Что было в 1721 году на руси. Основные события при эпохе петра первого. Социально-экономические реформы Петра I – индустриализация по-императорски

С расширением и углублением человеческих знаний о живых организмах появились такие разделы науки, которые изучают процессы и явления, относящиеся одновременно к различным областям знаний. Среди таких научных дисциплин биологическая физика, или биофизика. Что же она изучает и каковы ее методы исследований?

Известно, что физика изучает основные законы природы: строение атомов и ядер, свойства элементарных частиц, взаимодействие электромагнитных волн и частиц и т. д. Биофизика, возникшая на стыке биологии и физики, - это наука об основных физических и физико-химических процессах в живом организме и их регулировании.

Биофизикам нужно познать закономерности строения и работы живых организмов, не нарушая их свойств, сохраняя организм в живом, деятельном состоянии. Ведь, отмирая, организм теряет присущие ему свойства, все процессы в нем изменяются, и он становится обычной неживой системой. В этом заключается большая трудность. Отсюда возникла необходимость изучать живые организмы на разных «уровнях» - исследовать свойства биологических молекул, характерные особенности и работу клеток, изучать совместную работу органов в целом организме и т. д. Поэтому в биофизике выделились такие крупные разделы: молекулярная биофизика, биофизика клетки, биофизика процессов управления и регуляции и др. Кратко расскажем о каждом из основных разделов биофизики.

Молекулярная биофизика изучает свойства биологических молекул, физико-химические процессы в рецепторных клетках. Эти клетки называются рецепторными или чувствительными, так как они первыми воспринимают сигналы о свете, вкусе, запахе (по-латински «рецептио» - чувствую).

Молекулярная биофизика исследует, например, процессы, которые протекают в органах чувств животных - в органах зрения, слуха, осязания и обоняния. Мы привыкли, что в нашем организме все совершается просто, само собой, и подчас не задумываемся, насколько сложные биофизические процессы происходят, например, когда мы ощущаем вкус сахара или чувствуем запах цветов. А это одна из проблем, над которой много лет работает молекулярная биофизика. Дело в том, что ощущения вкуса или запаха возможны благодаря сложным физико-химическим процессам в рецепторных клетках при взаимодействии с ними молекул различных веществ.

Известно, что химики создали 1 млн. органических соединений и почти каждое из них имеет свой характерный запах. Человек может различать несколько тысяч запахов, причем некоторые вещества мы ощущаем при исключительно малой концентрации - всего миллионные и миллиардные доли миллиграмма на литр воды. Например, чтобы ощутить такие вещества, как скатол, тринитробутилтолуол, достаточно их концентрации 10 -9 мг/л. Животные намного чувствительнее человека. Например, геологи используют специально обученных собак для поиска по запаху рудных месторождений, расположенных глубоко под землей. Всем хорошо известна работа собак-ищеек, находящих след по ничтожно слабому запаху. Но, пожалуй, остротой обоняния всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество, даже если оно содержится в воде в исчезающе малых концентрациях - всего 10 -11 мг/л. Бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 м 3 воздуха.

Молекулярная биофизика помогает выяснить не только различие в чувствительности и строении органов обоняния у различных животных, но и сам процесс определения запаха. Сейчас установлено, что имеется 6-7 основных запахов, разными сочетаниями которых объясняется их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток.

Молекулярная биофизика изучает свойства и процессы не только у животных, но и у растений. В частности, она занимается изучением фотосинтеза. В зеленом листе березы, черемухи, яблони или пшеницы происходят удивительные и сложные процессы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее и создающие с ее помощью из воды и углекислого газа органическое вещество и тем самым дающие жизнь всем живым организмам.

Фотосинтез протекает в зеленых частицах - хлоропластах, находящихся в клетках листа и содержащих растительный пигмент - хлорофилл. Порции световой энергии (фотоны) поглощаются пигментом и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а протон используется для восстановления углекислого газа до углеводов. Протон и электрон, как известно, составляют атом водорода; этот атом «по частям» отнимается у молекулы воды. В процессе фотосинтеза освобождается кислород, которым дышат все живые организмы.

Основа фотосинтеза - самый первый элементарный процесс: взаимодействие порций световой энергии (фотонов) с молекулой хлорофилла. Именно этот процесс изучает молекулярная биофизика в фотосинтезе, с тем чтобы познать, как происходит преобразование световой энергии в энергию химических связей и последующее превращение веществ. Если этот фундаментальный процесс будет познан до конца, его можно будет осуществлять в искусственных условиях. Тогда человечество овладеет самым быстрым и самым экономичным способом получения органических веществ, следовательно, продуктов питания и ценного сырья, которые дают сегодня человеку зеленые растения.

Существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул и системы, образуемые молекулами в клетках (как говорят, субмолекулярные образования), их свойства и изменения, другая исследует свойства и функционирование различных клеток - выделительных, сократительных, обонятельных, светочувствительных и др.

Развитию биофизики клетки во многом способствовали успехи физики, радиоэлектроники, именно благодаря этим наукам биофизика получила электронные микроскопы, позволившие увеличивать микроскопические объекты в сотни тысяч раз. На вооружении биофизиков появился электронный парамагнитный резонанс, с помощью которого можно изучать особые активные части молекул - так называемые свободные радикалы, играющие очень важную роль во всех биологических процессах. С помощью высокочувствительных к свету приборов - фотоэлектронных умножителей (ФЭУ) стало возможным определять крайне малые потоки света. Использование этих приборов привело к большому открытию в биофизике клетки.

Давно была известна способность к свечению у живых организмов: светлячков и различных водных организмов, называемая биолюминесценцией. Но с помощью ФЭУ удалось обнаружить, что способностью к свечению обладают органы почти всех животных и растений. Это так называемое сверхслабое свечение - биохемилюминесценция - происходит в результате физико-химических реакций внутри клеток, и связано оно с внутриклеточным окислением веществ липидов, входящих в структурные элементы. Большую роль в этих процессах играют упомянутые нами свободные радикалы. По интенсивности сверхслабого свечения можно следить за уровнем окислительных обменных реакций и выделением энергии в результате многообразных реакций, идущих внутри клеток.

Обнаружение сверхслабого свечения, наличия свободных радикалов, связи их с жизнедеятельностью клетки резко изменило представления о клеточных процессах. Перед биофизикой клетки встала задача не только разобраться в ультрамикроскопическом строении клетки и ее органелл, но и выяснить, как связаны друг с другом эти элементы, как они работают, в чем причина слаженности, согласованности процессов, совершающихся в клетках.

При исследовании клетки в электронном микроскопе ученым открылся новый мир ультрамикроскопических, т. е. самых мельчайших, клеточных структур. Были обнаружены внутриклеточные мембраны, канальцы, трубочки, пузырьки. Все эти структуры, в миллионы раз тоньше человеческого волоса, играют определенную роль в жизнедеятельности клетки. Любая клетка, кажущаяся простым комочком цитоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших частиц (структурных элементов), действующих точно и согласованно, в строгом порядке, тесно связанных между собой. Количество этих структурных элементов очень велико, например в нервной клетке до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности.

В любой клетке живого организма происходит поглощение необходимых веществ и выделение ненужных, совершается дыхание, деление, наряду с этим клетки выполняют специальные функции. Так, клетки сетчатки глаза определяют силу и качество света, клетки слизистой носа определяют запах веществ, клетки различных желез выделяют физиологически активные вещества - ферменты и гормоны, регулирующие рост и развитие организма.

О всей своей большой работе - увиденном, услышанном, опознанном - клетки нервной ткани животных сообщают электрическими импульсами в головной мозг - главный координирующий центр. Биофизика клетки в целом и один из ее важных разделов, называемый электрофизиологией клетки, изучают, как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах - импульсах, как образуются в клетках биологические токи и потенциалы.

Клетки живого организма тесно связаны между собой, с головным мозгом - главным управляющим центром. В самих клетках, в тысячах их структурных элементов, происходят упорядоченные биохимические процессы. Благодаря чему так согласованно и точно совершаются эти сотни тысяч реакций?

Дело в том, что и клетка, и отдельный орган, и целостный организм представляют собой определенную систему, основанную на специфических законах регулирования и взаимосвязи. Вот эти особенности изучает самый молодой раздел - биофизика процессов управления и регуляции.

Расскажем об этом разделе биофизики, воспользовавшись следующим примером. Каждый орган человека состоит из большого числа клеток, выполняющих специфическую работу. Например, особую роль в обонянии играет слизистая оболочка носа - так называемый слизистый эпителий. Площадь его не более 4 см 2 , но содержит он чуть ли не 500 млн. обонятельных клеток - рецепторов. Сведения об их работе передаются по нервным волокнам, число которых достигает 50 млн., в обонятельный нерв и затем в головной мозг. Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы. Для этого они направляются в различные отделы головного мозга, состоящие из громадного числа клеток. Например, только большие полушария головного мозга содержат 2*10 10 клеток, мозжечок -10 11 клеток. Мозг принимает необходимые "решения" и передает ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы. В центральную нервную систему поступают сотни тысяч разнообразных сигналов из внешней среды о звуках, свете, запахах и сигналы о состоянии клеток самого организма. Из сказанного видно, насколько сложны взаимосвязи в любой живой системе - в отдельной клетке или целом организме, как сложна работа по управлению клетками, регулированию их состояния и контролю за согласованностью всех жизненных процессов.

Этот важный отдел биофизики опирается на закономерности, открытые другой наукой - кибернетикой. Биофизики, изучающие процессы управления и регуляции, пользуясь ее методами, разработали ряд электронных моделей, например черепахи, нервной клетки и процесса фотосинтеза, которые облегчают изучение сложных явлений регуляции в организме.

Исследование регуляторных процессов в живом организме показало, что они обладают удивительным свойством - саморегуляцией. Клетки, ткани, органы живых организмов представляют собой САМОрегулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы. Это означает, что работа клеток, органов и организма в целом определяется свойствами и качествами, заложенными в самом организме. Поэтому каждая клеточка или орган самостоятельно, без помощи извне регулирует постоянство состава среды внутри них. Если под воздействием какого-либо фактора их состояние изменяется, это удивительное свойство помогает им вернуться вновь в нормальное cостояние.

Хлоропласты в клетках листа изменяют свое расположение в зависимости от силы освещения: при сильном освещении они располагаются вдоль стенок клеток (слева); при слабом - по всей клетке. Это пример клеточной саморегуляции.

Вот только один простой пример такой саморегуляции. Мы уже рассказывали о важной роли хлоропластов, находящихся в клетках зеленого листа. Хлоропласты способны к самостоятельному передвижению в клетках под влиянием света, поскольку они очень чувствительны к нему. В солнечный яркий день при большой интенсивности света Хлоропласты располагаются вдоль клеточной стенки, как бы стараясь избежать действия сильного света. В пасмурные облачные дни хлоропласты располагаются по всей поверхности клетки, чтобы поглощать больше лучей. Переход хлоропластов из одного положения в другое под влиянием света (фототаксис) совершается благодаря клеточной саморегуляции.

Познание человеком природы, разнообразных живых организмов идет так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки какой-либо одной науки. Биофизика положила начало новым разделам науки, расширяющим горизонты человеческих знаний. Так выделилась в самостоятельную отрасль биологии радиобиология - наука о действии различных видов радиации на живые организмы, космическая биология, изучающая проблемы жизни в космосе, механохимия, исследующая превращение химической энергии в механическую, происходящее в мышечных волокнах. На основе биофизических исследований возникла новая наука - бионика, изучающая живые организмы с целью использования принципов их работы для создания новых и более совершенных по конструкции приборов и аппаратов.

Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше, как в области изучения молекул, субклеточных структур, так и организма в целом. Каждый день приносит новые открытия, изобретения, ценные идеи. Наш век - это время больших успехов во всех областях знания, в том числе и в изучении природы.

Лекция № 1

Предмет и задачи биофизики

Биофизика как медико-биологическая наука, изучающая механизмы физических и физико-химических процессов в биологических системах. Место биофизики в ряду фундаментальных биологических и медицинских дисциплин, связь с биологическими и медицинскими науками. Краткий исторический очерк развития биофизики. Методы и направления современной биофизики.


Предметом биофизики является изучение физических и физико-химических процессов, лежащих в основе жизни. Существуют и более емкие определения биофизики. Например, лауреат Нобелевской премии А. Сент-Дьердьи утверждал, будто биофизика − «все то, что интересно». Термин «биофизика» закрепился в научной литературе с 1892 г., когда Карл Пирсон, автор книги «Грамматика науки», на ее страницах заявил: «...наука, пытающаяся показать, что факты биологии − морфологии, эмбриологии и физиологии образуют частные случаи приложения общих физических законов , получила название этиологии... Быть может, лучше было бы назвать ее биофизикой». А. Фик и вслед за ним другие немецкие ученые называли эту область знания медицинской физикой, но французский физиолог Ж. А. д"Арсонваль еще до предложения К. Пирсона предпочитал термину «медицинская физика» словосочетание «биологическая физика».

Современная биофизика исследует механизмы физических и физико-химических процессов в биологических системах на субмолекулярном , молекулярном, надмолекулярном, клеточном, тканевом, органном и организменном уровнях.

По природе объектов исследования, биофизика − типичная биологическая наука. По методам изучения биообъектов и анализа результатов исследований , биофизика является своеобразным разделом физики (по мнению М.В. Волькенштейна, «биофизика − физика явлений жизни»). Она идет в авангарде тех областей биологии, которые превращают эту древнейшую область человеческого знания из гуманитарной в точную науку. Внедрение физических принципов анализа биологических явлений в медицину позволяет ей стать не только искусством, но и наукой. В этом особая роль биофизики среди других медицинских теоретических дисциплин.

Зачастую о биофизике говорят как о новой, молодой науке. Так, 9 ноября 1934 г. П.Л. Капица писал: «Биофизика − совершенно новая область, она пришла вместе с биохимией на смену старой классической физиологии. Вместо того чтобы изучать физиологические процессы в целом... биофизика и биохимия изучают отдельные элементы живого существа и стараются объяснить его функцию посредством законов физики и химии». Действительно, в отдельную научную дисциплину биофизика выделилась сравнительно недавно, но зачатки биофизики возникли сразу по появлении работ в области экспериментальной физики. Так, некоторые изыскания Г. Галилея (измерение температуры тела, определение работы , совер­шаемой человеком, и т. п.) можно отнести к биофизическим исследованиям.

Стремление объяснить процессы жизнедеятельности человека и животных физическими законами было весьма характерно для творчества многих ученых XVII и XVIII вв. (Р. Бойль, Р. Гук, И. Ньютон, П.С. Лаплас, А.Л. Лавуазье, М.В. Ломоносов и многие другие). XIX в. стал веком торжества аналитических методов в исследовании биологических явлений. Эти методы получили наибольшее развитие в физиологии, в недрах которой зародилась современная биофизика. Многие физиологические процессы, вплоть до нервной деятельности, пытались объяснить на основе физических законов. В отличие от аналогичных попыток предшественников, такие объяснения в значительной мере подтверждались экспериментально. Герман Гельмгольц измерил скорость распространения нервного импульса. Эмиль Дюбуа-Реймон изучил биоэлектрогенез почти всех органов и тканей организма. Эрнст Вебер объяснил некоторые свойства гемодинамики на основе физических законов. Выдающиеся открытия были сделаны в области биофизики органов чувств − достаточно назвать хотя бы закон Вебера-Фехнера.

Вместе с тем XIX в. определил весьма характерную тенденцию в последующем развитии биофизики. Одним из первых ученых, подметивших и утвердивших эту тенденцию, был Иван Михайлович Сеченов – отец русской физиологии. С не меньшими основаниями его можно назвать основоположником отечественной биофизики. Он использовал методы математики и физической химии для исследования дыхания , установил количественные закономерности растворения газов в биологических жидкостях. В работах И.М. Сеченова прослеживается наиболее перспективный путь развития физиологии и биофизики, связанный, прежде всего с физической химией. В докторской диссертации (1860) И.М. Сеченов утверждал: «Физиолог − физико-химик, имеющий дело с явлениями животного организма».

Однако только в XX в. биофизика стала самостоятельной наукой. С этих пор она приступила к изучению фундаментальных проблем биологии: наследственности и изменчивости, онтогенеза и филогенеза, метаболизма и биоэнергетики.

Большинство исследователей (биофизиков) XVII−XIX вв. рассматривали живой организм как физическую систему, причем основным методом такого изучения биологических явлений был поиск внешних аналогий. Заметим, что и сейчас подобный прием не без успеха применяется в биофизике. Например, сокращение мышцы можно моделировать обратным пьезоэлектрическим эффектом, амебовидное движение клеток – перемещениями ртутной капли в растворе кислоты , проведение нервного импульса – миграцией царапины по железной проволоке, обработанной азотной кислотой (модель Лилли), и т. п.

Познавательное значение таких моделей довольно ограниченно. Зачастую при моделировании одного и того же биологического явления они сменяют одна другую вслед за появлением новых технических устройств. Например, рефлекторная деятельность рассматривалась во времена Р. Декарта по аналогии с работой паровой машины, в начале прошлого века – телефонной станции, сейчас – электронно-вычислительной машины. Однако и подобные (феноменологические) модели нужны. Они позволяют уточнить некоторые детали уже понятых в принципе явлений, создавать бионические системы, в которых используются закономерности биологической организации для построения сложных технических устройств, например роботов. И все же это полезное направление физического моделирования не является главным в решении кардинальных биофизических задач.

Основная цель биофизического исследования состоит в выяснении интимных (внутренних) механизмов биологических процессов, а не в рассмотрении внешних аналогий. Принято считать , что живые организмы представляют собой сложные физико-химические системы. Поэтому не физическое, а физико-химическое моделирование оказалось наиболее плодотворным. Оно привело к созданию ионной теории возбуждения, вскрытию природы биоэлектрогенеза, выяснению свойств биологических мембран и т. д. На этом пути особенно значительны достижения биофизики в последние годы.

По существу, современная биофизика – это физическая химия и химическая фи зика биологических систем. Именно такое направление является ведущим в работе двух крупнейших в мире институтов биофизики РАН, которые находятся в городе Пущино под Москвой. Проблемами биофизики занимаются сейчас многие научно-исследовательские учреждения Академии наук, Академии медицинских наук, Минздрава России. Среди них – институты физической химии и химической физики РАН , Институт биофизики Минздрава России. Развитием биофизики в нашей стране занимаются также университетские кафедры биологической физики.

Биофизика – пограничная область знаний, причем границы между ней и рядом других биологических наук довольно условны. При проведении этих границ исходят из самого определения предмета биофизики – к биофизическим относятся исследования, вскрывающие физические, а также физико-химические механизмы биологических процессов. В биофизических исследованиях применяется основной принцип экспериментального изучения природы – количественный анализ реакций организма на определенные стимулы с построением функциональных зависимостей между ними. Процессы жизнедеятельности получают строгую интерпретацию в виде количественных закономерностей, представляющих собой абстрактную форму выражения функциональной зависимости реакции от стимула.

Функции организма с незапамятных времен изучает физиология. В разное время содержание физиологии изменялось. Сейчас она рассматривает функцию как форму деятельности с определенным конечным результатом, проявлением которого служат физиологические свойства (Шидловский, 1981). В их внутренние механизмы невозможно проникнуть, используя традиционные физиологические подходы к изучению функций. Эти механизмы, поскольку они имеют физическую и химическую природу , изучают биофизика и биохимия. Различие задач биофизики и физиологии в изучении функций организма можно проиллюстрировать таким примером. Исследуя биопотенциалы, биофизик интересуется, прежде всего, механизмом возникновения электромагнитных процессов в живых тканях, физико-химическими основами этого феномена, его энергетическим обеспечением, тогда как для физиолога биопотенциалы являются показателями жизнедеятельности организма, служат количественной характеристикой важнейших физиологических свойств (прежде всего – возбудимости). Так, по электрокардиограмме физиолог судит о свойствах сердечной мышцы (автоматизме, возбудимости, проводимости). Его меньше занимает физико-химическая природа электрогенеза в миокарде, это составляет основную задачу биофизического исследования электрических процессов в сердце.

Биохимия, подобно биофизике , также стремится проникнуть в механизмы физиологических явлений, но изучает их химическую природу. Понятны трудности в разграничении биофизических и биохимических исследований, но это необходимо делать. «Не подлежит сомнению, – утверждал академик Г.М. Франк (1974), – что любые проявления жизни и живые организмы в целом в конечном итоге – „химические машины". Однако, несмотря на примат химии, химический язык и химические концепции недостаточны, чтобы раскрыть материальную сущность явлений жизни. Это в первую очередь относится к путям превращения энергии, природе сил взаимодействия и разнообразным физическим процессам, таким, например, как генерация электрических потенциалов , возникновение механической энергии, механизмы управления и регуляции».

Биофизические методы создаются на основе физических и физико-химических методов изучения природы. В них должны сочетаться трудно совместимые свойства: высокая чувствительность и большая точность. Этому условию отвечают, прежде всего, достижения современной электроники. Весьма плодотворно использование оптических методов. Широко применяют различные методы спектроскопии, включая радиоспектроскопию (методы электронного парамагнитного резонанса – ЭПР и ядерного магнитного резонанса – ЯМР). Давно вошли в обиход радиоизотопные методики.

Любое исследование требует, чтобы регистрирующие приборы не вносили искажений в изучаемый процесс. Для биофизического эксперимента соблюдение этого требования особенно актуально. Известный советский биофизик Б.Н. Тарусов считал, что в этом требовании заключена важнейшая особенность биофизических методов, отличающая их от применения аналогичных методических приемов в других областях физики. Такая несколько утрированная формулировка специфики биофизических методов имеет определенные основания. Трудно сравнить какую-либо физическую систему с живым организмом по необычайно высокой чувствительности последнего к любым воздействиям на него. Они не просто нарушают нормальный ход биологических процессов, а вызывают сложные приспособительные реакции , разнообразные в разных органах и в различных условиях. Искажение смысла истинных явлений может оказаться столь существенным, что становится невозможным вносить поправки в артефакты (явления, не свойственные изучаемому объекту в естественных условиях и возникающие в ходе его исследования), поскольку методы коррекции, используемые с успехом в физике и технике, зачастую бесплодны в биофизике.

Чтобы лучше понять области применения биофизических методов, рассмотрим основные направления научных изысканий в биофизике. Согласно решению Международной ассоциации общей и прикладной биофизики, к ним относят исследования на молекулярном и клеточном уровнях, а также биофизическое изучение органов чувств и сложных систем.

Методы и направления современной биофизики. Молекулярная биофизика изучает функциональную структуру и физико-химические свойства биологически важных (биологически функциональных) молекул, а также физические процессы, обеспечивающие их функционирование , исследует термодинамику биологических систем, перенос энергии и заряда по биомолекулам, квантовомеханические особенности их организации. Эта часть молекулярной биофизики постепенно выделяется в новый раздел под названием квантовой биофизики. В целом задача молекулярной биофизики – раскрыть физико-химические механизмы биологической функциональности молекул.

Работы по биофизике клетки посвящены физическим и физико-химическим свойствам клеточных и субклеточных структур, закономерностям деления и дифференцировки клеток, особенностям их обмена веществ (метаболизма), а также биофизическим механизмам специализированных функций клеток (мышечного сокращения, секреции, нервной импульсации и др.).

Биофизика органов чувств вскрывает физические и физико-химические механизмы восприятия специфических раздражителей рецепторными аппаратами сенсорных систем (анализаторов) человека и животных (на квантовом, молекулярном, клеточном уровнях).

Задача биофизики сложных систем состоит в разрешении общих физико-биологических проблем (происхождение жизни, наследственность, изменчивость и т. д.) на основе физико-математического моделирования важнейших биологических процессов.

Многие биофизики настаивают на выделении еще одного направления биофизических исследований − биофизических основ экологии. Его содержанием является выяснение механизмов воздействия на организм физических и химических факторов среды. Существует тенденция отождествления всей биофизики с молекулярной биофизикой, что нашло отражение в учебнике М.В. Волькенштейна «Биофизика», изданном для студентов биологических и физических факультетов университетов. Такое ограничение можно допустить для определения области наиболее актуальных научных изысканий современной биофизики, хотя и с этим далеко не все согласны. Так, академик Г.М. Франк еще в 1974 г. утверждал, что «центр тяжести физико-химического рассмотрения основы жизненных явлений смещается теперь в область биологии клетки», поскольку «явления жизни возникают только в системе, называемой клеткой», и, по словам Е.Б. Вильсона (1925), «ключ к каждой биологической проблеме нужно искать в клетке», а современная биофизика стала обладать методами, позволяющими сделать клетку объектом точного физического эксперимента. Это не означает, что другим направлениям биофизических исследований отводится вспомогательная роль. По мнению Г.М. Франка, в развитии биофизики должна соблюдаться «...непрерывность линии исследования от раздела , который мы обозначили как „молекулярная биофизика", далее через биофизику клетки к биофизике сложных процессов».
Биофизика – это наука, изучающая физические и физико-химические процессы, протекающие в биосистемах на разных уровнях организации и являющиеся основой физиологических актов. Возникновение биофизики произошло, как прогресс в физике, вклад внесли математика, химия и биология.

Живые организмы – открытая, саморегулирующаяся, самовоспроизводящаяся и развивающаяся гетерогенная система, важнейшими функциональными веществами в которой являются биополимеры: белки и нуклеиновые кислоты сложного атомно-молекулярного строения.

Задачи биофизики:

1.Раскрытие общих закономерностей поведения открытых неравновесных систем. Теоретическое обоснование термодинамических (т/д) основ жизни.

2.Научное истолкование явлений индивидуального и эволюционного развития , саморегуляции и самовоспроизведения.

3.Выяснение связей между строением и функциональными свойствами биополимеров и других биологически активных веществ.

4.Создание и теоретическое обоснование физико-химических методов исследования биообъектов.

5.Физическое истолкование обширного комплекса функциональных явлений (генерация и распределение нервного импульса, мышечное сокращение, рецепция, фотосинтез и др.)

Разделы биофизики:

· Молекулярная – изучает строение и физико-химических свойства, биофизику молекул. Основными объектами исследования молекулярной биофизики являются функционально активные вещества и среди них белки и нуклеиновые кислоты.

· Биофизика клетки – изучает особенности строения и функционирования клеточных и тканевых систем. Биофизика клетки имеет дело с надмолекулярными структурами живой клетки, среди которых особое место занимают мембранные структуры клеток и субклеточных структур.

· Биофизика сложных систем – изучает кинетику биопроцессов, поведение во времени разнообразных процессов присущих живой материи и термодинамику биосистем. Биофизика сложных систем рассматривает живые организмы различного уровня организации с позиции физико-математического моделирования. Объектами исследования в этом случае являются сообщества клеток, живые ткани, физиологические системы , популяции организмов. Построение моделей является одним из главных этапов биофизического исследования. Живой организм представляет собой очень сложную систему, не всегда доступную для точного физического эксперимента. В этом случае плодотворным становится использование физических, аналоговых, математических моделей. Любое крупное открытие в биофизике получено путём применения моделей.

Представление биомакромолекул в виде кристаллов позволило установить молекулярную структуру гемоглобина и миоглобина. Важную роль сыграла аналоговая электрическая модель возбудимой мембраны в исследованиях Ходжкина и Хаксли. В биофизике мембран широкое применение получили физические модели мембран в виде моно- и бимолекулярных липидных плёнок. С развитием и совершенствованием вычислительной техники моделирование получает новое развитие.

Такие науки как биология, медицина, сельскохозяйственные науки становятся всё более точными. Трудно переоценить в этом случае роль биофизики призванной исследовать явления жизни с использованием физических представлений и методов.

История развития биофизики.
Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Наука конца 20 века – синергетика, показала , что сходными уравнениями описываются процессы самоорганизации самой разной природы: от образования скоплений галактик до образования пятен планктона в океане.
Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый – агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.

Другой подход – подробное рассмотрение элементов системы и их взаимодействий. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл , при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.

Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста, возможность неустойчивости стационарного состояния в локальных системах и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах.

Что такое биофизика

Человек стремится познать мир. В этих дерзаниях человек опирается на науку и технику. Громадные радиотелескопы услышали "голос" далеких галактик, прочные батискафы помогли открыть на дне океана новый мир с невиданными животными, мощные ракеты вышли из сферы земного притяжения и открыли дорогу в космос...

Есть в окружающей нас природе еще одна "крепость". Это сама жизнь. Да, жизнь, живой организм, живая клетка - невидимый глазом комочек протоплазмы (или цитоплазмы) с ядром, заключенный в оболочку,- одно из самых загадочных явлений в мире. И эта "крепость" должна сдаться, мощное оружие - ум человека срывает покровы с микроскопических миров живых клеток, проникая в самую сущность жизни.
Изучение человеком природы идет сейчас так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки старых наук. Например, физика - одна из наиболее важных наук о природных явлениях - развилась так широко, что возникла потребность выделить новые, самостоятельные области - квантовую физику, ядерную, физику твердого тела, астрономическую, радиофизику и др. Процесс расширения и углубления человеческих знаний о природе привел к появлению и таких разделов наук, которые изучают процессы и явления, относящиеся одновременно к различным областям знания.
Такой пограничной наукой, возникшей на стыке биологии, физики и химии, является биофизика, играющая особую роль в изучении свойств живой материи.
Биофизика - это наука о физических и физико-химических процессах и их регулировании в живом организме.
От биофизики в свою очередь отпочковываются новые науки, расширяющие горизонты человеческих знаний. Так выделилась радиобиология - наука о действии различных видов радиации на живые организмы; космическая биология - наука, изучающая особенности жизни в космосе; механохимия, исследующая взаимное превращение химической и механической энергии, происходящее в мышечных волокнах; совсем недавно возникла бионика, изучающая живые организмы с целью использовать принципы их работы для создания новых, совершенных по конструкции приборов и аппаратов.
Рассказ об этих научных дисциплинах, входящих в биофизику, занял бы слишком много места, поэтому мы расскажем лишь о трех главных направлениях, развиваемых сегодня в биофизике, о трех ее отделах - молекулярной биофизике, клеточной и биофизике процессов управления.
Каждая наука, и биофизика в том числе, состоит из двух частей - теоретической и экспериментальной, тесно связанных друг с другом, взаимно дополняющих друг друга. Но между ними есть и различия. Теоретическая биофизика изучает первичные явления и процессы, происходящие в биологических молекулах, на модельных, как говорят ученые, веществах, т. е. на выделенных из живого организма или искусственно созданных системах. Вот на таких модельных системах изучают основные процессы фотосинтеза, природу биопотенциалов, биолюминесценцию и другие явления.
Экспериментальная же (прикладная) биофизика изучает работу организма в целом и его отдельных органов, используя методы и подходы теоретической биофизики (биофизика движения, зрения, регулирования физиологических функций).
Один из больших отделов биофизики, как уже было сказано, называется молекулярной биофизикой. Этот отдел изучает свойства биологических молекул, физико-химические процессы, происходящие в чувствительных клетках, их взаимосвязь с клеточными структурами. Особое внимание уделяется при этом изучению свойств ферментов - белков, обладающих свойством ускорять (катализировать) биохимические реакции в живых организмах.
Благодаря успехам молекулярной биофизики люди узнали много нового о том, как хранится и передается информация в живых клетках, как происходит передвижение молекул и ионов, как идет синтез белков, как запасается энергия в живых клетках. Молекулярная биофизика помогает в изучении фотосинтеза.
Все видели зеленые листья растений. Но, наверное, не все знают, какие удивительные процессы происходят в обыкновенном листе березы или черемухи, яблони или пшеницы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее, создающие с ее помощью органическое вещество и тем самым дающие жизнь всему живому на Земле.
Этот весьма важный процесс протекает в зеленых частицах, находящихся в клетках листа, - хлоропластах, содержащих растительные пигменты - хлорофилл и каротиноиды.
Порции световой энергии поглощаются пигментами и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а затем и протон используется для восстановления углекислого газа до углеводов. (Протон и электрон, как известно, составляют атом водорода; этот атом по частям отнимается у молекулы воды. Вода окисляется и присоединяется к углекислому газу, и получаются углеводы.) Остаток же воды (его называют гидроксилом) разлагается особыми ферментами, образуя кислород, которым дышит все живое.
Мы рассказали очень сжато о фотосинтезе. На самом деле превращение световой энергии, поглощенной хлорофиллом, в химическую энергию веществ, синтезированных в зеленом листе, представляет собой бесконечную цепь молекулярных изменений. Во время этого процесса электроны переходят с одних молекул на другие, образуются и распадаются молекулы соединений, обладающие большой энергией, происходят сотни тысяч реакций.
Над разгадкой этого процесса также много трудились биофизики, и выяснению его деталей мы обязаны молекулярной биофизике.
Можно задать вопрос: а для чего так долго и упорно бьются ученые над тайной зеленого листа? Дело в том, что зеленый лист - это как бы миниатюрный "завод", вырабатывающий вещества, составляющие основу питания человека. Подсчитано, что в качестве сырья зеленые растения потребляют в год громадные количества углекислого газа - 150 000 000 000 г! Если ученые разгадают до конца великую тайну зеленого листа, человечество получит самый быстрый и самый экономичный способ получения питания и других важных продуктов, одним словом, все то, что сегодня дают человеку зеленые растения.
Молекулярная биофизика занимается также и процессами, которые протекают в животных организмах, например в их органах чувств.
Одна из таких удивительных и необычайных страниц молекулярной биофизики - изучение запаха. Химики создали около 1 млн. органических соединений, и почти все они имеют свой характерный запах. Человек может различать несколько тысяч запахов, причем для некоторых веществ достаточно исключительно малых количеств, чтобы их ощутить, - всего миллионные и миллиардные доли миллиграмма на литр воды (например, таких веществ, как скатол, тринитробутилтолуол, [достаточною-7-Ю-9 мг/л).
Животные оказываются чувствительнее человека. Собаки, например, различают около полумиллиона различных запахов! Они способны (особенно собаки-ищейки) чувствовать нужный запах, даже если он ничтожно слаб. Стоит человеку только чуть-чуть прикоснуться к предмету - и собака уже может определить, кто это сделал. Известны случаи, когда натренированные собаки-ищейки помогали геологам находить руду, лежащую под землей на глубине 2-3 м.
Но, пожалуй, всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество при его неизмеримо малом содержании-10" мг/л. Это все равно, что растворить одну каплю вещества в 100 млрд. м3 воды! Бабочки находят друг друга по запаху на расстоянии нескольких километров. Расчеты показывают, что в таком случае бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 мг воздуха. Как это происходит, остается пока загадкой. Некоторые ученые предполагают, что пахучие вещества распространяют электромагнитные волны, энергия которых воспринимается чувствительными клетками насекомых и помогает им находить друг друга на таких больших расстояниях.
Недавно внимание биофизиков привлекла необычная способность некоторых видов мух. Оказывается, муха, коснувшись лапками какого-либо вещества, мгновенно производит точный химический анализ. Механизм этого явления неизвестен, но установлено, что особые чувствительные клетки на лапках определяют "вкус" вещества электромагнитным путем!
Молекулярная биофизика помогает выяснить не только различия в чувствительности и строении органов обоняния у различных групп животных, рыб и насекомых, но и сам процесс определения запаха. Сейчас установлено, что имеется несколько основных (6-7) запахов, сочетаниями которых объясняется все их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток, воспринимающих запах. В клетках есть молекулярные по размерам углубления строго определенной формы и размера, соответствующие форме молекул пахучих веществ (молекула камфары имеет подобие шара, молекула мускуса - диска и т. д.). Попадая в "свое" углубление, молекула раздражает нервные окончания и создает ощущение запаха.
Даже из краткого рассказа видно, что существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул, а также те системы, которые образуют молекулы в клетках (как говорят, субмолекулярные образования), их свойства и изменения, а другая исследует свойства и функционирование клеток - выделительных, сократительных, обонятельных и др.
Развитию биофизики клетки, о которой мы сейчас расскажем, во многом способствовало изобретение электронного микроскопа. Применение электронного микроскопа с увеличением в сотни тысяч, миллионы раз намного расширило наши знания о живых организмах, населяющих планету, о их внутреннем строении. При исследовании клетки электронным микроскопом сразу открылся новый мир ультрамикроскопических (самых мельчайших) клеточных структур. Электронные микроскопы позволили увидеть различной толщины мембраны, мельчайшие трубочки, в сотни тысяч раз тоньше человеческого волоса, крохотные пузырьки, полости, канальцы. Исследования показали, что даже самые мелкие клеточные структуры - митохондрии, хлоропласты - тоже имеют довольно сложное строение. Стало ясно, что любая клетка, кажущаяся простым комочком протоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших клеточных частиц (как говорят, структурных элементов), действующих в строгом порядке и связанных между собой сложно, точно и согласованно.
Особенно поразило исследователей многообразие структурных элементов. Например, в нервной клетке находится до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности. Кроме того, в клетке находится до сотни тысяч самых мелких частиц - рибосом, создающих белковые молекулы.
Самое удивительное то, что в любой маленькой клеточке живого организма происходят точные согласованные процессы: идет поглощение необходимых веществ и выделение ненужных, происходит дыхание, деление. Наряду с этим клетки выполняют специальные функции: клетки сетчатки глаза определяют силу и качество света, клетки слизистой оболочки носа определяют запах веществ, клетки различных желез выделяют особые вещества - ферменты, способствующие пищеварению, и гормоны, помогающие росту и развитию организма.
О всей своей большой работе - увиденном, услышанном, опознанном - клетки сообщают нервными электрическими импульсами в головной мозг - главный координирующий центр. Как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах-импульсах, как образуются биологические потенциалы в клетках, какова связь с головным мозгом - все эти и многие другие вопросы изучает биофизика клетки.
Недавно в области биофизики клетки сделано важное открытие. Давно известно, что многие живые организмы обладают способностью к свечению - люминесценцией. Сильно свечение многих обитателей морей - рыб, губок, звезд и т. д. Но оказывается, клетки любых организмов обладают люминесценцией - так называемым сверхслабым свечением. Этот свет столь ничтожен, что обнаружить его могут лишь особые приборы - фотоэлектронные умножители, способные в миллионы раз усиливать падающий световой поток. Сверхслабое свечение наблюдается в корешках и листьях растений, в клетках различных органов животных. Сверхслабое свечение присуще всем клеткам живых организмов и происходит в результате биохимических реакций, протекающих в клетках.
Ученые выяснили, что сверхслабое свечение имеет свои особенности у различных групп животных, насекомых и растений. По интенсивности сверхслабого свечения биофизики уже сейчас могут определить засухо- и морозоустойчивость сельскохозяйственных растений (ячмень, пшеница) и тем самым помочь селекционерам и физиологам растений в выведении нужных сортов.
Мы уже рассказывали, что все клетки взаимосвязаны, что идущие в них реакции, несмотря на их сложность, протекают с удивительной правильностью и постоянством, говорили мы и о тесной связи всех клеток с головным мозгом. Эти особенности клеток, органов и целого организма изучает возникший совсем недавно отдел науки - биофизика процессов управления и регуляции.
Расскажем о работе этого отдела на следующем примере. Каждый орган человека состоит из бесчисленного количества клеток, часто выполняющих специфическую работу. Например, большую роль в обонянии играет слизистая оболочка носа - так называемый обонятельный эпителий. Слизистая оболочка занимает площадь не более 4 с но содержит чуть ли не 500 млн. обонятельных клеток-рецепторов. Сведения о их работе передаются в обонятельный нерв по нервным волокнам, число которых достигает 50 млн., и далее в мозг. Отделы мозга - полушария головного мозга - содержат 2 1010 клеток, а в мозжечке их еще больше-10й. Даже] трудно себе представить, какой поток информации получает мозг каждую секунду от всех органов и тканей.
Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы, затем необходимо принять соответствующие "решения" и передать ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы в целом в определенных условиях. Ясно, что в центральную нервную систему поступают тысячи разнообразных сигналов из внешней среды в виде звуков, света, запахов и пр. Таким образом, | мы видим, насколько сложны взаимосвязи в любом организме, как сложна работа по управлению клетками, регулированию их состояния, контролю за согласованностью всех жизненных процессов.
Этот важный отдел биофизики опирается на законы, открытые другой наукой - кибернетикой. Пользуясь ее методами, биофизики, изучающие процессы управления и регулирования, разработали электронные модели живых организмов, органов, клеток и даже отдельных процессов, происходящих в этих клетках. Такие электронные модели (например, электронная черепаха, электронная нервная клетка, электронная модель процесса фотосинтеза) облегчают изучение всех | сложных явлений регуляции в живом организме.
Биофизики, изучающие регуляцию и управление в живом организме, выяснили, что как клетки, так и органы живых организмов представляют собой систему, обладающую удивительным свойством. Клетки и органы, как говорят биофизики,- это САМО-регулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы, т. е. вся их работа, необычные качества и свойства, характеризующие их, постоянство состава среды внутри них и выполняемой ими работы - все обусловлено процессами, протекающими в них самих.
Чтобы немного подробнее представить себе работу биофизиков, расскажем об одном интересном направлении, возникшем на основе биофизики и уже оформившемся в самостоятельную биофизическую науку - бионику.
Это наука, которая изучает живые организмы для создания совершенных искусственных систем, машин и приборов. Результаты исследований биоников показали, что инженерам-конструкторам всех специальностей есть чему поучиться у природы. Вот несколько примеров.
В конструкцию современных электронных вычислительных машин входит большое количество различных деталей (полупроводниковые диоды, триоды, сопротивления, конденсаторы и т. д.). Размеры электронных вычислительных машин зависят от того, сколько таких деталей (элементов) находится в 1 см3 машины. Чем больше рабочих элементов в 1 см3 (так называемая плотность монтажа), тем более емка "память" машины, больше возможностей проводить нужные операции, лучше работа. Оказывается, что если наивысшая плотность монтажа в технических схемах машин достигает 2000 элементов в 1 слг3, то плотность монтажа элементов мозга в 50 тыс. раз больше: 100 ООО ООО элементов в 1 см3.

Отличие живых организмов от самых сложных современных машин и приборов проявляется не только в строении, но и в свойствах. Возьмем, к примеру, органы зрения. Глаза у животных не только разной величины - от микроскопически малых у муравья (0,1 мм) до гигантских (20-30 см) у кальмаров, - но отличаются и другими свойствами.
Оказывается, глаз рыбы-мечехйоста способен усиливать контраст между краем видимого изображения и общим фоном, так что предмет становится резко очерченным - подобно тому как это делают на экране телевизора, усиливая или ослабляя контраст. Интересным свойством обладает также глаз обыкновенной болотной лягушки. Известно, что лягушка питается только движущейся пищей - мухами, мошками, жучками. Но если насекомое не движется, лягушка никогда не найдет свою пищу и останется голодной: ее глаз воспринимает лишь движущиеся предметы, оставляя без внимания фон.
Давно было известно, что ночные лесные птицы (филин, сова) отлично видят в темноте, но совсем недавно выяснилась необычайная способность некоторых животных (лягушки, мыши) видеть даже "невидимые" ионизирующие лучи - рентгеновскую и космическую радиацию.
Природа оказалась исключительным конструктором, достигшим необычайных высот мастерства и в области слуха. Опыты показали, что человеческое ухо по своей чувствительности способно воспринимать звуки, ничтожно малую интенсивность которых даже трудно себе представить. Ее можно сравнить разве что с "шумом", с которым происходит тепловое движение молекул! Не менее поразителен слуховой орган кузнечика, расположенный у него на ножке. Этот орган позволяет кузнечику чувствовать колебания, размах которых (амплитуда) составляет половину диаметра атома водорода! Чувствительность слуха кузнечика настолько высока, что, находясь в Москве, он может воспринимать самые малые землетрясения, происходящие в районе Дальнего Востока.
Бионика стремится познать все необычные свойства живых организмов и применить полученные данные для создания машин и приборов. Например, ученые разрабатывают прибор, который даст возможность слепым читать книги, набранные обычным типографским шрифтом. Уже создана модель искусственной руки, управляемой мыслью человека, точнее говоря, биопотенциалами, возникающими в мышцах. На основе изучения глаз пчелы и стрекозы (у них, кстати, очень большой угол зрения - 240-300°) конструкторы создали прибор - небесный компас, используемый при движении судов, самолетов. Изучение медузы помогло сконструировать прибор, предупреждающий о наступлении шторма почти за 15 часов. Список приборов, разработанных биониками, весьма большой, и даже простое их перечисление заняло бы много времени.
Но бионики не только копируют функции и строение отдельных органов животных. Они исследуют и используют особенности передачи информации у насекомых, птиц, рыб. Результаты этих работ очень интересны. Так, недавно стало известно, что комары поддерживают между собой связь с помощью электромагнитных волн миллиметрового диапазона (13-17 мм), причем дальность действия комариной "радиостанции" - 15 м\ Записаны звуки, издаваемые комарами при "испуге", "страшной опасности" (например, при появлении летучей мыши). Ученые работают над созданием ультразвуковых аппаратов, отпугивающих вредных насекомых и привлекающих полезных. (О бионике также см. ст. "Что такое техническая кибернетика и бионика".)

Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше как в области изучения молекул, клеток, так и организма в целом. Наш век - это время великих свершений во всех областях знания, в том числе в познании живой природы.

А.П. Дубов

Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.