Окисление альдегидов: процесс, конечный продукт. Альдегиды: химические свойства, получение, строение

Для которых характерна двойная связь между углеродным и кислородным атомами и две одинарные связи этого же атома углерода с углеводородным радикалом, обозначаемым буквой R, и атомом водорода. Группа атомов >С=О называется карбонильной группой, она характерна для всех альдегидов. Многие альдегиды имеют приятный запах. Они могут быть получены из спиртов путем дегидрирования (удаление водорода), благодаря чему получили общее название — альдегиды. Свойства альдегидов определяются наличием карбонильной группы, ее расположением в молекуле, а также длиной и пространственной разветвленностью углеводородного радикала. То есть, зная название вещества, отражающего его можно ожидать определенные химические, а также физические свойства альдегидов.

Есть два основных способа именования альдегидов. Первый метод основан на системе, используемой Международным союзом (IUPAC), его часто называют систематическая номенклатура. Он основывается на том, что самая длинная цепочка, в которой к атому углерода присоединена карбонильная группа, служит основой названия альдегида, то есть его название происходит от названия родственного алкана благодаря замене суффикса -ан на суффикс -аль (метан — матаналь, этан — этаналь, пропан — пропаналь, бутан — бутаналь и так далее). Другой метод образования названия альдегидов использует наименование соответствующей в которую в результате окисления тот превратится (метаналь — альдегид муравьиный, этаналь — альдегид уксусный, пропаналь — альдегид пропионовый, бутаналь — альдегид масляный и так далее).

Именно полярность группы >С=О влияет на физические свойства альдегидов: кипения, растворимость, дипольный момент. Углеводородные соединения, состоящие только из атомов водорода и углерода, плавятся и кипят при низких температурах. У веществ с карбонильной группой они значительно выше. Например, бутан (CH3CH2CH2CH3), пропаналь (CH3CH2CHO) и ацетон (CH3СОСН3) имеют одинаковую молекулярную массу, равную 58, а температура кипения у бутана равняется 0 °C, в то время как для пропаналя она составляет 49 °С, а у ацетона равна 56 °C. Причина большой разницы заключается в том, что полярные молекулы имеют больше возможности друг к другу притягиваться, чем неполярные молекулы, поэтому для их разрыва необходимо больше энергии и, следовательно, требуется более высокая температура, чтобы эти соединения плавились или кипели.

С ростом меняются физические свойства альдегидов. Формальдегид (HCHO) является газообразным веществом при нормальных условиях, ацетальдегид (CH3CHO) кипит при комнатной температуре. Другие альдегиды (за исключением представителей с высоким молекулярным весом) при нормальных условиях являются жидкостями. Полярные молекулы не смешиваются легко с неполярными, потому что полярные молекулы друг к другу притягиваются, и неполярные не в состоянии протиснуться между ними. Поэтому углеводороды не растворяются в воде, так как молекулы воды полярны. Альдегиды, в молекулах которых число атомов углерода менее 5, растворяются в воде, но если число углеродных атомов больше 5, растворение не происходит. Хорошая растворимость альдегидов с низким молекулярным весом обусловлена образованием водородных связей между атомом водорода молекулы воды и атомом кислорода карбонильной группы.

Полярность молекул, образованных различными атомами, может быть количественно выражена числом, называемым дипольным моментом. Молекулы, образованные одинаковыми атомами, не являются полярными и дипольного момента не имеют. Вектор дипольного момента направлен в сторону элемента, стоящего в таблице Менделеева (для одного периода) правее. Если молекула состоит из атомов одной подгруппы, то электронная плотность будет смещаться в сторону элемента с меньшим порядковым номером. Большинство углеводородов не имеют дипольного момента или величина его чрезвычайно мала, но для альдегидов она гораздо выше, что также объясняет физические свойства альдегидов.

Альдегиды и их химические свойства

Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.

Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.

А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.



При таком присоединении характерны следующие реакции:

Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.

При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.

Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.

Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.



А вот так называемая реакция «светофор»:



Физические свойства альдегидов

Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.

Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.

Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.

Нахождение альдегидов в природе

В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.

Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.

Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.



Применение альдегидов

Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.

Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.

Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.

Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.

В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.

Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.

Название альдегид применяется к соединениям, содержащим карбонильную группу, связанную с атомом водорода (-COH)

Альдегиды чаще всего имеют тривиальные названия, обычно такие же, как кислоты, в которые они переходят при окислении.

Название неразветвленного ациклического альдегида образовывают путем добавления окончания "–АЛ " ("–АЛЬ " в русской терминологии) к названию углеводорода, содержащего тоже число атомов углерода, например:

Наличие кратных связей или боковых цепей в молекуле альдегида обозначается аналогично алканам:

3-метилпентаналь

По рациональной номенклатуре альдегиды жирного ряда иногда рассматривают как производные уксусного альдегида, например: триметилуксусный альдегид, метилэтилуксусный альдегид и т.д.

Для альдегидов широко применяются не систематические – тривиальные названия. Они образуются из соответствующих тривиальных названий карбоновых кислот. Эти названия приведены в таблице 7.

Таблица 7

Названия альдегидов

НАЗВАНИЕ

Название в русской терминологии

формальдегид

муравьиный альдегид

ацетальдегид

уксусный альдегид

С 2 Н 5 СОН

пропиональдегид

пропионовый альдегид

С 3 Н 7 СОН

бутилальдегид

масляный альдегид

С 4 Н 9 СОН

валеральдегид

валериановый альдегид

CH 2 =CH 2 –COH

акрилальдегид

акриловый альдегид

HOC–CH 2 –COH

малональдегид

малоновый альдегид

Исключение: этандиальдегид обычно называют глиоксалем.

Название кетон применяется к соединениям, содержащим карбонильную группу, связанную с двумя углеводородными радикалами.

Названия кетонов образуются путем добавления окончания "–ОН " или "–ДИОН " и т.д. к названию углеводорода соответствующего главной цепи.

2-бутанон 2,4-гескандион

По радикально-функциональной номенклатуре названия кетонов производят от названий углеводородных радикалов, связанных с карбонильной группой, добавляя окончание "–КЕТОН "

Таблица 8

Названия кетона

диэтилкетон диметилкетон

3-пентанон пропанон

У некоторых кетонов, также как и у альдегидов, сохраняются тривиальные названия

ацетон диацетил

4.3. "Карбоновые кислоты"

К
арбоновыми кислотами являются соединения, содержащие в своем строении карбоксильную группу (-COOH)

Названия одноосновных карбоновых кислот строится по трем видам номенклатур.

Тривиальные названия не выражают строения соединения и обычно отражают историю, происхождение веществ, выделение их из природных продуктов, путь синтеза т.д.

По рациональной номенклатуре карбоновые кислоты рассматриваются как замещенные уксусной кислоты (метилэтилуксусная, триметилуксусная и т.д.).

Номенклатура ИЮПАК. Имеются два варианта образования названия.

1-й вариант: углеродный атом карбоксильной группы считается составной частью углеродного скелета, и название кислоты образуется из названия соответствующего углеводорода путем добавления к нему окончания "–ОВАЯ КИСЛОТА ". Этот вариант наиболее предпочтителен для простых алифатических кислот.

гексановая кислота

2-й вариант: карбоксильная группа рассматривается в качестве заместителя в углеводородной цепи. К названию соответсвующего углеводорода добавляется окончание "–КАРБОНОВАЯ КИСЛОТА "

1-пентанкарбоновая кислота

предельных одноосновных карбоновых кислот образуют из названий алканов с таким же числом атомов углерода с добавлением суффикса.

Расстановка ударений: АЛЬДЕГИ`ДЫ

АЛЬДЕГИДЫ - класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная к-та - уксусный А.). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические А. и др. Если радикалом является остаток спирта, карбоновой к-ты и пр., образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие хим. свойствами, присущими А. и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с А. реакции. Один из простейших А. - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения А. из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:


Эта реакция применяется при синтетическом производстве уксусной к-ты. Ароматические А. обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и хим. свойства А. Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из А. - муравьиный, или формальдегид


альдегидная группировка к-рого связана с водородом, является газом; низшие А. (напр., ацетальдегид) - жидкости с резким запахом; высшие А. - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода А. относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций А. характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

А. легко полимеризуются и конденсируются (см. Алъдоаьная конденсация ); при обработке А. щелочами или кислотами получаются альдоли, напр.:

При отщеплении воды альдоль превращается в кротоновый альдегид


способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биол. субстратов (крови, мочи и т. д.) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и пр., но не могут считаться специфическими.

А. играют большую роль в биол. процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в А. с последующим их окислением в жирные кислоты.

Радикалы А. высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный А. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных А. (анисовый, коричный, ванилин и др.).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной к-ты с образованием уксусного А., превращающегося путем восстановления в этиловый спирт.

А. широко используются в синтезе многих органических соединений. В мед. практике применяются как непосредственно А. (см. Формалин, Паральдегид, Цитраль ), так и синтетические производные, получаемые из А., напр, уротропин (см. Гексаметилентетрамин ), хлоралгидрат (см.) и др.

См. также Муравьиный альдегид. Уксусный альдегид .

Альдегиды как профессиональные вредности . А. широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется гл. обр. в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и т. д.; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t ° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и т. д.). Более подробно - см. статьи, посвященные отдельным А.

Все А., особенно низшие, обладают выраженным токсическим действием.

А. раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия А. являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физ.-хим. свойств А.: низшие А. (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть А. падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных А. сильнее, чем у предельных.

Механизм токсического действия А. связан с высокой реакционной способностью карбонильной группы А., к-рая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции ц. н. с., дистрофические изменения внутренних органов и т. д. Кроме того, попадая в организм, А. подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами А., а продукты их превращений. А. медленно выводятся из организма, способны кумулировать, чем объясняется развитие хрон. отравлений, основные проявления к-рых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлонии альдегидами . Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика . Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция ). Использование индивидуальных средств защиты, напр. фильтрующего противогаза марки «А» (см. Противогазы ), спецодежды (см. Одежда ) и т. д.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов . Все А. суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой к-той. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

См. также Отравления, Яды промышленные .

Библиогр.: Бауер К. Г . Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н . и Несмеянов Н. А . Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф . и Латыпова З. В . Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С ., Гинзбург С. Л . и Xализова О. Д . Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь , Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С . и Сергеева Т. И . Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В . Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М . К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н . а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F . u. Onnen K . Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H . a. Touraine R. G . Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E . A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.