Параболоид вращения уравнение. Параболоиды

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Эллиптический параболоид

Эллиптический параболоид при a=b=1

Эллипти́ческий параболо́ид - поверхность, описываемая функцией вида

,

где a и b одного знака. Поверхность описывается семейством параллельных парабол с ветвями, направленными вверх, вершины которых описывают параболу, с ветвями, также направленными вверх.

Если a = b то эллиптический параболоид представляет собой поверхность вращения , образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

Гиперболический параболоид

Гиперболический параболоид при a=b=1

Гиперболи́ческий параболо́ид (называемый в строительстве «гипар») - седлообразная поверхность, описываемая в прямоугольной системе координат уравнением вида

.

Из второго представления видно, что гиперболический параболоид является линейчатой поверхностью .

Поверхность может быть образована движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается со второй своей вершиной.

Параболоиды в мире

В технике

В искусстве

В литературе

Устройство, описанное в Гиперболоид инженера Гарина должно было быть параболоидом .


Wikimedia Foundation . 2010 .

  • Элон Менахем
  • Элтанг

Смотреть что такое "Эллиптический параболоид" в других словарях:

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД Большой Энциклопедический словарь

    эллиптический параболоид - один из двух типов параболоидов. * * * ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД, один из двух типов параболоидов (см. ПАРАБОЛОИДЫ) … Энциклопедический словарь

    Эллиптический параболоид - один из двух видов параболоидов (См. Параболоиды) … Большая советская энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - незамкнутая поверхность второго порядка. Канонич. уравнение Э. п. имеет вид Э. п. расположен по одну сторону от плоскости Оху (см. рис.). Сечения Э. п. плоскостями, параллельными плоскости Оху, являются эллипсами с равным эксцентриситетом (если р … Математическая энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - один из двух типов параболоидов … Естествознание. Энциклопедический словарь

    ПАРАБОЛОИД - (греч., от parabole парабола, и eidos сходство). Тело, образуемое вращающеюся параболой. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПАРАБОЛОИД геометрическое тело, образовавшееся от вращения параболы, так… … Словарь иностранных слов русского языка

    ПАРАБОЛОИД - ПАРАБОЛОИД, параболоида, муж. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид. Толковый словарь Ушакова … Толковый словарь Ушакова

    ПАРАБОЛОИД - ПАРАБОЛОИД, поверхность, получаемая при движении параболы, вершина которой скользит по другой, неподвижной параболе (с осью симметрии, параллельной оси движущейся параболы), тогда как ее плоскость, смещаясь параллельно самой себе, остается… … Современная энциклопедия

    Параболоид - ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… … Википедия

    ПАРАБОЛОИД - незамкнутая нецентральная поверхность второго порядка. Канонич. уравнения П.: эллиптический параболоид (при р = q называется П. вращения) и гиперболический параболоид. А. Б. Иванов … Математическая энциклопедия

Высота параболоида может быть определена по формуле

Объем параболоида, касающегося дна равен половине объема цилиндра с радиусом основания R и высотой Н, такой же объем занимает пространство W’ под параболоидом (рис.4.5а)

Рис.4.5. Соотношение объемов в параболоиде, касающемся дна.

Wп- объем параболоида,W’ – объем под параболоидом, Hп – высота параболоида

Рис.4.6. Соотношение объемов в параболоиде, касающемся краев цилиндра Hп – высота параболоида., R – радиус сосуда, Wж–объем под высотой жидкости в сосуде до начала вращения, z 0 – положение вершины параболоида, Н - высота жидкости в сосуде до начала вращения.

На рис.4.6а уровень жидкости в цилиндре до начала вращения Н. Объем жидкости Wж до и после вращения сохраняется и равен сумме объема Wц цилиндра с высотой z 0 плюс объем жидкости под параболоидом, который равен объему параболоидаWп с высотой Нп

Если параболоид касается верхнего края цилиндра, высота жидкости в цилиндре до начала вращения Н делит высоту параболоида Нп на две равные части, нижняя точка (вершина) параболоида расположена по отношению к основанию(рис.4.6в)

Кроме того, высота Н делит параболоид на две части (рис.4.6в), объемы которых равны W 2 =W 1 . Из равенства объемов параболического кольца W 2 и параболической чашки W 1 , рис.4.6в

При пересечении поверхностью параболоида днища сосуда (рис.4.7) W 1 =W 2 =0,5W кольца

Рис.4.7 Объемы и высоты при пересечении поверхностью параболоида днища цилиндра

Высоты на рис.4.6

объемы на рис.4.6 .

Расположение свободной поверхности в сосуде

Рис.4.8. Три случая относительного покоя при вращении

1. Если сосуд открыт, Po=Ратм (рис.4.8а). Вершина параболоида при вращении опускается ниже начального уровня-Н, а края поднимаются над начальным уровнем, положение вершины

2. Если сосуд заполнен полностью, прикрыт крышкой, не имеет свободной поверхности, находится под избыточным давлением Ро>Ратм, до вращения поверхность (П.П.), на которой Ро=Ратм будет находиться над уровнем крышки на высоте h 0и =М/ρg , H 1 =Н+ М/ρg.

3. Если сосуд заполнен полностью, находится под вакуумом Ро<Ратм, до вращения поверхность П.П., на которой Ро=Ратм будет находиться под уровнем крышки на высоте h 0и =-V/ρg, Н 2 =Н-V/ρg ,

4.7. Вращение с большой угловой скоростью (рис.4.9)

При вращении сосуда с жидкостью с большой угловой скоростью силой тяжести можно пренебречь по сравнению с центробежными силами. Закон изменения давления в жидкости можно получить из формулы




(4.22),

Поверхности уровня образуют цилиндры с общей осью, вокруг которой вращается сосуд. Если сосуд перед началом вращения не полностью заполнен, давление Р 0 будет действовать по радиусу r = r 0 , вместо выражения (4.22) будем иметь

в котором принимаем g(z 0 - z) = 0,

Рис. 4.9 Расположение поверхностей вращения при отсутствии силы тяжести.

Радиус внутренней поверхности при известных H и h

Он представляет собой полое изометрическое тело, сечениями которого являются эллипсы и параболы. Эллиптический параболоид задается вида:
x^2/a^2+y^2/b^2=2z
Все главные сечения параболоида являются параболами. При сечении плоскости XOZ и YOZ получаются только параболы. Если провести перпендикулярное сечение относительно плоскости Xoy, можно получить эллипс. Причем, сечения, представляющие собой параболы, задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=2z
Сечения эллипса задаются другими уравнениями:
x^2 /a^2+y^2/b^2=2h
Эллиптический параболоид при a=b превращается в параболоид вращения. Построение параболоида имеет ряд некоторых особенностей которые нужно учитывать. Операцию начните с подготовки - чертежа графика функции.

Для того чтобы начать строить параболоид, нужно вначале построить параболу. Начертите параболу в плоскости Oxz, как показано на рисунке. Задайте будущему параболоиду определенную высоту. Для этого проведите прямую таким образом, чтобы она касалась верхних точек параболы и была параллельно оси Ox. Затем начертите параболу в плоскости Yoz и проведите прямую. Вы получите две параболоидные плоскости, перпендикулярные друг другу. После этого в плоскости Xoy постройте параллелограмм, который поможет начертить эллипс. В этот параллелограмм впишите эллипс таким образом, чтобы он касался всех его сторон. После этих преобразований сотрите параллелограмм, и останется объемное изображение параболоида.

Существует также гиперболический параболоид, который имеет более вогнутую форму, чем эллиптический. Его сечения также имеют выд параболы, а в некоторых случаях - . Главные сечения по Oxz и Oyz, как и у эллиптического параболоида, представляют собой параболы. Они задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=-2z
Если провести сечение относительно оси Oxy, можно получить гиперболу. При построении гиперболического параболоида руководствуйтесь следующим уравнением:
x^2/a^2-y^2/b^2=2z - гиперболического параболоида

Первоначально постройте неподвижную параболу в плоскости Oxz. В плоскости Oyz начертите подвижную параболу. После этого задайте высоту параболоида h. Для этого отметьте на неподвижной две точки, которые будут вершинами еще двух подвижных . Затем изобразите еще одну систему координат O"x"y", чтобы нанести гиперболы. Центр этой системы координат должен совпадать с высотой параболоида. После всех построений изобразите те две подвижные параболы, о которых упоминалось выше, так чтобы они касались крайних точек гипербол. В результате получится гиперболический параболоид.

В процессе изучения математики, многие школьники и студенты сталкиваются с построением различных графиков, в частности, парабол. Параболы являются одними из самых часто встречающихся графиков, используемых на многих контрольных, проверочных и тестовых работах. Поэтому знание простейших инструкций по их построению окажет вам значительную помощь.

Вам понадобится

  • - линейка и карандаш;
  • - калькулятор.

Инструкция

Для начала, начертите на листе координатные оси: ось абсцисс и ось ординат. Подпишите их. После этого, поработайте над данной квадратичной функцией. Она должна быть такого вида: y=ax^2+bx+c. Самой популярной функцией является y=x^2, поэтому ее можно привести в качестве примера.

После построения осей, найдите координаты вершины вашей параболы. Чтобы найти координату по оси X, подставьте известные данные в эту формулу: x=-b/2a, по оси Y - подставьте полученное в функцию. В случае с функцией y=x^2, координаты вершины совпадают с координат, т.е. в точке (0;0), так как значение переменной b равно 0, следовательно и x=0. Подставив значение x в функцию y=x^2, нетрудно найти ее значение - y=0.

После нахождения вершины, определитесь с направлением ветвей параболы. Если коэффициент a из записи функции вида y=ax^2+bx+c положителен, то направлены вверх, если отрицателен - вниз. График функции y=x^2 направлен вверх, так как коэффицент a равен единице.

Следующим шагом будет вычисление координат точек параболы. Чтобы их найти, подставьте в значение аргумента -либо число и вычислите значение функции. Для построения графика хватит 2-3 точек. Для большего удобства и наглядности, начертите таблицу со значениями функции и аргумента. Также не забывайте, что парабола обладает симметричностью, следовательно это облегчает создания графика. Самые часто используемые точки параболы y=x^2 - (1;1), (-1;1) и (2;4), (-2;4).

После нанесения точек на координатную плоскость, соедините их плавной линией, придавая ей округлые . Не заканчивайте график в верхних точках, а продлите его, так как парабола бесконечна. Не забудьте подписать график на , а также напишите необходимые координаты на осях, в противном случае, это вам могут за ошибку и снять определенное количество баллов.

Источники:

  • как нарисовать параболу

Парабола является графиком квадратичной функции вида y=A·x²+B·x+C. Перед построением графика необходимо провести аналитическое исследование функции. Обычно параболу рисуют в декартовой прямоугольной системе координат, которая представлена двумя перпендикулярными осями Ox и Oy.

Инструкция

Первым пунктом запишите область определения функции D(y). Парабола определена на всей числовой прямой, если не задано никаких дополнительных условий. Обычно это указывается записью D(y)=R , где R – множество всех

Эллиптическим параболоидом

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot z.

Гиперболическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат Oxyz каноническим уравнением

\frac{x^2}{a^2}-\frac{y^2}{b^2}=2\cdot z.

В уравнениях (4.51) и (4.52) a и b - положительные параметры, характеризующие параболоиды, причем для эллиптического параболоида a\geqslant b .

Начало координат называют вершиной каждого из параболоидов ((4.50) или (4.51)).

Плоские сечения эллиптического параболоида

Плоскость Oxz пересекает эллиптический параболоид (4.51) по линии, имеющей в этой плоскости уравнение \frac{x^2}{a^2}=2z , которое равносильно уравнению x^2=2pz параболы с фокальным параметром p=a^2 . Сечение параболоида плоскостью Oyz получаем, подставляя x=0 в уравнение (4.51): \frac{y^2}{b^2}=2z . Это уравнение равносильно уравнению y^2=2qz параболы с фокальным параметром q=b^2 . Эти сечения называются главными параболами эллиптического параболоида (4.51).

Рассмотрим теперь сечение эллиптического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.51), получаем

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot h.

При h<0 уравнение не имеет действительных решений, т.е. плоскость z=h при h<0 не пересекает параболоид (4.51). При h=0 уравнению (4.51) удовлетворяет одна вещественная точка O - вершина параболоида. При h>0 уравнение определяет эллипс \frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} . Следовательно, сечение эллиптического параболоида плоскостью z=h (при h>0 ) представляет собой эллипс, центр которого лежит на оси аппликат, а вершины - на главных параболах.

Таким образом, эллиптический параболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных параболах (рис.4.46,а).

Параболоид вращения

Эллиптический параболоид, у которого a=b , называется параболоидом вращения . Такой параболоид является поверхностью вращения. Сечения параболоида вращения плоскостями z=h (при h>0 ), представляют собой окружности с центрами на оси аппликат (рис.4.46,б). Его можно получить, вращая вокруг оси Oz параболу y^2=2qz , где q=a^2=b^2 .

Плоские сечения гиперболического параболоида

Сечения гиперболического параболоида координатными плоскостями Oxz и Oyz представляют собой параболы (главные параболы) x^2=2pz или y^2=-2qz с параметрами p=a^2 или q=b^2 соответственно. Поскольку оси симметрии главных парабол направлены в противоположные стороны, гиперболический параболоид называют седловой поверхностью .

Рассмотрим теперь сечения гиперболического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.52), получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=2h При h>0 уравнение равносильно уравнению гиперболы \frac{x^2}{(a")^2}-\frac{y^2}{(b")^2}=1 полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} , то есть сечение гиперболического параболоида плоскостью z=h при h>0 представляет собой гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе x^2=2pz . При h<0 получаем уравнение сопряженной гиперболы -\frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{-2h}, b"=b\sqrt{-2h} , т.е. сечение гиперболического параболоида плоскостью z=h при h<0 представляет собой сопряженную гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе y^2=-2qh . При h=0 получаем уравнение пересекающихся прямых \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 , т.е. сечение гиперболического параболоида плоскостью z=0 представляет собой пару пересекающихся в начале координат прямых.

Таким образом, гиперболический параболоид можно представить как поверхность, образованную гиперболами (включая и "крест" из их асимптот), вершины которых лежат на главных параболах (рис.4.47,а).

Сечение параболоида плоскостью x=h , где h - произвольная постоянная, представляет собой параболу

\frac{h^2}{a^2}-\frac{y^2}{b^2}=2\cdot z \quad \Leftrightarrow \quad y^2=-2\cdot q\cdot\!\left(z-\frac{h^2}{2\cdot a^2}\right)\!.


равную главной параболе y^2=-2qz с параметром q=b^2 , вершина которой лежит на другой главной параболе x^2=2pz с параметром p=a^2 . Поэтому гиперболический параболоид можно представить как поверхность, получающуюся при перемещении одной главной параболы так, чтобы ее вершина "скользила" по другой главной параболе (рис.4.47,б).

Замечания 4.11.

1. Гиперболический параболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (рис.4.47,в).

2. Ось аппликат канонической системы координат является осью симметрии параболоида, а координатные плоскости Oyz,~Oxz - плоскостями симметрии параболоида.

В самом деле, если точка M(x,y,z) принадлежит параболоиду (эллиптическому или гиперболическому), то точки с координатами (\pm x,\pm y,\pm z) при любом выборе знаков также принадлежат параболоиду, поскольку их координаты удовлетворяют уравнению (4.51) или (4.52) соответственно. Поэтому параболоид симметричен относительно координатных плоскостей Oyz, Oxz и координатной оси Oz .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!