности соединения атомов в молекуле непосредственно связано явление изомерии, т. е. существования соединений одинакового состава, но различного химического стро- ения, называемых структурными изомерами (изомеры строения). Важнейшей характеристикой большинства неорганических соединений служит состав, выражаемый молекулярной формулой, например хлороводородная кислота HC1, серная кислота H 2 SO 4. Для органи- ческих соединений состав и соответственно молекулярная формула не являются однозначными характеристиками, так как одному и тому же составу может соответствовать много реально существующих соединений. Например, структурные изомеры бутан и изобутан, имея одинаковую молекулярную формулу С 4 Н 10, различаются последовательностью связывания атомов и имеют разные физико-химические характеристики.

Первым классификационным критерием служит деление органических соединений на группы с учетом строения углеродного скелета (схема 1.1).

Схема 1.1. Классификация органических соединений по строению углеродного скелета

Ациклические соединения - это соединения с незамкнутой цепью атомов углерода.

Алифатические (от греч. a leiphar - жир) углеводороды - простейшие представители ациклических соединений - содержат только атомы углерода и водорода и могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Их структурные формулы часто записывают в сокращенном (сжатом) виде, как показано на примере н -пентана и 2,3-диметилбутана. При этом обозначение одинарных связей опускают, а одинаковые группы заключают в скобки и указывают число этих групп.

Углеродная цепь может быть неразветвленной (например, в н-пентане) и разветвленной (например, в 2,3-диметилбутане и изопрене).

Циклические соединения - это соединения с замкнутой цепью атомов.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода и делятся на ароматические и алициклические (циклические неароматические). Число атомов углерода в циклах может быть различным. Известны большие циклы (макроциклы), состоящие из 30 атомов углерода и более.

Для изображения циклических структур удобны скелетные формулы, в которых опускают символы атомов углерода и водорода, но символы остальных элементов (N, O, S и др.) указывают. В таких

формулах каждый угол многоугольника означает атом углерода с необходимым числом атомов водорода (с учетом четырехвалентности атома углерода).

Родоначальником ароматических углеводородов (аренов) является бензол. Нафталин, антрацен и фенантрен относятся к полициклическим аренам. Они содержат конденсированные бензольные кольца.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной): азот, кислород, серу и др.

Большое многообразие органических соединений можно рассматривать в целом как углеводороды или их производные, полученные путем введения в структуру углеводородов функциональных групп.

Функциональная группа - это гетероатом или группа атомов неуглеводородного характера, определяющие принадлежность соеди- нения к определенному классу и ответственных за его химические свойства.

Вторым, более существенным классификационным критерием, служит деление органических соединений на классы в зависимости от природы функциональных групп. Общие формулы и названия важнейших классов приведены в табл. 1.1.

Соединения с одной функциональной группой называют монофункциональными (например, этанол), с несколькими одинаковыми функциональными группами - полифункциональными (например,

Таблица 1.1. Важнейшие классы органических соединений

* К функциональным группам иногда причисляют двойную и тройную связи.

** Применяемое иногда название тиоэфиры использовать не следует, так как оно

относится к серосодержащим сложным эфирам (см. 6.4.2).

глицерин), с несколькими разными функциональными группами - гетерофункциональными (например, коламин).

Соединения каждого класса составляют гомологический ряд, т. е. группу родственных соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на гомологическую разность СН 2 в составе углеводородного радикала. Например, ближайшими гомологами являются этан С 2 Н 6 и пропан С з Н 8 , метанол

СН 3 ОН и этанол СН 3 СН 2 ОН, пропановая СН 3 СН 2 СООН и бутановая СН 3 СН 2 СН 2 СООН кислоты. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.2. Номенклатура

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств.

В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

* Номенклатурные правила ИЮПАК по химии. Т. 2. - Органическая химия/пер. с англ. - М.: ВИНИТИ, 1979. - 896 с.; Хлебников А.Ф., Новиков М.С. Современная номенклатура органических соединений, или Как правильно называть органические вещества. - СПб.: НПО «Профессионал», 2004. - 431 с.

В тривиальных названиях дизамещенных производных бензола взаимное расположение заместителей в кольце обозначается префиксами орто- (о-) - для групп, находящихся рядом, мета- (м-) - через один атом углерода и пара- (п-) - напротив. Например:

Для использования систематической номенклатуры ИЮПАК необходимо знать содержание следующих номенклатурных терминов:

Органический радикал;

Родоначальная структура;

Характеристическая группа;

Заместитель;

Локант.

Органический радикал* - остаток молекулы, из которой удаляются один или несколько атомов водорода и при этом остаются свободными одна или несколько валентностей.

Углеводородные радикалы алифатического ряда имеют общее название - алкилы (в общих формулах обозначаются R), радикалы ароматического ряда - арилы (Ar). Два первых представителя алканов - метан и этан - образуют одновалентные радикалы метил СН 3 - и этил СН 3 СН 2 -. Названия одновалентных радикалов обычно образуются при замене суффикса -ан суффиксом -ил.

Атом углерода, связанный только с одним атомом углерода (т. е. концевой), называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным.

* Этот термин не следует путать с термином «свободный радикал», который характеризует атом или группу атомов с неспаренным электроном.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При удалении атома водорода от концевого атома углерода пропана получают радикал н -пропил (нормальный пропил), а от вторичного атома углерода - радикал изопропил. Бутан и изобутан каждый образуют по два радикала. Буква н- (которую разрешается опускать) перед названием радикала указывает, что свободная валентность находится на конце неразветвленной цепи. Префикс втор- (вторичный) означает, что свободная валентность находится у вторичного атома углерода, а префикс трет- (третичный) - у третичного.

Родоначальная структура - химическая структура, составляющая основу называемого соединения. В ациклических соединениях в качестве родоначальной структуры рассматривается главная цепь атомов углерода, в карбоциклических и гетероциклических соединениях - цикл.

Характеристическая группа - функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Заместитель - любой атом или группа атомов, замещающие в ор- ганическом соединении атом водорода.

Локант (от лат. locus - место) цифра или буква, указывающая положение заместителя или кратной связи.

Наиболее широко применяются два вида номенклатуры: заместительная и радикально-функциональная.

1.2.1. Заместительная номенклатура

Общая конструкция названия по заместительной номенклатуре представлена на схеме 1.2.

Схема 1.2. Общая конструкция названия соединения по заместительной номенклатуре

Название органического соединения представляет собой сложное слово, включающее название родоначальной структуры (корень) и названия разного типа заместителей (в виде префиксов и суффиксов), отражающих их природу, местонахождение и число. Отсюда и название этой номенклатуры - заместительная.

Заместители подразделяются на два типа:

Углеводородные радикалы и характеристические группы, обозначаемые только префиксами (табл. 1.2);

Характеристические группы, обозначаемые как префиксами, так и суффиксами в зависимости от старшинства (табл. 1.3).

Для составления названия органического соединения по заместительной номенклатуре используют приводимую ниже последовательность правил.

Таблица 1.2. Некоторые характеристические группы, обозначаемые только префиксами

Таблица 1.3. Префиксы и суффиксы, применяемые для обозначения важнейших характеристических групп

* Атом углерода, отмеченный цветом, включается в состав родоначальной структуры.

** Большинство фенолов имеет тривиальные названия.

Правило 1. Выбор старшей характеристической группы. Выявляют все имеющиеся заместители. Среди характеристических групп определяют старшую группу (если она присутствует), используя шкалу старшинства (см. табл. 1.3).

Правило 2. Определение родоначальной структуры. В качестве родо- начальной структуры в ациклических соединениях используют главную цепь атомов углерода, а в карбоциклических и гетероциклических соединениях - основную циклическую структуру.

Главную цепь атомов углерода в ациклических соединениях выбирают по приведенным ниже критериям, причем каждый последую- щий критерий используют, если предыдущий не приводит к однозначному результату:

Максимальное число характеристических групп, обозначаемых как префиксами, так и суффиксами;

Максимальное число кратных связей;

Максимальная длина цепи атомов углерода;

Максимальное число характеристических групп, обозначаемых только префиксами.

Правило 3. Нумерация родоначальной структуры. Родоначальную структуру нумеруют так, чтобы старшая характеристическая группа получила наименьший локант. Если выбор нумерации неоднозначен, то применяют правило наименьших локантов, т. е. нумеруют так, чтобы заместители получили наименьшие номера.

Правило 4. Название блока родоначальной структуры со старшей характеристической группой. В названии родоначальной структуры степень насыщенности отражают суффиксами: -ан в случае насыщенного углеродного скелета, -ен - при наличии двойной и -ин - тройной связи. К названию родоначальной структуры присоединяют суффикс, обозначающий старшую характеристическую группу.

Правило 5. Названия заместителей (кроме старшей характеристической группы). Дают название заместителям, обозначаемым префиксами в алфавитном порядке. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают только наименьший номер).

В русской терминологии цифры ставят перед префиксами и после суффиксов, например, 2-аминоэтанол H 2 NCH 2 CH 2 OH, бутадиен-1,3

СН 2 =СН-СН=СН 2 , пропанол-1 СН 3 СН 2 СН 2 ОН.

Для иллюстрации этих правил ниже приведены примеры построения названий ряда соединений в соответствии с общей схемой 1.2. В каждом случае отмечены особенности строения и способ их отражения в названии.

Схема 1.3. Построение систематического названия фторотана

2- бромо-1,1,1-трифторо-2-хлороэтан (средство для ингаляционного наркоза)

При наличии в соединении нескольких одинаковых заместителей при одном и том же атоме углерода локант повторяют столько раз, сколько имеется заместителей, с добавлением соответствующего умножающего префикса (схема 1.3). Заместители перечисляют по алфавиту, причем умножающий префикс (в данном примере - три-) в алфавитном порядке не учитывают. Схема 1.4. Построение систематического названия цитраля

После суффикса -аль, как и для сочетания -овая кислота, можно не указывать положение характеристических групп, так как они всегда находятся в начале цепи (схема 1.4). Двойные связи отражают суффиксом -диен с соответствующими локантами в названии родоначальной структуры.

Суффиксом обозначают старшую из трех характеристических групп (схема 1.5); остальные заместители, включая нестаршие характеристические группы, перечисляют по алфавиту как префиксы.

Схема 1.5. Построение систематического названия пеницилламина

Схема 1.6. Построение систематического названия щавелевоуксусной кислоты

оксобутандиовая кислота (продукт углеводного обмена)

Умножающий префикс ди- перед сочетанием -овая кислота указывает на наличие двух старших характеристических групп (схема 1.6). Локант перед оксо- опущен, так как иное положение оксогруппы соответствует той же структуре.

Схема 1.7. Построение систематического названия ментола

Нумерацию в цикле ведут от атома углерода, с которым связана старшая характеристическая группа (ОН) (схема 1.7), несмотря на то, что наименьший набор локантов всех заместителей в кольце может быть 1,2,4-, а не 1,2,5- (как в рассматриваемом примере).

Схема 1.8. Построение систематического названия пиридоксаля

I Заместители: ГВДРОКСИМЕТИЛ,ГИДРОКСИ, МЕТИЛ I

Альдегидную группу, атом углерода которой не включен в родоначальную структуру (схема 1.8), обозначают суффиксом -карбаль- дегид (см. табл. 1.3). Группу -СН 2 ОН рассматривают как составной заместитель и называют «гидроксиметил», т. е. метил, в котором в свою очередь произведено замещение атома водорода гидроксильной группой. Другие примеры составных заместителей: диметиламино- (CH 3) 2 N-, этокси- (сокращение от этилокси) С 2 Н 5 О-.

1.2.2. Радикально-функциональная номенклатура

Радикально-функциональная номенклатура используется реже, чем заместительная. В основном она применяется для таких классов органических соединений, как спирты, амины, простые эфиры, сульфиды и некоторых других.

Для соединений с одной функциональной группой общее название включает название углеводородного радикала, а наличие функцио- нальной группы отражают опосредованно через название соответствующего класса соединений, принятого в этом виде номенклатуры (табл. 1.4).

Таблица 1.4. Названия классов соединений, используемые в радикальнофункциональной номенклатуре*

1.2.3. Построение структуры по систематическому названию

Изображение структуры по систематическому названию представляется обычно более легкой задачей. Сначала записывают родо- начальную структуру - открытую цепь или цикл, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода с условием, чтобы каждый атом углерода оказался четырехвалентным.

В качестве примера приводится построение структур лекарственного средства ПАСК (сокращение от пара-аминосалициловой кислоты, систематическое название - 4-амино-2-гидроксибензойная кислота) и лимонной (2-гидроксипропан-1,2,3-трикарбоновой) кислоты.

4-Амино-2-гидроксибензойная кислота

Родоначальная структура - тривиальное название цикла со старшей характеристической

группой (СООН):

Расстановка заместителей - группа у атома С-4 и группа ОН у атома С-2:

2-Гидроксипропан-1,2,3-трикарбоновая кислота

Главная углеродная цепь и нумерация:

Расстановка заместителей - три группы СООН (-трикарбоновая кислота) и группа ОН у атома С-2:

Дополнение атомами водорода:


Следует заметить, что в систематическом названии лимонной кислоты в качестве родоначальной структуры выбран пропан, а не более длинная цепь - пентан, так как в пятиуглеродную цепь невозможно включить атомы углерода всех карбоксильных групп.

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.