Азот в природе. Азот газообразный

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Азот

АЗО́Т -а; м. [франц. azote от греч. an- - не-, без- и zōtikos - дающий жизнь]. Химический элемент (N), газ без цвета и запаха, не поддерживающий дыхания и горения (составляет основную по объёму и массе часть воздуха, является одним из главных элементов питания растений).

Азо́тный, -ая, -ое. А-ая кислота. А-ые удобрения. Азо́тистый, -ая, -ое. А-ая кислота.

азо́т

(лат. Nitrogenium), химический элемент V группы периодической системы. Название от греч. а... - отрицательная приставка, и zōē - жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2-атомных молекул (N 2); газ без цвета и запаха; плотность 1,25 г/л, t пл –210ºC, t кип –195,8ºC. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09% объёма), разделением которого получают промышленный азот (более 3 / 4 идёт на синтез аммиака). Применяется как инертная среда для многих технологических процессов; жидкий азот - хладагент. Азот - один из основных биогенных элементов, входящий в состав белков и нуклеиновых кислот.

АЗОТ

АЗО́Т (лат. Nitrogenium - рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде - газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N 2 , обладающих высокой прочностью. Относится к неметаллам.
Природный азот состоит из стабильных нуклидов (см. НУКЛИД) 14 N (содержание в смеси 99,635% по массе) и 15 N. Конфигурация внешнего электронного слоя 2s 2 3 . Радиус нейтрального атома азота 0,074 нм, радиус ионов: N 3- - 0,132 , N 3+ - 0,030 и N 5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.
История открытия
Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения («удушливый воздух») и в отличие от CO 2 не поглощаемый раствором щелочи. Вскоре французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. azoos - безжизненный). В 1784 английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).
Нахождение в природе
В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде - в состав двух селитр: натриевой NaNO 3 (встречается в Чили, отсюда название чилийская селитра (см. ЧИЛИЙСКАЯ СЕЛИТРА) ) и калиевой KNO 3 (встречается в Индии, отсюда название индийская селитра) - и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) . Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами (см. Азотфиксация (см. АЗОТФИКСАЦИЯ) ). Превращения соединений азота в живых клетках - важнейшая часть обмена веществ у всех организмов.
Получение
В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8 °C), чем другого компонента воздуха - кислорода (-182,9 °C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара (см. ДЬЮАРА СОСУД) .
В лаборатории чистый («химический») азот получают, добавляя при нагревании насыщенный раствор хлорида аммония NH 4 Cl к твердому нитриту натрия NaNO 2:
NaNO 2 + NH 4 Cl = NaCl + N 2 + 2H 2 O.
Можно также нагревать твердый нитрит аммония:
NH 4 NO 2 = N 2 + 2H 2 O.
Физические и химические свойства
Плотность газообразного азота при 0 °C 1,25046 г/дм 3 , жидкого азота (при температуре кипения) - 0,808 кг/дм 3 . Газообразный азот при нормальном давлении при температуре –195,8 °C переходит в бесцветную жидкость, а при температуре –210,0 °C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже –237,54 °C устойчива форма с кубической решеткой, выше - с гексагональной.
Критическая температура азота –146,95 °C, критическое давление 3,9МПа, тройная точка лежит при температуре –210,0 °C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.
Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре –210 °C).
Энергия связи атомов в молекуле N 2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N 2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N 2 показывает, что электронами в ней заполнены только связывающие s- и p-орбитали. Молекула азота немагнитна (диамагнитна).
Из-за высокой прочности молекулы N 2 процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена (см. ГЕКСОГЕН) ) при нагревании, ударах и т. д. приводят к образованию молекул N 2 . Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.
Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием (см. ЛИТИЙ) с образованием твердого нитрида лития Li 3 N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует аммиак (см. АММИАК) NH 3 . Косвенным путем (не из простых веществ) получают гидразин (см. ГИДРАЗИН) N 2 H 4 и азотистоводородную кислоту HN 3 . Соли этой кислоты - азиды (см. АЗИДЫ) . Азид свинца Pb(N 3) 2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.
Известно несколько оксидов азота (см. АЗОТА ОКСИДЫ) . С галогенами азот непосредственно не реагирует, косвенными путями получены NF 3 , NCl 3 , NBr 3 и NI 3 , а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF 3).
Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI 3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI 3 взрывается:
2NI 3 = N 2 + 3I 2 .
Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.
При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М 3 N 2 , которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:
Са 3 N 2 + 6H 2 O = 3Ca(OH) 2 + 2NH 3 .
Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe 2 N и Fe 4 N. При нагревании азота с ацетиленом C 2 H 2 может быть получен цианистый водород HCN.
Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота (см. АЗОТНАЯ КИСЛОТА) HNO 3 , ее соли нитраты (см. НИТРАТЫ) , а также азотистая кислота HNO 2 и ее соли нитриты (см. НИТРИТЫ) .
Применение
В промышленности газ азот используют главным образом для получения аммиака (см. АММИАК) . Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент (см. ХЛАДАГЕНТ) , его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения (см. МИНЕРАЛЬНЫЕ УДОБРЕНИЯ) .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "азот" в других словарях:

    - (N) химический элемент, газ, без цвета, вкуса и запаха; составляет 4/5 (79 %) воздуха; уд. вес 0,972; атомный вес 14; сгущается в жидкость при 140 °С. и давлении 200 атмосфер; составная часть многих растительных и животных веществ. Словарь… … Словарь иностранных слов русского языка

    АЗОТ - АЗОТ, хим. элемент, симв. N (франц. AZ), порядковый номер 7, ат. в. 14,008; точка кипения 195,7°; 1 л А. при 0° и 760 мм давл. весит 1,2508 г [лат. Nitrogenium («порождающий селитру»), нем. Stickstoff («удушающее… … Большая медицинская энциклопедия

    - (лат. Nitrogenium) N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067. Название от греческой a отрицательная приставка и zoe жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2 атомных… … Большой Энциклопедический словарь

    азот - а м. azote m. <араб. 1787. Лексис.1. алхим. Первая материя металлов металлическая ртуть. Сл. 18. Пустился он <парацельс> на конец по свету, предлагая всем за весьма умеренную цену свой Лауданум и свой Азот, для изцеления всех возможных… … Исторический словарь галлицизмов русского языка

    - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 шС. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Современная энциклопедия

    Азот - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 °С. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Иллюстрированный энциклопедический словарь

    - (хим. знак N, атомный вес 14) один из химических элементов;бесцветный газ, не имеющий ни запаха, ни вкуса; очень мало растворим вводе. Удельный вес его 0.972. Пикте в Женеве и Кальете в Париже удалосьсгустить азот, подвергая его высокому давлению … Энциклопедия Брокгауза и Ефрона

    N (лат. Nitrogenium * a. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), хим. элемент V группы периодич. системы Mенделеева, ат.н. 7, ат. м. 14,0067. Oткрыт в 1772 англ. исследователем Д. Pезерфордом. При обычных условиях A.… … Геологическая энциклопедия

    Муж., хим. основание, главная стихия селитры; селитротвор, селитрород, селитряк; он же главная, по количеству, составная часть нашего воздуха (азота 79 объемов, кислорода 21). Азотистый, азотный, азотовый, азот в себе содержащий. Химики различают … Толковый словарь Даля

    Органоген, нитроген Словарь русских синонимов. азот сущ., кол во синонимов: 8 газ (55) неметалл … Словарь синонимов

    Азот - это газ, который гасит пламя, так как не горит и не поддерживает горения. Его получают фракционной перегонкой жидкого воздуха, хранят под давлением в стальных баллонах. Азот применяют, в основном, для производства аммиака и цианамида кальция, а… … Официальная терминология

Книги

  • Тесты по химии. Азот и фосфор. Углерод и кремний. Металлы. 9 класс (К учебнику Г. Е. Рудзитиса, Ф. Г. Фельдмана "Химия. 9 класс" . , Боровских Т.. Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения). Пособие включает тесты, охватывающие темы учебника Г. Е. Рудзитиса, Ф. Г.…

Азот бесцветный и нетоксичный, без запаха и вкуса. Азот существует в природе как невоспламеняющийся газ при нормальных температурах и давлении. Этот газ (азот) несколько легче воздуха, поэтому его концентрация с высотой повышается. При охлаждении до точки кипения азот превращается в бесцветную жидкость, которая при определенных давлении и температуре становится твердым бесцветным кристаллическим веществом. Азот слаборастворим в воде и большинстве других жидкостей, является плохим проводником электричества и тепла.

Большинство использований азота объясняется его инертными свойствами. Однако при высоких давлениях и температурах азот реагирует с некоторыми активными металлами, например с литием и магнием, образуя нитриды, а также с некоторыми газами, такими как кислород и водород.

Основные факты об азоте: история открытия и основные свойства

Азот (N2) - одно из самых распространённых веществ на Земле. Из него на 75% состоит атмосфера нашей планеты, тогда как доля кислорода в ней составляет всего 22%.

Как ни странно, учёные долгое время не знали о существовании этого газа. Лишь в 1772 году английский химик Дэниэл Резерфорд описал его как «испорченный воздух», неспособный поддерживать горение, не вступающий в реакцию со щелочами и непригодный для дыхания. Само слово «азот » (от греческого - «безжизненный») предложил 15 лет спустя Антуан Лавуазье.

При нормальных условиях это газ, не имеющий цвета, запаха и вкуса, тяжелее воздуха и практически инертный. При температуре -195,8 °C он переходит в жидкое состояние; при -209,9 °C - кристаллизуется, напоминая снег.

Области применения азота

В настоящее время, азот нашел широкое применение во всех сферах человеческой деятельности.

Так, нефтегазовая промышленность использует его с целью регуляции уровня и давления в нефтяных скважинах, вытеснения кислорода из ёмкостей для хранения природного газа, продувки и тестирования трубопроводов. Химическая промышленность нуждается в нём для получения удобрений и синтеза аммиака, металлургия - для ряда технологических процессов. Благодаря тому, что азот вытесняет кислород , но не поддерживает горение, его применяют в пожаротушении. В пищевой промышленности упаковка продуктов в азотной атмосфере заменяет использование консервантов, препятствует окислению жиров и развитию микроорганизмов. Кроме того, это вещество используется в фармацевтике для получения различных препаратов и в лабораторной диагностике - для проведения ряда анализов.

Жидкий азот способен за считанные секунды заморозить всё, что угодно, без образования кристалликов льда. Поэтому медики применяют его в криотерапии для удаления отмерших клеток, а также в криосохранении сперматозоидов, яйцеклеток и образцов тканей.

Интересно, что:

  • Мгновенное мороженое, приготовленное при помощи жидкого азота, изобрёл в 1998 году биолог Курт Джонс, дурачась с друзьями на кухне. Впоследствии он основал компанию по производству этого десерта, который пользуется спросом у американских сладкоежек.
  • Мировая промышленность получает из земной атмосферы 1 млн тонн этого газа в год.
  • Рука человека, погружённая в стакан с жидким азотом на 1-2 секунды, останется невредимой благодаря «перчатке» из пузырьков газа, который образуется при закипании жидкости в местах контакта с кожей.

Химические свойства азота

Из-за наличия прочной тройной связи молекулярный азот малоактивен, а соединения азота термически малоустойчивы и относительно легко разлагаются при нагревании с образованием свободного азота.

Взаимодействие с металлами

При обычных условиях молекулярный азот реагирует лишь с некоторыми сильными восстановителями, например, литием:

6Li + N 2 = 2Li 3 N.

Для образования нитрида магния из простых веществ требуется нагревание до 300 °С:

3Mg + N 2 = Mg 3 N 2 .

Нитриды активных металлов представляют собой ионные соединения, которые гидролизуются водой с образованием аммиака.

Взаимодействие с кислородом

Только под действием электрического разряда азот реагирует с кислородом:

O 2 + N 2 = 2NO.

Взаимодействие с водородом

Реакция с водородом протекает при температуре порядка 400 °С и давлении 200 атм в присутствии катализатора – металлического железа:

3H 2 + N 2 = 2NH 3 .

Взаимодействие с другими неметаллами

При высоких температурах реагирует с другими неметаллами, например, с бором:

Азот непосредственно не взаимодействует с галогенами и серой, но галогениды и сульфиды могут быть получены косвенным путем. С водой, кислотами и щелочами азот не взаимодействует.

Нитриды - соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiN x ;Na 3 N;Ca 3 N 2 ;Zn 3 N 2 ; и т. д.) и с рядом неметаллов (NH3,BN, Si3N4).

Строение.

В зависимости от типа химической связи между атомами нитриды подразделяются на ионные, ковалентные и ионно-ковалентно-металлические Атомы азота в нитридах могут принимать электроны менее электроотрицательного элемента, при этом образуя стабильную электронную конфигурацию s 2 p 6 или отдавать электрон партнеру с образованием устойчивой конфигурации sp 3

Получение

Нитриды ионного типа получаются при взаимодействии металлов с азотом при температурах 700-1200 °C. Другие нитриды можно получить взаимодействием металла с азотом или аммиаком или восстановлением оксидов, хлоридов металла углеродом в присутствии азота или аммиака при высоких температурах. Нитриды образуются также в плазме в дуговых, высокочастотных и сверхвысокочастотных плазмотронах. В последнем случае нитриды образуются как ультрадисперсные порошки с размером частиц 10-100 нм.

Химические свойства

Нитриды ионного типа легко разлагаются водой и кислотами, проявляя основные свойства:

Нагревание нитридов элементов V, VI и VIII групп приводит к их разложению с выделением азота, низших нитридов и твердых растворов азота в металлах. Нитриды бора, кремния, алюминия, индия, галлия и переходных металлов IV группы при нагревании в вакууме не разлагаются.



Окисление нитридов кислородом приводит к образованию оксидов металлов и азота. Взаимодействие нитридов с углеродом приводит к карбидам и карбонитридам.

14.Что Вы знаете о химических свойствах аммиака и его производных? В чем суть про­цес­са каталитического окисления аммиака?

· Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как основание Бренстеда или комплексообразователь (не следует путать понятия «нуклеофил» и «основание Бренстеда». Нуклеофильность определяется сродством к положительно заряженной частице. Основание имеет сродство к протону. Понятие «основание» является частным случаем понятия «нуклеофил»). Так, он присоединяет протон, образуя ион аммония:

Водный раствор аммиака («нашатырный спирт») имеет слабощелочную реакцию из-за протекания процесса:

K o =1,8·10 −5

Взаимодействуя с кислотами, даёт соответствующие соли аммония:

Аммиак также является очень слабой кислотой (в 10 000 000 000 раз более слабой, чем вода), способен образовывать с металлами соли - амиды. Соединения, содержащие ионы NH 2 − , называются амидами, а N 3− - нитридами. Амиды щелочных металлов получают, действуя на них аммиаком:

· При нагревании аммиак разлагается, проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:



(реакция обратима)

(без катализатора, при повышенной температуре)

(в присутствии катализатора, при повышенной температуре)

На восстановительной способности NH 3 основано применение нашатыря NH 4 Cl для очистки поверхности металла от оксидов при их пайке:

Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:

· Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества - галогениды азота (хлористый азот, иодистый азот).

· С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

(гидрохлорид метиламмония)

· С карбоновыми кислотами, их ангидридами, галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами - основания Шиффа, которые возможно восстановить до соответствующих аминов (восстановительное аминирование).

· При 1000 °C аммиак реагирует с углём, образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном, образуя ту же самую синильную кислоту:

Производные аммиака; . Амины по количеству содержащихся в их составе аммиачных остатков разделяются на одноатомные или моно-, двухатомные, или ди-, и многоатомные, или полиамины; так, известны, напр., C 2 H 5 NH 2 , C 2 H 4 (NH 2) 2 , CH(C 6 H 4 NH 2) 3 и т. п. По числу вступающих в частицу аммиака радикалов, а также и атомности последних амины разделяются на 1) первичные, в которых всегда присутствует одноатомный аммиачный остаток (NH 2), напр. метиламин CH 3 NH 2 , фениламин, или анилин, C 6 H 5 NH 2 , и т. д. 2) вторичные, происходящие замещением 2-х атомов водорода в аммиаке двумя одноатомными радикалами или одним двухатомным (в последнем случае амины называются иминами, см. это сл.), и для них - характерен двухатомный остаток (NH), напр. диметиламин NH(CH 3) 2 , метилэтиламин NH(CH 3)(C 2 H 5), метиланилин NH(C 6 H 5)(СН 3); пиперидин, или пентаметиленимин, C 5 H 10 =NH и т. д. 3)третичные, происходящие заменою всех трех атомов водорода в аммиаке тремя одноатомными радикалами, или двухатомным и одноатомным, или одним трехатомным, напр. триметиламинN(CH 3) 3 , диметиланилин C 6 H 5 N(CH 3) 2 , пропилпиперидин C 5 H 10 N(C 3 H 7), пиридин C 5 H 5 N и т. п. Все амины по своим химическим превращениям чрезвычайно напоминают аммиак; они способны присоединять элементы кислот, причем переходят в соли аммонийного типа, напр. (CH 3)NH 3 Cl, C 5 H 5 NHCl и проч.; простейшие из них, метил- и диметиламины, сходны с аммиаком даже по запаху и другим физическим свойствам

Каталитическое окисление аммиака является в настояще время основным методом получения азотной кислоты.

Способ относится к получению оксидов азота и переработке их в азотную кислоту. Сущность способа: процесс каталитического окисления молекулярного азота осуществляют под давлением, одинаковым со стадией абсорбции полученных оксидов азота водой, а энергию для эндотермического процесса каталитического окисления молекулярного азота подводят с потоком газов непосредственно в зону реакции. Процесс каталитического окисления молекулярного азота проводится при температурах ниже 1000 o C и при содержании окислителя в газовой фазе перед катализатором ниже 10 об.% паров HNO 3 + NO x и давлении в системе до 25 атм. Катализаторами окисления молекулярного азота используются сплавы платины с металлами платиновой группы или катализаторы на основе оксидов железа, кобальта, хрома, алюминия с промотирующими добавками тугоплавких металлов. Для образования потока газа с окислителем может быть использован не только атмосферный воздух, но и газовая смесь, получающаяся при отдуве продукционной кислоты. Технический результат - сокращение энергетических и капитальных затрат, а также упрощение технологической схемы производства азотной кислоты.

15.Расскажите об известных Вам аллотропных формах углерода. Что Вам известно об истории открытия фуллеренов?

Алмаз является одним из наиболее известных аллотропов углерода, чья твёрдость и высокая степеньрассеивания света делает его полезным в промышленном применении и в ювелирных изделиях. Алмаз -самый твёрдый известный природный минерал, что делает его отличным абразивом и позволяетиспользовать для шлифовки и полировки. В природной среде нет ни одного известного вещества, способногопоцарапать даже мельчайший фрагмент алмаза.

Рынок алмазов промышленного класса несколько отличен от рынков других драгоценных камней.Используемые в промышленности алмазы ценятся главным образом за их твёрдость и теплопроводность, из-за чего другие геммологические характеристики алмазов, в том числе чистота и цвет, по большей частиизлишни

Каждый атом углерода в алмазе ковалентен с четырьмя другими атомами углерода в тетраэдре. Этитетраэдры вместе образуют трёхмерную сеть из слоёв шестичленных колец атомов. Эта устойчивая сетьковалентных связей и трёхмерное распределение связей является причиной такой твёрдости алмазов.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен - «тянуть/писать»,использовался в карандашах) - один из самых обычных аллотропов углерода. Характеризуетсягексагональной слоистой структурой. Встречается в природе. Твердость по шкале Мооса 1. Его плотность -2.3, она меньше чем у алмаза. Приблизительно при 700 °C горит в кислороде, образовывая углекислый газ.По химической активности более реакционен чем алмаз. Это связано с проникновением реагентов междугексагональными слоями атомов углерода в графите. Не взаимодействует с обычными растворителями,кислотами или расплавленными щелочами. Однако, хромовая кислота окисляет его до углекислого газа.Получают нагреванием смеси пека и кокса при 2800 °C; из газообразных углеводородов при 1400-1500 °Cпри пониженных давлениях с последующим нагреванием образовавшегося пироуглерода при 2500−3000 °Cи давлении около 50 МПа с образованием пирографита. В отличие от алмаза, графит обладаетэлектропроводностью и широко применяется в электротехнике. Графит является самой устойчивой формойуглерода при стандартных условиях

В отличие от алмаза, в котором все четыре внешних электрона каждогоатома углерода "локализованы" между атомами в ковалентной связи, в графите, каждый атом связанковалентной связью только с 3 из его 4 внешних электронов. Поэтому каждый атом углерода вносит одинэлектрон в делокализованную систему электронов. Эти электроны находятся в зоне проводимости. Однакоэлектропроводность графита ориентирована по поверхности слоев. Поэтому графит проводит электричествопо плоскости слоя атомов углерода, но не проводит в направлении под прямым углом к плоскости.

16.Что Вам известно о физико-химических свойствах углекислого газа (CO 2) ? Расскажите о ро­ли углекислого газа и карбонатов в процессах, протекающих в природе

Азот

Азот — элемент главной подгруппы пятой группы второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

Его «открывали» несколько раз и разные люди. Его называли по-разному, приписывая едва ли не мистические свойства — и «флогистированный воздух», и «мефитический воздух», и «атмосферный мофетт», да и просто «удушливое вещество». До сих пор у него несколько названий: английский Nitrogen, французский Azote, немецкий Stickstoff, русский «азот»…

История «испорченного воздуха»

Азот (от греческого слова azoos - безжизненный, по-латыни Nitrogenium) - четвертый по распространенности элемент Солнечной системы (после водорода , гелия и кислорода ). Соединения азота - селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии.

В 1777 году Генри Кавендиш многократно пропускал воздух над раскалённым углём, а затем обрабатывал его щёлочью. В результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент).

В том же году Кавендиш сообщил об этом опыте Джозефу Пристли. Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным).

Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота. Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

Еще до того времени, в 1772 г., Даниэль Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, увидел, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. Лишь в 1787 г. Антуан Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот».

Ранее, в 1784 г. Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского nitrum — селитра и греческого genna — рождаю, произвожу). К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

«Не поддерживающий жизни» жизненно необходим

Хотя название «азот » означает «не поддерживающий жизни», на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. В результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными.

Дефицит азота характерен для земледелия почти всех стран. Наблюдается дефицит азота и в животноводстве («белковое голодание»). На почвах, бедных доступным азотом, растения плохо развиваются. В прошлом веке довольно богатый источник связанного азота был обнаружен в природе. Это - чилийская селитра, натриевая соль азотной кислоты. Долгое время селитры были главным поставщиком азота для промышленности. Ее месторождение в Южной Америке уникально, практически оно единственное в мире. И не удивительно, что в 1879 году за обладание богатой селитрой пограничной провинцией Тарапака вспыхнула война между Перу, Боливией и Чили. Победителем оказалась Чили. Однако удовлетворить мировую потребность в азотных удобрениях чилийское месторождение, конечно, не могло.

«Азотное голодание» планеты

В атмосфере Земли содержится почти 80% азота, в земной коре - всего 0,04%. Проблема «как связать азот» старая, она — ровесник агрохимии. Возможность связывания азота воздуха кислородом в электрическом разряде первым увидел англичанин Генри Кавендиш. Это было еще в XVIII веке. Но осуществить процесс управляемого синтеза окислов азота удалось лишь в 1904 году. В 1913 году немцы Фриц Габер и Карл Бош предложили аммиачный метод связывания азота. Сейчас, пользуясь этим принципом, сотни заводов всех континентов вырабатывают из воздуха более 20 миллионов тонн связанного азота в год. Три четверти его идет на производство азотных удобрений. Однако дефицит азота на посевных площадях земного шара составляет более 80 миллионов тонн в год. Азота Земле явно не хватает. Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д.

Применение азота

Свободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д.

Жидкий азот применяется как хладагент и для криотерапии. Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению.

В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы.

В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот , таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

Заблуждения: азот — не Дед Мороз

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент. Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённая ошибка. Даже для замораживания цветка необходимо достаточно продолжительное время, что связано отчасти с весьма низкой теплоёмкостью азота .

По этой же причине весьма затруднительно охлаждать, скажем, замки до −180 °C и раскалывать их одним ударом. Литр жидкого азота , испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине не стоит хранить азот в закрытых сосудах, не приспособленных для больших давлений. На этом же факте основан принцип тушения пожаров жидким азотом . Испаряясь, азот вытесняет воздух, необходимый для горения, и пожар прекращается.

Так как азот , в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров. Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом , в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота .

Как уже было сказано выше, азот жидкий и газообразный получают из атмосферного воздуха способом глубокого охлаждения.

Показатели качества азота газообразного ГОСТ 9293-74

Наименование показателя Особая Повышенная Повышенная
2 сорт 1 сорт
2 сорт
Объёмная доля азота, не менее 99,996
99,99
99,95
Кислород, не более 0,001
0,001
0,05
Водяной пар в газообразном азоте, не более 0,0007
0,0015
0,004
Водород, не более 0,001 Не нормируется
Не нормируется
Сумма углеродосодержащихся соединений в пересчете на СН 4 , не более 0,001 Не нормируется