Угарный газ горючий или нет. Угарный газ: формула и свойства. Физические свойства CO

ОБЩИЕ СВЕДЕНИЯ

Эмпирическая формула. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . СО

Молекулярная масса, кг/кмоль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..28,01

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . газообразное

Внешний вид. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .бесцветный газ

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . без запаха.

Применение: как одно из исходных соединений, лежащих в основе современной промышленности органического синтеза. Используют для восстановления металлов из окислов, для получения карбонилов металлов, фосгена, сероокиси углерода, хлористого алюминия, метилового спирта, формамида, ароматических альдегидов, муравьиной кислоты и др.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 0 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . . . . 1,250

Плотность при 20 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . . . 1,165

Температура кипения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 192

Температура плавления при давлении 101,3 кПа, °С. . . . . . . . . . . .минус 205

Критическая температура, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 138,7

Критическое давление, МПа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,5

Теплота сгорания, кДж/моль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 283

Удельная теплота сгорания, кДж/моль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10107

Теплота образования, кДж/моль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 110,5

Теплоемкость газа при 0°С и постоянном давлении, кДж/(кг?град) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,0416

Теплоемкость газа при 0°С и постоянном объеме, кДж/(кг?град) . . . .0,7434

Динамическая вязкость, Н?с/м2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166,04?107

Кинематическая вязкость, м2/с. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13,55?106

Коэффициент теплопроводности газа при 0°С и давлении 101,3 кПа, Вт/(м?К) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,0233

:

*т - твердое вещество.

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . растворим

Реакционная способность: сравнительно хорошо растворяется, особенно под давлением, в растворах дихлорметана (СН2Cl2), гидрооксида аммония, соляной кислоте. При низких температурах оксид углерода достаточно инертен; при высоких – легко вступает в различные реакции, в особенности, в реакции присоединения. Обладает восстановительными свойствами.

Окисляется в СО2 при комнатной температуре.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регистрационный номер по CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630-08-0

ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20*

Код вещества, загрязняющего атмосферный воздух: . . . . . . . . . . . . . . . . .0337

Класс опасности в атмосферном воздухе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ПДКм.р./с.с. в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/3

* - При длительности работы в атмосфере, содержащей оксид углерода не более 1ч ПДК оксида углерода может быть повышена до 50 мг/м3, при длительности работы не более 30 мин. – до 100 мг/м3, при длительности работ не более 15 мин. – 200 мг/м3. Повторные работы при условиях повышенного содержания оксида углерода в воздухе рабочей зоны могут проводиться с перерывом не менее, чем в 2ч.

Воздействие на людей: ядовитое вещество, относится к веществам с остронаправленным механизмом действия, требующим автоматического контроля за его содержанием в воздухе. Токсическое действие на центральную нервную систему.

Меры первой помощи пострадавшим от воздействия вещества: свежий воздух, освободить от стесняющей дыхание одежды, покой, согревание. Отравления тяжелой и средней степени лечат в стационаре.

Меры предосторожности: обязательны местные вытяжные устройства и общая вентиляция помещений. Герметизация аппаратуры и коммуникаций. Постоянный контроль за концентрацией в воздухе рабочей зоны, использование автоматических приборов и сигнализационных устройств.

Средства защиты: . . . . . . . . . . . . . . . . . . . . . . . . . . . фильтрующий противогаз.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . горючий газ (ГГ)

Температура самовоспламенения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Концентрационные пределы распространения пламени, % (об.) . . 12,5-74

Минимальное взрывоопасное содержание кислорода, % (об.) при разбавлении:

Азотом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,6

Диоксидом углерода. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,9

Максимальное давление взрыва, кПа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Безопасный экспериментальный максимальный зазор, мм. . . . . . . . . . 0,84

Группа взрывоопасной смеси по ГОСТ Р 51330.5 . . . . . . . . . . . . . . . . . . . . . . . Т1

Средства пожаротушения: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . инертные газы.

Энтальпия образования −110,52 кДж/моль Давление пара 35 ± 1 атм Химические свойства Растворимость в воде 0,0026 г/100 мл Классификация Рег. номер CAS 630-08-0 PubChem Рег. номер EINECS 211-128-3 SMILES InChI Рег. номер EC 006-001-00-2 RTECS FG3500000 ChEBI Номер ООН 1016 ChemSpider Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Моноокси́д углеро́да (уга́рный газ , о́кись углеро́да , оксид углерода(II) ) - бесцветный чрезвычайно токсичный газ без вкуса и запаха, легче воздуха (при нормальных условиях). Химическая формула - CO.

Энциклопедичный YouTube

  • 1 / 5

    Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль , или 256 ккал/моль , что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (d C≡O =0,1128 нм или 1,13 Å ).

    Молекула слабо поляризована, её электрический дипольный момент μ = 0,04⋅10 −29 Кл·м . Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C − ←O + (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Энергия ионизации 14,0 эВ , силовая константа связи k = 18,6 .

    Свойства

    Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

    Свойства оксида углерода(II)
    Стандартная энергия Гиббса образования ΔG −137,14 кДж/моль (г.) (при 298 К)
    Стандартная энтропия образования S 197,54 Дж/моль·K (г.) (при 298 К)
    Стандартная мольная теплоёмкость C p 29,11 Дж/моль·K (г.) (при 298 К)
    Энтальпия плавления ΔH пл 0,838 кДж/моль
    Энтальпия кипения ΔH кип 6,04 кДж/моль
    Критическая температура t крит −140,23 °C
    Критическое давление P крит 3,499 МПа
    Критическая плотность ρ крит 0,301 г/см³

    Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции , в которых он проявляет восстановительные свойства.

    При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли , , и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO 2 . Это широко используется в пирометаллургии . На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже.

    Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра , K 2 Cr 2 O 7 - в присутствии солей , KClO 3 - в присутствии OsO 4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

    Ниже 830 °C более сильным восстановителем является CO, - выше - водород. Поэтому равновесие реакции

    H 2 O + C O ⇄ C O 2 + H 2 {\displaystyle {\mathsf {H_{2}O+CO\rightleftarrows CO_{2}+H_{2}}}}

    до 830 °C смещено вправо, выше 830 °C влево.

    Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

    Оксид углерода(II) горит пламенем синего цвета (температура начала реакции 700 °C ) на воздухе:

    2 C O + O 2 → 2 C O 2 {\displaystyle {\mathsf {2CO+O_{2}\rightarrow 2CO_{2}}}} G ° 298 = −257 кДж, ΔS ° 298 = −86 Дж/K).

    Температура горения CO может достигать 2100 °C . Реакция горения является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак , сероводород и др.)

    Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму) .

    галогенами . Наибольшее практическое применение получила реакция с хлором :

    C O + C l 2 → C O C l 2 . {\displaystyle {\mathsf {CO+Cl_{2}\rightarrow COCl_{2}}}.}

    Реакция экзотермическая, её тепловой эффект 113 кДж , в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген - вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF 2 (карбонилфторид) и COBr 2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от к (для реакций с F 2 тепловой эффект 481 кДж , с Br 2 - 4 кДж ). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

    Реакцией CO с F 2 , кроме карбонилфторида COF 2 , можно получить перекисное соединение (FCO) 2 O 2 . Его характеристики: температура плавления −42 °C , кипения +16 °C , обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO 2 , O 2 и COF 2), в кислой среде реагирует с иодидом калия по уравнению:

    (F C O) 2 O 2 + 2 K I → 2 K F + I 2 + 2 C O 2 . {\displaystyle {\mathsf {(FCO)_{2}O_{2}+2KI\rightarrow 2KF+I_{2}+2CO_{2}.}}}

    Оксид углерода(II) реагирует с халькогенами . С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

    C O + S → C O S {\displaystyle {\mathsf {CO+S\rightarrow COS}}} G ° 298 = −229 кДж, ΔS ° 298 = −134 Дж/K).

    Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

    Восстанавливает SO 2:

    2 C O + S O 2 → 2 C O 2 + S . {\displaystyle {\mathsf {2CO+SO_{2}\rightarrow 2CO_{2}+S.}}}

    C переходными металлами образует горючие и ядовитые соединения - карбонилы , такие как Fe(CO) 5 , Cr(CO) 6 , Ni(CO) 4 , Mn 2 (CO) 10 , Co 2 (CO) 9 и др. Некоторые из них летучие.

    n C O + M e → M e (C O) n {\displaystyle {\mathsf {nCO+Me\rightarrow Me(CO)_{n}}}}

    Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот . Однако реагирует с расплавами щелочей с образованием соответствующих формиатов :

    C O + K O H → H C O O K . {\displaystyle {\mathsf {CO+KOH\rightarrow HCOOK.}}}

    Интересна реакция оксида углерода(II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

    2 K + 2 C O → K 2 C 2 O 2 . {\displaystyle {\mathsf {2K+2CO\rightarrow K_{2}C_{2}O_{2}.}}} x C O + y H 2 → {\displaystyle {\mathsf {xCO+yH_{2}\rightarrow }}} спирты + линейные алканы.

    Этот процесс является источником производства таких важнейших промышленных продуктов как метанол , синтетическое дизельное топливо, многоатомные спирты, масла и смазки.

    Физиологическое действие

    Токсичность

    Токсическое действие оксида углерода(II) обусловлено образованием карбоксигемоглобина - значительно более прочного карбонильного комплекса с гемоглобином , по сравнению с комплексом гемоглобина с кислородом (оксигемоглобином) . Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания . Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа .

    • Пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом.
    • Искусственная вентиляция лёгких.
    • Лобелин или кофеин под кожу.
    • Карбоксилаза внутривенно.
    • Ацизол внутримышечно.

    Защита от оксида углерода(II)

    Эндогенный монооксид углерода

    Эндогенный монооксид углерода вырабатывается в норме клетками организма человека и животных и выполняет функцию сигнальной молекулы. Он играет известную физиологическую роль в организме, в частности, является нейротрансмиттером и вызывает вазодилатацию . Ввиду роли эндогенного угарного газа в организме, нарушения его метаболизма связывают с различными заболеваниями, такими, как нейродегенеративные заболевания, атеросклероз кровеносных сосудов , гипертоническая болезнь , сердечная недостаточность , различные воспалительные процессы .

    Эндогенный угарный газ образуется в организме благодаря окисляющему действию фермента гемоксигеназы на гем , являющийся продуктом разрушения гемоглобина и миоглобина , а также других гемосодержащих белков. Этот процесс вызывает образование в крови человека небольшого количества карбоксигемоглобина, даже если человек не курит и дышит не атмосферным воздухом (всегда содержащим небольшие количества экзогенного угарного газа), а чистым кислородом или смесью азота с кислородом.

    Вслед за появившимися в 1993 году первыми данными о том, что эндогенный угарный газ является нормальным нейротрансмиттером в организме человека , а также одним из трёх эндогенных газов, которые в норме модулируют течение воспалительных реакций в организме (два других - оксид азота (II) и сероводород), эндогенный угарный газ привлёк значительное внимание клиницистов и исследователей как важный биологический регулятор. Было показано, что во многих тканях все три вышеупомянутых газа являются противовоспалительными веществами, вазодилататорами , а также вызывают ангиогенез . Однако не всё так просто и однозначно. Ангиогенез - не всегда полезный эффект, поскольку он, в частности, играет роль в росте злокачественных опухолей, а также является одной из причин повреждения сетчатки при макулярной дегенерации. В частности, важно отметить, что курение (основной источник угарного газа в крови, дающий в несколько раз большую концентрацию его, чем естественная продукция) повышает риск макулярной дегенерации сетчатки в 4-6 раз.

    Существует теория о том, что в некоторых синапсах нервных клеток, где происходит долговременное запоминание информации, принимающая клетка в ответ на принятый сигнал вырабатывает эндогенный угарный газ, который передаёт сигнал обратно передающей клетке, чем сообщает ей о своей готовности и в дальнейшем принимать сигналы от неё и повышая активность клетки-передатчика сигнала. Некоторые из этих нервных клеток содержат гуанилатциклазу, фермент, который активируется при воздействии эндогенного угарного газа.

    Исследования, посвящённые роли эндогенного угарного газа как противовоспалительного вещества и цитопротектора, проводились во множестве лабораторий по всему миру. Эти свойства эндогенного угарного газа делают воздействие на его метаболизм интересной терапевтической мишенью для лечения таких разных патологических состояний, как повреждение тканей, вызванное ишемией и последующей реперфузией (а это, например, инфаркт миокарда , ишемический инсульт), отторжение трансплантата, атеросклероз сосудов, тяжёлый сепсис , тяжёлая малярия , аутоиммунные заболевания. Проводились в том числе и клинические испытания на человеке, однако результаты их пока ещё не опубликованы .

    Суммируя, то, что известно на 2015 год о роли эндогенного угарного газа в организме, можно изложить следующим образом :

    • Эндогенный угарный газ - одна из важных эндогенных сигнальных молекул;
    • Эндогенный угарный газ модулирует функции ЦНС и сердечно-сосудистой системы ;
    • Эндогенный угарный газ ингибирует агрегацию тромбоцитов и их адгезию к стенкам сосудов;
    • Влияние на обмен эндогенного угарного газа в будущем может быть одной из важных терапевтических стратегий при ряде заболеваний.

    История открытия

    Токсичность дыма, выделяющегося при горении угля, была описана ещё Аристотелем и Галеном .

    Оксид углерода(II) был впервые получен французским химиком Жаком де Лассоном в при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

    То, что в состав этого газа входит углерод и кислород, выяснил в английский химик Вильям Крюйкшенк . Токсичность газа была исследована в 1846 году французским медиком Клодом Бернаром в опытах на собаках .

    Оксид углерода(II) вне атмосферы Земли впервые был обнаружен бельгийским учёным М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК-спектре Солнца. Оксид углерода(II) в межзвёздной среде был обнаружен в 1970 г.

    Получение

    Промышленный способ

    • Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода :
    2 C + O 2 → 2 C O {\displaystyle {\mathsf {2C+O_{2}\rightarrow 2CO}}} (тепловой эффект этой реакции 220 кДж ),
    • или при восстановлении диоксида углерода раскалённым углём:
    C O 2 + C ⇄ 2 C O {\displaystyle {\mathsf {CO_{2}+C\rightleftarrows 2CO}}} H = 172 кДж , ΔS = 176 Дж/К )

    Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода(II) вследствие своей ядовитости вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий - «угарный газ» .

    Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево - энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода(II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара .

    • Смеси оксида углерода(II) с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ , водяной газ , смешанный газ , синтез-газ).

    Лабораторный способ

    • Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты , либо пропускание газообразной муравьиной кислоты над оксидом фосфора P 2 O 5 . Схема реакции:
    H C O O H → H 2 S O 4 o t H 2 O + C O . {\displaystyle {\mathsf {HCOOH{\xrightarrow[{H_{2}SO_{4}}]{^{o}t}}H_{2}O+CO.}}} Можно также обработать муравьиную кислоту хлорсульфоновой . Эта реакция идёт уже при обычной температуре по схеме: H C O O H + C l S O 3 H → H 2 S O 4 + H C l + C O . {\displaystyle {\mathsf {HCOOH+ClSO_{3}H\rightarrow H_{2}SO_{4}+HCl+CO\uparrow .}}}
    • Нагревание смеси щавелевой и концентрированной серной кислот . Реакция идёт по уравнению:
    H 2 C 2 O 4 → H 2 S O 4 o t C O + C O 2 + H 2 O . {\displaystyle {\mathsf {H_{2}C_{2}O_{4}{\xrightarrow[{H_{2}SO_{4}}]{^{o}t}}CO\uparrow +CO_{2}\uparrow +H_{2}O.}}}
    • Нагревание смеси гексацианоферрата(II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:
    K 4 [ F e (C N) 6 ] + 6 H 2 S O 4 + 6 H 2 O → o t 2 K 2 S O 4 + F e S O 4 + 3 (N H 4) 2 S O 4 + 6 C O . {\displaystyle {\mathsf {K_{4}+6H_{2}SO_{4}+6H_{2}O{\xrightarrow[{}]{^{o}t}}2K_{2}SO_{4}+FeSO_{4}+3(NH_{4})_{2}SO_{4}+6CO\uparrow .}}}
    • Восстановлением из карбоната цинка магнием при нагревании:
    M g + Z n C O 3 → o t M g O + Z n O + C O . {\displaystyle {\mathsf {Mg+ZnCO_{3}{\xrightarrow[{}]{^{o}t}}MgO+ZnO+CO\uparrow .}}}

    Определение оксида углерода(II)

    Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

    P d C l 2 + C O + H 2 O → P d ↓ + C O 2 + 2 H C l . {\displaystyle {\mathsf {PdCl_{2}+CO+H_{2}O\rightarrow Pd\downarrow +CO_{2}+2HCl.}}}

    Эта реакция очень чувствительная. Стандартный раствор: 1 грамм хлорида палладия на литр воды.

    Количественное определение оксида углерода(II) основано на иодометрической реакции:

    5 C O + I 2 O 5 → 5 C O 2 + I 2 . {\displaystyle {\mathsf {5CO+I_{2}O_{5}\rightarrow 5CO_{2}+I_{2}.}}}

    Применение

    • Оксид углерода(II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
    • Оксид углерода(II) применяется для обработки мяса животных и рыбы, придаёт им ярко-красный цвет и вид свежести, не изменяя вкуса (технология en:Clear smoke или en:Tasteless smoke ). Допустимая концентрация CO равна 200 мг/кг мяса.
    • Оксид углерода(II) является основным компонентом генераторного газа , использовавшегося в качестве топлива в газогенераторных автомобилях .
    • Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления.

    Оксид углерода(II) в атмосфере Земли

    Различают природные и антропогенные источники поступления в атмосферу Земли . В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Оксид углерода(II) образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение оксида углерода(II) за счёт обычных в почвах фенольных соединений, содержащих группы OCH 3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

    Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения . Например, из аридных почв оксид углерода(II) выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

    В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

    Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания . Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO 2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ , использовавшийся для освещения помещений в XIX веке . По составу он примерно соответствовал водяному газу , то есть содержал до 45 % оксида углерода(II). В коммунальной сфере не применяется в виду наличия значительно более дешёвого и энергоэффективного аналога - природного газа.

    Поступление CO от природных и антропогенных источников примерно одинаково.

    Оксид углерода(II) в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года . Основной канал потери CO - окисление гидроксилом до диоксида углерода.

    Оксид углерода(II) в космическом пространстве

    Оксид углерода(II) - вторая по распространённости (после H 2) молекула в межзвёздной среде . Этот газ играет важную роль в эволюции молекулярных газовых облаков , в которых происходит активное звездообразование . Как и другие молекулы, CO излучает ряд инфракрасных линий, возникающих при переходах между вращательными уровнями молекулы; эти уровни возбуждаются уже при температурах в несколько десятков кельвин. Концентрация CO в межзвёздной среде достаточно мала, чтобы (в отличие от гораздо более распространённой молекулы H 2) излучение в молекулярных вращательных линиях не испытывало сильного самопоглощения в облаке. В результате энергия почти беспрепятственно уходит из облака, которое остывает и сжимается, запуская механизм звездообразования . В наиболее плотных облаках, где самопоглощение в линиях CO оказывается значительным, становится заметной потеря энергии в линиях редкого изотопного аналога 13 CO (относительная изотопная распространённость 13 C - около 1 %). В связи с его более сильным излучением, по сравнению с атомарным водородом, оксид углерода(II) используется для поиска подобных газовых скоплений. В феврале 2012 года астрономы с использованием

    Оксид углерода(II) – СО

    (угарный газ , окись углерода , монооксид углерода )

    Физические свойства: бесцветный ядовитый газ без вкуса и запаха, горит голубоватым пламенем, легче воздуха, плохо растворим в воде. Концентрация угарного газа в воздухе 12,5-74 % взрывоопасна.

    Строение молекулы:

    Формальная степень окисления углерода +2 не отражает строение молекулы СО, в которой помимо двойной связи, обра­зованной обобществлением электронов С и О, имеется дополнительная, образованная по донорно-акцепторному механизму за счет неподеленной пары электронов кислорода (изображена стрелкой):

    В связи с этим молекула СО очень прочна и способна вступать в реакции окисления-восстановления только при высоких темпера­турах. При обычных условиях СО не взаимодействует с водой, щелочами или кислотами.

    Получение:

    Основным антропогенным источником угарного газа CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Угарный газ образуется при сгорании топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления угарного газа CO в углекислый газ CO2). В естественных условиях, на поверхности Земли, угарный газ CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров.

    1) В промышленности (в газогенераторах):

    Видео - опыт "Получение угарного газа"

    C + O 2 = CO 2 + 402 кДж

    CO 2 + C = 2CO – 175 кДж

    В газогенераторах иногда через раскалённый уголь продувают водяной пар:

    С + Н 2 О = СО + Н 2 – Q ,

    смесь СО + Н 2 – называется синтез – газом .

    2) В лаборатории - термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):

    HCOOH t˚C, H2SO4 H 2 O + CO­

    H 2 C 2 O 4 t˚C,H2SO4 CO­ + CO 2 ­ + H 2 O

    Химические свойства:

    При обычных условиях CO инертен; при нагревании – восстановитель;

    CO - несолеобразующий оксид .

    1) с кислородом

    2 C +2 O + O 2 t ˚ C →2 C +4 O 2

    2) с оксидами металлов CO + Me x O y = CO 2 + Me

    C +2 O + CuO t ˚ C →Сu + C +4 O 2

    3) с хлором (на свету)

    CO + Cl 2 свет → COCl 2 (фосген – ядовитый газ)

    4)* реагирует с расплавами щелочей (под давлением)

    CO + NaOH P → HCOONa (формиат натрия)

    Влияние угарного газа на живые организмы:

    Угарный газ опасен, потому что он лишает возможности кровь нести кислород к жизненно важным органам, таким как сердце и мозг. Угарный газ объединяется с гемоглобином, который переносит кислород к клеткам организма, в следствии чего тот становится непригодным для транспортировки кислорода. В зависимости от вдыхаемого количества, угарный газ ухудшает координацию, обостряет сердечно-сосудистые заболевания и вызывает усталость, головную боль, слабость, Влияние угарного газа на здоровье человека зависит от его концентрации и времени воздействия на организм. Концентрация угарного газа в воздухе более 0,1% приводит к смерти в течение одного часа, а концентрация более 1,2% в течении трех минут.

    Применение оксида углерода :

    Главным образом угарный газ применяют, как горючий газ в смеси с азотом, так называемый генераторный или воздушный газ, или же в смеси с водородом водяной газ. В металлургии для восстановления металлов из их руд. Для получения металлов высокой чистоты при разложении карбонилов.

    ЗАКРЕПЛЕНИЕ

    №1. Закончите уравнения реакций, составьте электронный баланс для каждой из реакций, укажите процессы окисления и восстановления; окислитель и восстановитель:

    CO 2 + C =

    C + H 2 O =

    С O + O 2 =

    CO + Al 2 O 3 =

    №2. Вычислите количество энергии, которое необходимо для получения 448 л угарного газа согласно термохимическому уравнению

    CO 2 + C = 2CO – 175 кДж

    Угарный газ – СО (монооксид углерода) – смертоносный и коварный яд, который связывается с значительно крепче, чем животворный кислород. Это бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула – CO. Смерть наступает уже тогда, когда угарный газ соединяется с 80 % гемоглобина. Угарный газ содержится (до 12 %) в выхлопных газах автомобиля.

    Основными типами химических реакций, в которых участвует угарный газ, являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

    При комнатных температурах угарный газ малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO = Cu + CO 2 . Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения угарного газа.

    Интересно, что существуют , способные за счёт окисления СО получать необходимую им для жизни энергию.

    Как уже отмечалось, угарный газ очень опасен. Признаки отравления: головная боль и головокружение; отмечается шум в ушах, одышка, сердцебиение, мерцание перед глазами, покраснение лица, общая слабость, тошнота, иногда рвота; в тяжёлых случаях судороги, потеря сознания, кома.

    Случались случаи, когда некоторые неосмотрительные водители в зимнюю пору оставались ночевать в автомобиле, который стоял в гараже, двери которого были закрыты. Чтобы было тепло спать, они включали двигатель, и он работал на холостых оборотах. Как правило, угарный газ накапливался в гараже и такие неосторожные люди погибали. Справедливо заметил автор одной книги, "завести мотор в небольшом гараже при закрытой двери – самоубийство".

    Токсическое действие СО обусловлено образованием карбоксигемоглобина - значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом. Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1% приводит к смерти в течение одного часа.

    Соединение угарного газа с гемоглобином обратимо. Пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом.

    Различают природные и антропогенные источники поступления в атмосферу Земли угарного газа. Поступление CO от природных и антропогенных источников примерно одинаково. В естественных условиях, на поверхности Земли, угарный газ образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров.

    Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания.

    Угарный газ (CO) – это бесцветный, очень легкий газ (легче воздуха), не имеющий запаха. А вот «запах угарного газа» чувствуется из-за примесей органических элементов в топливе. Угарный газ дома появляется каждый раз при сжигании дров. Основная причина возникновения угарного газа — недостаточное количество кислорода в области горения.

    Возникновение угара

    Угарный газ дома возникает при горении углерода из-за недостатка кислорода. Сгорание в печах топлива происходит в несколько этапов:

    1. Сначала углерод сгорает, выделяя углекислый газ CO2;
    2. Потом углекислый газ контактирует с раскаленными остатками кокса или угля, создавая угарный газ;
    3. Затем, угарный газ сгорает (синее пламя) с появлением углекислого газа, который выходит через дымоход.

    Без тяги в печи (дымоход забит, нет для горения приточного воздуха, заслонка закрыта преждевременно), угли продолжают тлеть без слабой подачи кислорода, поэтому угарный газ не сгорает и может рассеяться по отапливаемому помещению, оказывая токсичный эффект на организм и отравление (угар).

    Факторы отравления угаром

    У угарного ядовитого газа нет запаха и цвета, что делает его очень опасным. Причинами отравления угаром могут стать:

    • Неисправная работа печки-камина и дымохода (забитый дымоход, трещины в печи).
    • Нарушение (закрытие печной заслонки несвоевременно, плохая тяга, недостаточный доступ в топливник свежего воздуха).
    • Присутствие человека в самом очаге пожара.
    • Техобслуживание автомашины в помещении с низкой вентиляцией.
    • Применение некачественного воздуха в аппаратах для дыхания и аквалангах.
    • Сон в автомашине с включенным двигателем.
    • Применение гриля с низкой вентиляцией.

    Сигналы и признаки отравления

    При малой концентрации газа могут образоваться первые признаки токсичного воздействия и отравления: слезотечение, головокружение и боль, тошнота и слабость, спутанность сознания, сухой кашель, бывают слуховые и зрительные галлюцинации. Ощутив симптомы отравления, нужно как можно быстрее выйти на свежий воздух.

    При большом промежутке времени нахождения в помещении с низкой плотностью угарного газа, возникают симптомы отравления: тахикардия, нарушение дыхания, нарушение координации, сонливость, зрительные галлюцинации, посинение кожи лица и слизистых оболочек, рвота, потеря сознания, могут быть судороги.

    При повышенной концентрации — происходит потеря сознания и коматоз с судорогой. Без первой медицинской помощи, пострадавший может умереть от отравления угаром.

    Воздействие угарного газа в доме на человеческий организм

    Угарный газ заходит через легкие, контактирует в крови с гемоглобином и препятствует передачи кислорода органам и тканям. От кислородного голодания нарушается нервная система и работа головного мозга. Чем выше концентрат угарного газа и больше период нахождения в комнате, тем сильнее отравление и больше вероятности смерти.

    После отравления нужно медицинское наблюдение в течение нескольких дней, т. к. часто наблюдаются осложнения. Пострадавших с тяжелым отравлением нужно госпитализировать. Проблемы с нервной системой и легкими возможны даже через недели после происшествия. Любопытно, но на женщин угарный газ влияет меньше, чем на мужчин.

    Датчик угарного газа для дома

    Отравление или угар можно предотвратить, используя автономный сигнализатор угарного газа или датчик. Если объем угарного газа в жилом или техническом помещении перейдет допустимый уровень, датчик просигнализирует, предупреждая об угрозе. Сигнализаторы выявления угарного газа – это такие электрохимические датчики, разработанные для беспрестанного контроля уровня содержания CO в помещении и реагирующие световыми и звуковыми сигналами на высокий уровень концентрации в воздухе угарного газа.

    Когда решите купить для дома сигнализатор угарного газа, обратите внимание на особенности (при внешнем сходстве) приборов: датчик открытого огня и сигнализатор дыма, датчик угарных газов и углекислого газа реагирует на разные элементы в воздухе комнаты. Датчики угарного газа для дома устанавливают на высоте полтора метра от пола (некоторые рекомендуют ставить от потолка на 15–20 см). Аппарат обнаружения углекислого газа ставится около панели приборов или на уровне пола (углекислый газ намного тяжелее чем воздух), а дымовой датчик должен быть на потолке.

    Во многих странах применение вышеперечисленных датчиков — обязательное условие, предусмотренное законодательством для обеспечения безопасности и здоровья населения. В Европе – обязателен только дымовой датчик. У нас, установка датчика угарного газа пока что — дело добровольное. Такие датчики в целом недорогой прибор, поэтому лучше не рисковать своей жизнью и купить сигнализатор угарного газа для дома.

    Как не отравится угарным газом в доме

    Соблюдая правила безопасности, отравление угаром можно предупредить:

    — Не используйте приборы, сжигающие топливо, без достаточных навыков, знаний и инструментов.

    — Не жгите древесный уголь в комнате с плохой вентиляцией.

    — Убедитесь в исправной работе печи, вытяжной и приточной вентиляции и дымохода.

    — На дымовых каналах дровяных печей, следует предусмотреть монтаж последовательно 2 плотных задвижек, а на каналах печек, функционирующих на угле или торфе, лишь одной задвижки с отверстием 15 мм.

    — Не оставляйте в гараже автомобиль с работающим двигателем.

    Датчики, сигнализирующие об увеличении концентрации угарн.газа, могут дополнительно защитить от отравления, но они не должны заменять прочие профилактические работы.

    Угарный газ при печном отоплении

    Камин или печь с закрытой задвижкой и остатками недогоревшего топлива - источник угарного газа и невидимый отравитель. Предполагая, что топливо полностью сгорело, владельцы печек закрывают заслонку дымохода для сохранности тепла. Тлеющие угольки при недостатке воздуха создают угарный газ, проникающий в помещение через негерметичные зоны печной системы.

    Также и в дымоходе, при слабой тяге и без подачи воздуха возникает химический недожог топлива, и в итоге — возникновение и накопление угарного газа дома.