Строение и свойства пептидной связи. Пептидная связь Для образования пептидной связи в реакцию вступают

Пептидная связь – это связь между альфа-карбоксильной группой одной аминокислоты и альфа-аминогруппой другой аминокислоты.

Рис 5. Образование пептидной связи

К свойствам пептидной связи относятся:

1. Трансположение заместителей (радикалов) аминокислот по отношению к C-N связи. Рис 6.

Рис 6. Радикалы аминокислот находятся в транс-положении.

2. Копланарность

Все атомы, входящие в пептидную группу находятся в одной плоскости, при этом атомы "Н" и "О" расположены по разные стороны от пептидной связи. Рис 7, а.

3. Наличие кето формы и енол ьной формы. Рис 7, б

Рис 7. а) б)

4. Способность к образованию двух водородных связей с другими пептидными группами. Рис 8.

5. Пептидная связь имеет частично характер двойной связи. Ее длина меньше, чем одинарной связи, она является жесткой структурой, и вращение вокруг нее затруднено.

Но так как, кроме пептидной, в белке есть и другие связи, цепочка аминокислот способна вращаться вокруг основной оси, что придает белкам различную конформацию(пространственное расположение атомов).

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, а также различные свойства и функции.
Большинство белков имеют вид спирали в результате образования водородных связей между-CO- и -NH- группами разных аминокислотных остатков полипептидной цепи. Водородные связи непрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль - вторичная структура белка.

Третичная структура - трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация -глобула . Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка, в данном случае основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия.
Такая сложность структуры белковых молекул связана с разнообразием функций, которые свойственны этим биополимерам, например, защитная, структурная и т.д.
Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи, то есть в виде первичной структуры.
Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

Четвертичная структура

Третичная структура

Разные способы изображения трёхмерной структуры белка на примере триозофосфатизомеразы. Слева – «стержневая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине –мотив укладки. Справа – контактная поверхность белка, построенная с учётом ван-дер-ваальсовых радиусов атомов; цветами показаны особенности активности участков

Третичная структура – пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

– ковалентные связи (между двумя остатками цистеина – дисульфидные мостики);

– ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

– водородные связи;

– гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) – взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

https://ru.wikipedia.org/wiki/Белки

Пептидная связь – основные параметры и особенности

Пептидная связь – вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (– NH 2) одной аминокислоты с α-карбоксильной группой (– СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:

Это проявляется, в частности, в уменьшении её длины до 1,33 ангстрема:



Это обусловливает следующие свойства:

– 4 атома связи (C, N, O и H) и 2 α-углерода находятся в одной плоскости. R-группы аминокислот и водороды при α-углеродах находятся вне этой плоскости.

– H и O в пептидной связи, а также α-углероды двух аминокислот транс-ориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также транс-ориентированы.

– Вращение вокруг связи C-N затруднено, возможно вращение вокруг С-С связи.

Для обнаружения белков и пептидов, а также их количественного определения в растворе используют биуретовую реакцию.

https://ru.wikipedia.org/wiki/Пептидная связь

Литература:

1) Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. В 3 томах. – М.: Мир, 1994.

2) Ленинджер А. Основы биохимии. В 3 томах. – М.: Мир, 1985.

3) Страйер Л. Биохимия. В 3 томах. – М.: Мир, 1984.

1.3. Аминокислоты - структурные мономеры белков. Строение, номенклатура, классификация и свойства аминокислот.

Аминокисло́ты (аминокарбо́новые кисло́ты) – органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Пептидная связь — это прочное соединение между фрагментами двух аминокислот, которое лежит в основе образования линейных структур белков и пептидов. В таких молекулах каждая аминокислота (за исключением концевых) соединяется с предыдущей и последующей.

В зависимости от количества звеньев пептидные связи могут создавать дипептиды (состоят из двух аминокислот), трипептиды (из трех), тетрапептиды, пентапептиды и т. д. Короткие цепочки (от 10 до 50 мономеров) называют олигопептидами, а длинные — полипептидами и белками (мол. масса более 10 тыс. Да).

Характеристика пептидной связи

Пептидная связь — это ковалентное химическое соединение между первым атомом углерода одной аминокислоты и атомом азота другой, возникающее в результате взаимодействия альфа-карбоксильной группы (COOH) с альфа-аминогруппой (NH 2). При этом происходит нуклеофильное замещение OH-гидроксила на аминогруппу, от которой отделяется водород. В итоге образуется одинарная C-N связь и молекула воды.

Так как во время реакции происходит потеря некоторых компонентов (ОН-группы и атома водорода), звенья пептида называют уже не аминокислотами, а аминокислотными остатками. Из-за того, что последние содержат по 2 атома углерода, в пептидной цепи происходит чередование С-С и C-N-связей, которые формируют пептидный остов. По бокам от него располагаются аминокислотные радикалы. Расстояние между атомами углерода и азота варьирует от 0,132 до 0,127 нм, что свидетельствует о неопределенной связи.

Пептидная связь — это очень прочный вид химического взаимодействия. При стандартных биохимических условиях, соответствующих клеточной среде, она не подвергается самостоятельному разрушению.

Для пептидной связи белков и пептидов характерно свойство копланарности, поскольку все атомы, участвующие в ее образовании (C, N, O и H), располагаются в одной плоскости. Это явление объясняется жесткостью (т. е. невозможностью вращения элементов вокруг связи), возникающей в результате резонансной стабилизации. В пределах аминокислотной цепи между плоскостями пептидных групп находятся α-углеродные атомы, связанные с радикалами.

Типы конфигурации

В зависимости от положения альфа-углеродных атомов относительно пептидной связи последняя может иметь 2 конфигурации:

  • "цис" (расположены с одной стороны);
  • "транс" (находятся с разных сторон).

Транс-форма характеризуется большей устойчивостью. Иногда конфигурации характеризуют по расположению радикалов, что не меняет сути, поскольку они связаны с альфа-углеродными атомами.

Явление резонанса

Особенность пептидной связи заключается в том, что она на 40% двойная и может находится в трех формах:

  • Кетольной (0,132 нм) — C-N-связь стабилизирована и полностью одинарна.
  • Переходной или мезомерной - промежуточная форма, имеет частично неопределенный характер.
  • Енольной (0,127 нм) — пептидная связь становится полностью двойной, а соединение С-О — полностью одинарным. При этом кислород приобретает частично отрицательный заряд, а атом водорода — частично положительный.

Такая особенность называется эффектом резонанса и объясняется делокализованностью ковалентной связи между атомом углерода и азота. При этом гибридные sp 2 -орбитали формируют электронное облако, распространяющееся на атом кислорода.

Формирование пептидной связи

Формирование пептидной связи — это типичная реакция поликонденсации, которая термодинамически невыгодна. В естественных условиях равновесие смещается в сторону свободных аминокислот, поэтому для осуществления синтеза требуется катализатор, активирующий или модифицирующий карбоксильную группу для более легкого ухода гидроксильной.

В живой клетке образование пептидной связи происходит в белоксинтезирующем центре, где в роли катализатора выступают специфические ферменты, работающие с затратой энергии макроэргических связей.

Аминокислоты в полипептидной цепи связаны амидной связью, которая образуется между α-карбоксильной группой одной и α-аминогруппой следующей аминокислоты (рис. 1). Образующаяся между аминокислотами ковалентная связь получила название пептидной связи. Атомы кислорода и водорода пептидной группы при этом занимают трансположение.

Рис. 1. Схема образования пептидной связи. В каждом белке или пептиде можно выделить: N-конец белка или пептида, имеющий свободную а-аминогруппу (-NH 2);

С-конец, имеющий свободную карбоксильную группу (-СООН);

Пептидный остов белков, состоящий из повторяющихся фрагментов: -NH-СН-СО- ; Радикалы аминокислот (боковые цепи) (R 1 и R 2) - вариабельные группы.

Сокращенная запись полипептидной цепи, так же как и синтез белка в клетках, обязательно начинается с N-конца и заканчивается С-концом:

Названия аминокислот, включенных в пептид и образующих пептидную связь, имеют окончания -ил. Например, трипептид, приведенный выше, называется треонил-гистидил-пролин.

Единственной вариабельной частью, отличающей один белок от всех остальных, является сочетание радикалов (боковых цепей) аминокислот, входящих в него. Таким образом, индивидуальные свойства и функции белка обусловлены структурой и порядком чередования аминокислот в полипептидной цепи.

Полипептидные цепи разных белков организма могут включать от нескольких аминокислот до сотен и тысяч аминокислотных остатков. Их молекулярная масса (мол. масса) также колеблется в широких пределах. Так, гормон вазопрессин состоит из 9 аминокислот, мол. масса 1070 кД; инсулин - из 51 аминокислоты (в 2 цепях), мол. масса 5733 кД; лизоцим - из 129 аминокислот (1 цепь), мол. масса 13 930 кД; гемоглобин - из 574 аминокислот (4 цепи), мол. масса 64 500 кД; коллаген (тропоколлаген) - примерно из 1000 аминокислот (3 цепи), мол. масса ~130 000 кД.

Свойства и функция белка зависят от структуры и порядка чередования аминокислот в цепи, изменение аминокислотного состава может их сильно изменить. Так, 2 гормона задней доли гипофиза - окситоцин и вазопрессин - являются нанопептидами и отличаются 2 аминокислотами из 9 (в положении 3 и 8):

Основной биологический эффект окситоцина заключается в стимуляции сокращения гладкой мускулатуры матки при родах, а вазопрессин вызывает реабсорбцию воды в почечных канальцах (антидиуретический гормон) и обладает сосудосуживающим свойством. Таким образом, несмотря на большое структурное сходство, физиологическая активность этих пептидов и ткани-мишени, на которые они действуют, отличаются, т.е. замена всего 2 из 9 аминокислот вызывает существенное изменение функции пептида.


Иногда совсем небольшое изменение структуры крупного белка вызывает подавление его активности. Так, фермент алкогольдегидрогеназа, расщепляющий этанол в печени человека, состоит из 500 аминокислот (в 4 цепях). Активность его у жителей Азиатского региона (Япония, Китай и др.) намного ниже, чем у жителей Европы. Это связано с тем, что в полипептидной цепи фермента происходит замена глутаминовой кислоты на лизин в положении 487.

Взаимодействиями между радикалами аминокислот играют большое значение в стабилизации пространственной структуры белков, можно выделить 4 типа химических связей: гидрофобная, водородная, ионная, дисульфидная.

Гидрофобные связи возникают между неполярными гидрофобными радикалами (рис. 2). Они играют ведущую роль в формировании третичной структуры белковой молекулы.

Рис. 2. Гидрофобные взаимодействия между радикалами

Водородные связи - образуются между полярными (гидрофильными) незаряженными группами радикалов, имеющими подвижный атом водорода, и группами с электроотрицательным атомом (-О или -N-) (рис. 3).

Ионные связи образуются между полярными (гидрофильными) ионогенными радикалами, имеющими противоположно заряженные группы (рис. 4).

Рис. 3. Водородные связи между радикалами аминокислот

Рис. 4. Ионная связь между радикалами лизина и аспарагиновой кислоты (А) и примеры ионных взаимодействий (Б)

Дисульфидная связь - ковалентная, образуется двумя сульфгидрильными (тиольными) группами радикалов цистеина, находящимися в разных местах полипептидной цепи (рис. 5). Встречается в таких белках, как инсулин, инсулиновый рецептор, иммуноглобулины и др.

Дисульфидные связи стабилизируют пространственную структуру одной полипептидной цепи или связывают между собой 2 цепи (например, цепи А и В гормона инсулина) (рис. 6).

Рис. 5. Образование дисульфидной связи.

Рис. 6. Дисульфидные связи в молекуле инсулина. Дисульфидные связи: между остатками цистеина одной цепи А (а), между цепями А и В (б). Цифры - положение аминокислот в полипептидных цепях.

Белки, их содержание в живом веществе и молекулярная масса

Белки, их строение и свойства

Из органических веществ живого вещества на первом месте по количеству и значению стоят белки, или протеины (от греч. протос – основной, первичный). В составе ныне живущих на Земле организмов содержится около 1 трлн т белков. От массы, например животной, клетки белки составляют 10–18%, т.е. половину сухого веса клетки.

Белковых молекул в каждой клетке содержится, по меньшей мере, несколько тысяч.

Белки – это высокомолекулярные полимеры (макромолекулы) с молекулярной массой от 6 тыс. до 1 млн и выше. По сравнению с молекулами спирта или органических кислот белки выглядят просто великанами. Так, молекулярная масса инсулина – 5700, яичного альбумина – 36 000, миозина – 500 000.

В состав белков входят атомы С, Н, О, N, S, Р, иногда Fe, Сu, Zn. Для выяснения химического строения белков знаний их элементарного состава недостаточно. Например, эмпирическая формула гемоглобина – C 3032 Н 4816 О 872 S 8 Fe 4 – ничего не говорит о характере расположения атомов в молекуле. Необходимо познакомиться с особенностями строения белковых молекул подробней.


2. Белки – непериодические полимеры. Строение и свойства аминокислот

По своей химической природе белки являются непериодическими полимерами. Мономерами белковых молекул являются аминокислоты. Вообще аминокислотой можно назвать любое соединение, содержащее одновременно аминогруппу (–NH 2) и группировку органических кислот – карбоксильную группу (–СООН). Число возможных аминокислот очень велико, но белки образуют только 20 так называемых золотых, или стандартных, аминокислот (8 из них являются незаменимыми, т.к. не синтезируются в организмах животных и человека). Именно сочетание этих 20 аминокислот и дает все многообразие белков. После того как молекула белка собрана, некоторые аминокислотные остатки в ее составе могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить до 30 различных аминокислотных остатков (но строятся все белки исходно все равно только из 20!).

В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления пищеварительными ферментами белков пищи или распада собственных запасных белков. В зависимости от аминокислотного состава белки бывают полноценными, содержащими весь набор аминокислот, и неполноценными, в составе которых отсутствуют какие-то аминокислоты.

Общая формула аминокислот изображена на рисунке. В левой части формулы расположена аминогруппа –NH 2 а в верхней – карбоксильная группа –СООН. Группа –NH 2 имеет основные свойства, группа –СООН – кислотные свойства. Таким образом, аминокислоты – амфотерные соединения, совмещающие свойства кислоты и основания.



Аминокислоты отличаются своими радикалами (R), в роли которых могут быть самые разные соединения. Это обусловливает большое разнообразие аминокислот.

Амфотерными свойствами аминокислот обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются за счет реакции конденсации в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп с выделением молекулы воды.

Связь, изображенная слева, называется пептидной (от греч. пепсис – пищеварение). Этот термин напоминает нам о том, что эта связь гидролизуется пищеварительным ферментом желудочного сока пепсином . По природе пептидная связь является ковалентной.

Соединение двух аминокислот называется дипептидом, трех – трипептидом и т.д. Примером трипептида может служить белок глютатион , состоящий из остатков глицина, цистеина и глютаминовой кислоты. Он содержится во всех живых клетках (особенно много его в зародыше пшеничного зерна и дрожжах) и активно участвует в обмене веществ.

Глютатион

В основном же белки, входящие в состав живых организмов, включают в себя сотни и тысячи аминокислот (чаще всего от 100 до 300), поэтому их называют полипептидами . Аминокислоты в составе белковой полипептидной цепи называют аминокислотными остатками.

Пептиды различаются числом (n ), природой, порядком или последовательностью своих аминокислотных остатков. Их можно сравнить со словами разной длины, в написании которых использован алфавит, состоящий из 20 букв. Из 20 аминокислот можно теоретически получить 1020 возможных вариантов цепей, длиной каждая не менее чем 10 аминокислотных остатков. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков. В этом кроется источник бесконечного разнообразия белковых молекул, что является важной предпосылкой эволюционного процесса.