Сколько всего галактик во вселенной. Количество галактик во Вселенной

(Астрономия@Science_Newworld).

Совсем недавно, в 1920 годах, знаменитый астроном Эдвин хаббл сумел доказать, что наш млечный путь - это не единственная существующая галактика. Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во вселенной находится рядом с нами? Сегодня мы ответ на этот вопрос найдем.

От одной до бесконечности.

Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш млечный путь метагалактикой - объектом, покрывающим собой всю обозримую вселенную. Их заблуждение вполне логично объяснялось несовершенством телескопов того времени - даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями. Считалось, что из них со временем формируются звезды и планеты, как сформировалась когда-то наша солнечная система. Эту догадку подтвердило обнаружение первой планетарной туманности в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же облаками пыли и газа, звезды в которых еще не успели образоваться.

Первые шаги.

Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям парсонс построил исполинский для тех времен телескоп "Левиафан", размер которого приближался к двум метрам. Желая доказать, что "Туманности" на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким звездным скоплениям.

Однако споры аж до XX века продлились. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме млечного пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность - галактику Андромеды.

В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900-1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, "Слипшимися" в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.

Современная картина.

В 1924 году, пользуясь телескопом - рекордсменом начала столетия, Эдвину хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к млечному пути (притом, что оценка хаббла была в три раза меньше современной. Еще астроном обнаружил в "Туманности" множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег, хаббл представил результаты своей работы на конференции американского астрономического сообщества.

Это выступление дало начало новому периоду в истории астрономии - ученые "Переоткрывали" туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого хаббла - например, открытие красного смещения. Число известных галактик росло с постройкой новых телескопов и запуском новых - например, начала широкого применения радиотелескопов после второй мировой.

Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера земли препятствует даже самым большим телескопам получить точную картину - газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты вселенной. Но ученые сумели обойти эти ограничения, запустив космический телескоп "Хаббл", названный в честь уже знакомого вам астронома.

Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых - и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых "Хабблу" - это минимум десятая часть от их настоящего количества.

Финальный подсчет.

И все же, сколько именно галактик существует во вселенной? Сразу предупрежу, что считать придется нам вместе - такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики - но лишь для более глобальных целей вроде изучения крупномасштабной структуры вселенной.

Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов - куда меньше, чем существует галактик на самом деле.

Для определения примерного числа возьмем какое-то из высокоточных изучений космоса - например, "Ultra Deep Field" телескопа "хаббл" от 2004 года. На участке, равному 1/130 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности "Хаббла" мы видим 130 миллиардов галактик со всей вселенной.

Однако это еще не все. После "Ultra Deep Field" было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует "Хаббл", но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов световых лет нам доступно 7 триллионов 375 миллиардов галактик.

Но это, опять-таки, минимальная оценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов - 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту солнца выйдет телескоп "Джеймс Уэбб". Этот аппарат за минуты достигнет туда, куда "Хаббл" пробирался днями, и проникнет еще дальше в глубины вселенной.

Наша Галактика – лишь одна из многих, а сколько их всего, не знает никто. Уже открыты более миллиарда . В каждой из них – многие миллионы звезд. Наиболее далекие из уже известных находятся в сотнях миллионов световых лет от землян, следовательно, изучая их, мы вглядываемся в самое отдаленное прошлое . Все галактики удаляются от нас и друг от друга, похоже, что Вселенная все еще расширяется и что ученые не зря пришли к выводу о большом взрыве как ее первоначале.

В науке слово «Вселенная» имеет особый смысл. Под ним понимается наибольший объем пространства вместе со всей материей и излучением, заключенными в нем, который может каким бы то ни было образом воздействовать на нас. Ученые Земли могут наблюдать только одну Вселенную, но никто не отрицает существование и других, только потому, что наши (далеко еще не совершенные) приборы не могут их установить.

Солнце – одна из миллиардов звезд. Есть звезды гораздо больше Солнца (гиганты), есть и меньше него (карлики), Солнце ближе по своим свойствам к карликовым звездам, чем к гигантам. Есть звезды горячие (они имеют бело-голубоватый цвет и температуру свыше 10000 градусов на поверхности, а некоторые до ста тысяч градусов), есть холодные звезды (они красные, температура поверхности около 3 тысяч градусов). Звезды находятся очень далеко от нас, до ближайшей звезды лететь со скоростью света (300000 км/с) целых 4 года, тогда как до Солнца можно долететь с такой скоростью за 8 минут.

Некоторые звезды образуют пары, тройки (двойные, тройные звезды) и группы (рассеянные звездные скопления). Существуют и шаровые звездные скопления, они содержат десятки и сотни звезд и имеют форму шара, с концентрацией звезд к центру. В рассеянных скоплениях собраны молодые звезды, а шаровые скопления очень древние, в них звезды старые. Возле некоторых звезд существуют планеты. Есть ли на них жизнь, а тем более цивилизации, пока не установлено. Но они вполне могут существовать.

Звезды образуют гигантские системы – Галактики. Галактика имеет центр (ядро), плоские спиральные рукава, в которых сосредоточено большинство звезд, и периферию, объемное облако из редких звезд. Звезды движутся в пространстве, они рождаются, живут и умирают. Такие звезды, как Солнце, живут примерно 10-15 миллиардов лет, и Солнце – звезда среднего возраста. Так что ему светить еще очень долго. Массивные и горячие звезды «сгорают» быстрее, и могут взрываться как «сверхновые» звезды, оставляя после себя очень маленькие и сверхплотные образования – белые карлики, нейтронные звезды или «черные дыры», в которых плотность материи столь высока, что никакие частицы не могут преодолеть силы тяготения и вырваться оттуда. Кроме звезд, в Галактике содержатся облака космической пыли и газа, образующие туманности. Плоскость Галактики, где максимальное число звезд, газа и пыли, видна на небе как Млечный Путь.

Существует еще много миллионов Галактик, состоящих из огромного числа звезд. Например, Магеллановы облака, Туманность Андромеды – это другие Галактики. Находятся они на невообразимо больших расстояниях от нас.

На нашем небе звезды кажутся неподвижными, так как они очень далеко от нас, и их движение становится заметным только по прошествии десятков и сотен тысяч лет.

Полезная информация

Галактика – гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс. Слово «галактика» происходит от греческого названия нашей Галактики. Ядро – крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик , где процессы нельзя объяснить свойствами сконцентрированных в них звёзд. На снимках галактик видно, что действительно одиноких галактик немного. Порядка 95 % галактик образуют группы галактик. Если среднее значение расстояния между галактиками не более чем на порядок больше их диаметра, то существенными становятся приливные воздействия галактик. На эти воздействия каждый компонент галактики в разных условиях откликается по-разному. Млечный Путь, называемый также просто Галактикой , является большой спиральной галактикой с перемычкой, диаметром около 30 килопарсек и толщиной 1000 световых

Международная команда астрономов, возглавляемая Christopher J. Conselice, профессором астрофизики в университете Ноттингема, обнаружили, что Вселенная содержит не менее 2 триллионов галактик , в десять раз больше, чем считалось ранее. Работа команды, которая началась с гранта Королевского астрономического общества, была опубликована в Astrophysical Journal 14 октября 2016.

Астрономы давно стремились определить, сколько галактик существует в наблюдаемой Вселенной, той части космоса, где свет из отдаленных объектов успел добраться до нас. За последние 20 лет ученые использовали изображения из космического телескопа Хаббла для оценки того, что Вселенная, которую мы видим, содержит около 100 - 200 миллиардов галактик. Современные астрономические технологии позволяют нам изучать только 10% этих галактик, а остальные 90% будут видны только после того, как будут разработаны большие и лучшие телескопы.

Исследование профессора Conselice является кульминацией 15-ти летней работы, которая также частично финансировалась исследовательским грантом , присужденным студенту старших курсов Аарону Уилкинсону. Аарон, в настоящее время PhD (доктор философии) в университете Ноттингема, начал с анализа всех ранее проведенных исследований по подсчету количества галактик, что послужило фундаментальной базой для установления более масштабного исследования.

Команда профессора Conselice преобразовала узконаправленные снимки глубокого космоса с телескопов по всему миру, и особенно от телескопа Хаббл, в 3D карты. Это позволило им рассчитать плотность галактик, а также объем одной небольшой области пространства за другой. Это кропотливое исследование позволило команде установить, сколько галактик было пропущено в более ранних исследованиях. Можно сказать, что они провели межгалактические археологические раскопки.

Результаты этого исследования основаны на измерениях количества наблюдаемых галактик в разные эпохи – временные срезы в галактическом масштабе - за всю историю Вселенной. Когда профессор Conselice и его команда из Ноттингема в сотрудничестве с учеными из обсерватории Лейдена в Лейденском университете в Нидерландах и Института астрономии Эдинбургского университета, исследовали, сколько галактик было в каждую эпоху, они обнаружили, что на более ранней стадии развития Вселенной количество галактик было значительно больше, чем сейчас.

Похоже, что когда Вселенной было всего несколько миллиардов лет, количество галактик в заданном объеме пространства было в десять раз больше, чем сегодня в аналогичном объеме. Большинство из этих галактик были системами с малой массой, т.е. с массами, аналогичными массам галактик, окружающих сейчас Млечный Путь.

Профессор Конселис сказал: «Это очень удивительно, поскольку мы знаем, что за 13,7 миллиардов лет космической эволюции со времен Большого Взрыва размер галактик увеличивался за счет звездообразования и слияния с другими галактиками. Установление факта наличия большего числа галактик в прошлом подразумевает, что должна была произойти значительная эволюция, направленная на уменьшение их числа за счет обширного слияния систем. Мы упускаем подавляющее большинство галактик, потому что они очень слабые и далекие. Количество галактик во Вселенной является фундаментальным вопросом астрономии, и это поражает воображение, поскольку 90% галактик в космосе до сих пор не изучены. Кто знает, какие интересные свойства мы найдем при изучении этих галактик с помощью телескопов следующего поколения?»

Перевод статьи «Распределение плотности галактик при Z < 8 и ее последствия». Октябрь 2016. Права на перевод принадлежат
Авторы:
Christopher J. Conselice, School of Physics and Astronomy, Ноттингемский университет, Ноттингем, Англия.
Aaron Wilkinson, Лейденская обсерватория Лейденский университет, Нидерланды
Kenneth Duncan, Королевская обсерватория, Институт астрономии Эдинбургского университета, Шотландия

Аннотация

Распределение плотности галактик во Вселенной и, следовательно, общее число галактик является фундаментальным вопросом астрофизики влияющим на разрешение множества проблем в области космологии. Однако, до публикации данной статьи, никогда не было аналогичного подробного исследования этого важного показателя, а также определения четкого алгоритма нахождения данного числа. Для решения этой задачи мы использовали наблюдаемые галактические функции звездных масс до $z \sim 8$, чтобы определить, как изменяется плотность числа галактик в зависимости от функции времени и предела массы. Мы показали, что увеличение общей плотности галактик ($\phi_T$), более массивных, чем $M_* = 10^6M_\odot$, уменьшается как $\phi_T \sim t^{-1}$, где t - возраст Вселенной. Далее мы показали, что этот тренд разворачивается и скорее возрастает со временем при более высоких предельных значениях массы $M_* > 10^7M_\odot$. Используя $M_* = 10^6M_\odot$ как нижний предел, мы обосновали, что общее количество галактик во Вселенной до $z = 8$ равно: $2.0 {+0.7\choose -0.6} \times {10^{12}}$ или просто $2.0 \times {10^{12}}$ (два триллиона!) , т.е. почти в десять раз больше, чем было видно во всех исследованиях неба на основе . Мы обсудим влияние этих результатов для понимание процесса эволюции галактик, а также сравним наши результаты с новейшими моделями формирования галактик. Эти результаты также показывают, что космический фоновый свет в оптической и ближней инфракрасной области, вероятно, возникает из этих ненаблюдаемых слабых галактик. Мы также покажем, как эти результаты решают вопрос о том, почему ночное небо темное, иначе известный как .

1. Введение

Когда мы открываем Вселенную и ее свойства, мы всегда хотим знать абсолютные значения. Например, астрономический интерес состоит в том, чтобы рассчитать, сколько звезд находится в нашей Галактике, сколько планет окружают эти звезды (Fressin et al., 2013), общую плотность Вселенной (например, Fukugita & Peebles 2004), среди других абсолютов в свойствах Вселенной. Здесь был дан приблизительный ответ на один из этих вопросов, - это общая плотность числа галактик и, следовательно, общее число галактик во Вселенной.

Этот вопрос является не просто праздным любопытством, но связан со многими другими вопросами в космологии и астрономии. Распределение плотности галактик связано с такими вопросами, как образование / эволюция галактики по числу сформированных систем, изменение отношений гигантских галактик к карликовым галактикам, отдаленная сверхновая и скорость гамма-всплеска, скорость образования звезд во Вселенной, и как новые галактики создаются / уничтожаются посредством слияний (например, Bridge et al. 2007; Lin et al. 2008; Jogee et al. 2009; Conselice et al. 2011; Bluck et al. 2012; Conselice 2014; Ownsworth et al. 2014). Количество галактик в наблюдаемой Вселенной также раскрывает информацию о плотности материи (вещества и энергии) Вселенной, фоновом свете на разных длинах волн, а также о понимании парадокса Ольберса. Однако до сих пор еще нет хорошего измерения этой фундаментальной величины. Наша способность исследовать распределение плотности галактик с помощью телескопов возникла только с появлением CCD-камер. Сверхдальние исследования по поиску далеких галактик начались в 1990-х годах (например, Koo & Kron 1992; Steidel & Hamilton 1992; Djorgovski et al. 1995), и достигли нынешней глубины после проектов на базе Космического телескопа «Хаббл», особенно таких как (Williams et al. 1996). В дальнейшем исследования были продолжены в рамках (Williams et al., 2000), (Giavalisco et al. 2004), обзор в инфракрасном спектре (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) (Grogin et al. 2011; Koekemoer et al. 2011), и увенчались Hubble Ultra Deep Field (Beckwith et al. 2006), который на сегодняшний день остается самым глубоким исследованием в оптическом и ближнем инфракрасном диапазоне нашей Вселенной.
Однако, несмотря на все эти исследования, до сих пор неясно, как общая плотность числа галактик эволюционирует с течением времени. Это интересный вопрос, поскольку мы знаем, что скорость звездообразования возрастает, а затем снижается при z < 8 (например, Bouwens et al. 2009; ; Madau & Dickinson 2014), в то же время галактики становятся более крупными и менее своеобразными (например, Conselice et al. 2004; Papovich et al. 2005; Buitrago et al. 2013; Mortlock et al. 2013; Lee et al. 2013; Conselice 2014; Boada et al. 2015). Однако мы не знаем, как изменяется общее количество галактик во времени и как это связано с общим образованием популяции галактик в целом.
Существует несколько причин того, почему нелегко определить общее количество галактик на основе результатов сверхдальних исследований. Однa из них заключается в том, что все сверхдальние наблюдения являются неполными. Это связано с ограничениями времени и глубины экспозиции, из-за этого некоторые галактики обнаруживаются более легко, чем другие. Результатом этого является неполная картина даже в самых сверхдальних обследованиях, которые могут быть исправлены, но которые все еще оставляют некоторую неопределенность. Однако более важная проблема заключается в том, что эти наблюдения не достигают самых слабых галактик, хотя из теории, мы знаем, что должно быть гораздо больше слабых галактик за пределами границ, доступных в настоящее время нам для наблюдений.
Важно также обратить внимание на то, что мы понимаем под общей плотностью галактик во Вселенной. Это не простая величина, которую можно определить как общую плотность, существующую в настоящее время, общая плотность, которая является наблюдаемой в принципе, и общая плотность, которую можно наблюдать с помощью современной технологии, - это разные вопросы с разными ответами. Существует также проблема, что мы ограничены космологическим горизонтом над тем, что мы можем наблюдать, и поэтому есть галактики, которые мы не можем видеть за его пределами. Даже количество галактик, которые существуют во Вселенной сегодня, то есть, если мы могли бы рассматривать всю Вселенную как есть в настоящий момент, а не быть ограниченным временем прохождения света, представляет собой сложный вопрос. Галактики в далекой вселенной эволюционировали за пределы того, что мы можем наблюдать в настоящее время из-за конечной природы скорости света и, по-видимому, будут похожими на те, что есть в видимой Вселенной. Мы рассматриваем все эти проблемы в данной статье, а именно, как плотность числа галактик изменяется в пределах текущей наблюдаемой вселенной до z ~ 8.
В целях сравнения, в Приложении к данной работе, мы также проводим анализ числа галактик, которые видны современным телескопам на всех длинах волн, и которые мы можем наблюдать в настоящее время. Затем мы сравниваем эти данные с измерениями общего числа галактик, которое потенциально может наблюдаться во Вселенной на основе измеренных функций масс (mass function). Мы также обсудим, как эти результаты раскрывают информацию об эволюции галактики и . Мы также приводим информацию о будущих исследованиях, и какую долю галактик они будут наблюдать.
Эта статья разделена на несколько разделов. §2 описывает данные, которые мы используем в этом анализе, §3 описывает результаты настоящей работы, в том числе методы анализа функций звездной массы галактики с целью получения общего количества галактик, находящихся во Вселенной, §4 описывает последствия этих результатов, а в §5 представлено краткое изложение статьи. В этой работе мы используем стандартную космологию: H 0 = 70 km s −1 Mpc −1 , и Ω m = 1 − Ω λ = 0.3.

2. Данные

Данные, которые мы используем для этой статьи, получены из многочисленных источников и результатов предыдущих работ. В Приложении мы описываем, сколько галактик мы можем наблюдать в настоящее время во Вселенной, основываясь на самых глубоких наблюдениях, доступных к настоящему времени. Здесь, в основной статье, мы исследуем вопрос о том, сколько галактик потенциально можно обнаружить во Вселенной, если глубокая визуализация по всем длинам волн выполнена во всех частях неба без каких-либо помех от Галактики или других искажений.
Для большей части данного анализа и результатов этой работы мы используем функции масс галактик из обозримой Вселенной вплоть до z ~ 8, чтобы определить, как плотность числа галактик эволюционирует со временем и . Эти функции массы и светимости сейчас только начинают измеряться для больших значений красного смещения, и наши первичные данные исходят из функций масс, рассчитанных с использованием высокоточных инфракрасных и оптических съемок телескопом Хаббла и наземных станций.
Как представлено в следующем разделе, функции масс, которые мы используем, взяты из , Fontana et al. ( , ), Tomczak et al. (2014), и для галактик при z < 3. Для самых высоких значений красного смещения мы используем функции масс, опубликованные , и . Мы упорядочили все эти функции масс из каждого вышеуказанного исследования на основе для звезд от $0.1M_\odot$ до $100M_\odot$. Мы использовали плотности галактик из этих функций масс, соответствующие их объемам, в отличие от физических объемов. Это говорит о том, как количество галактик изменяется в одном и том же эффективном объеме, при этом эффекты расширения Хаббла исключаются. Эти функции масс показаны на {{ show1_MathJax ? "Закрыть":"Рисунке 1" }} до предела масс, взятых из ранее упомянутых исследований, которые также перечислены в Таблице 1.

Рисунок 1. Функции масс, которые мы используем в данной статье, представлены на графикахс помощью Все эти значения взяты из различных исследований, упомянутых в §2. Функции масс представлены в зависимости от значений , на левом графике отображены системы при z < 1, средний график показывает 1 < z < 3 и z > 3 (крайний правый). Эти функции масс показаны так, что сплошные цветные линии являются функциями масс вплоть до предела соответствующих данных, в которых они полны, а пунктирные линии показывают нашу экстраполяцию до $M_* = 10^6 M_\odot$. «Самый плоский» график функции масс для 1 < z < 3 взят из работы и для z > 3 взят из работы .

3. Распределение плотности галактик

3.1 Введение и предостережения

Основным методом, который мы используем для определения плотности галактик во Вселенной, является интеграция количества галактик через установленные функции масс для данного космологического красного смещения. Для этого требуется экстраполировать установленные функции звездной массы, чтобы достичь минимального предела массы популяции галактик. Есть много способов, которыми это можно сделать, о чем мы поговорим ниже. Одним из наиболее важных вопросов является нижний предел, от которого мы должны начинать подсчет количества галактик в зависимости от функций масс. Благодаря недавним публикациям, где приводятся функции звездной массы до z ~ 8 (например, ; , мы можем теперь сделать этот расчет впервые. Другая проблема заключается в том, может ли быть экстраполирована ниже предела данных, для которых она изначально была пригодна. Это вопрос, который мы подробно исследуем.
Это дополняет непосредственно наблюдаемый подход, представленный в Приложении, и является более точным способом измерения количества галактик в наблюдаемой в настоящее время Вселенной, если функции масс правильно измерены и точно параметризованы. Однако этот метод потенциально чреват подводными камнями, которые необходимо тщательно рассмотреть и проанализировать. Не в последнюю очередь это связано с тем, что измерения зависят от гораздо большего количества факторов, чем просто фотометрия и проблемы с идентификацией объекта, которые всегда присутствуют при простом измерении числа галактик. Ситуация здесь связана с другими неопределенностями, связанными с измерением звездных масс и красных смещений. Тем не менее, если мы можем объяснить эти неопределенности, интеграция установленных функций масс может рассказать нам о плотностях галактик в заданном интервале красного смещения с некоторой измеренной неопределенностью.
Мы используем этот метод для вычисления общей плотности галактик, находящихся в пределах наблюдаемой в настоящее время Вселенной, как функции красного смещения. Для этого мы непосредственно не интегрируем наблюдаемые функции масс, а используем параметризованную форму, заданную функцией Шехтера (1976), чтобы определить общую плотность числа галактик как функцию красного смещения. Форма этой функции задается:

$\phi(M) = b\times\phi^\ast\ln(10)^{1+\alpha}$ $\times\exp[-10^{b(M-M^\ast)}] . . . . .(1)$

где b = 1 для функции масс, b = 0.4 для , которая будет записана в терминах абсолютных величин. Для функции масс, $M^*$ есть типичная масса в логарифмических единицах и определяет, где функция массы изменяет наклон, а $M = \log(\frac{M_*}{M_\bigodot})$ есть масса в логарифмических единицах. Аналогично для функции светимости, $M^*$ соответствует типичной величине. Для обоих функций $\phi^*$ есть нормализация, а $\alpha$ определяет наклон для более тусклых и менее массивных галактик. Наш метод использует опубликованные значения $\phi^*$, $\alpha$ и $M^*$ для вычисления интегрированного количества галактик в различных красных смещениях.
Мы используем функцию светимости Шехтера как инструмент для вычисления общей плотности так как в целом она хорошо описывает распределение масс галактик во всех красных смещениях в диапазонах, которые мы исследуем. Однако мы не знаем, в каком нижнем пределе массы он остается действительным, что является одной неопределенностью в нашем анализе. Далее мы обсудим использование $M_*>10^6 M_\bigodot$ как лимита и обоснование его использования в качестве нашего нижнего предела. Мы также обсудим, как наши результаты изменились бы, если бы мы использовали другое значение ограничения нижнего предела массы.
Поскольку мы интегрируем функции масс через всю историю вселенной, мы должны использовать множество обследований для учета числа галактик при разных красных смещениях. Различные диапазоны красного смещения требуют исследований, выполненных на разных длинах волн, и различные исследования иногда обнаруживают разные значения параметров Шехтера. В этой работе мы пытаемся всесторонне изучить функции масс, которые, особенно при низком красном смещении, могут давать широко расходящиеся значения плотности и формы эволюции. Мы получаем почти одинаковые результаты, как при использовании двойной функции светимости Шехтера, применяемую для расчета функции масс при низких значениях космологического красного смещения, также как и в том случае, если мы используем степенной закон () для расчета функции масс при высоких значениях космологического красного смещения.

1. cтр. 170-183 Лекций по звездной астрономии. Локтин А.В., Марсаков В.А., 2009 год.
2.
3.
4. , раздел внегалактической базы данных НАСА (NASA/IPAC Extragalactic Database, NED) - крупнейшее хранилищее изображений, фотометрии и спектров галактик, полученных в ходе обзоров неба в микроволновом, инфракрасном, оптическом и ультрафиолетовом (УФ) диапазонах.
5.
6.
7.
8. В этой работе была представлена двойная функция светимости Шехтера (the double Schechter luminosity function). Раздел 4.2 на стр.10.
9. Lorenzo Zaninetti. 29 мая 2017. A Left and Right Truncated Schechter Luminosity Function for Quasars

В диапозоне космологического красного смещения z ~ 0 - 3 мы используем установленные значения функций масс и их ошибки из работ, проведенных , Fontana et al. ( , ), и . Эти функции звездных масс определяются путем измерения звездных масс объектов посредством процедуры SED fitting (). Несмотря на большой разброс в различных измерениях параметров функции Шехтера, мы используем всю эту информацию, чтобы принимать во внимание различные методы измерений и используемых моделей, а также космическую дисперсию (). Эти функции масс, параметризованные функцией Шехтера, показаны на Рисунке 1. Мы также конвертируем те исследования, в которых используются начальные функции масс Шабрие () - Pozzetti et al. (2007), Duncan et al. (2014), Mortlock et al. (2015) и Muzzin et al. (2013) который использует начальные функции масс Кроупа (Kroupa IMF) в начальные функции масс Солпитера (Salpeter IMF). Список значений, которые мы используем в нашем анализе, показан в {{ show2_MathJax ? "Закрыть":"Таблице 1" }}Примечание - В этой таблице перечислены параметры приведенных функций Шехтера, которые мы используем для выполнения наших расчетов. Они все нормализованы в целях получения сопостовимых значений начальных функций масс Солпитера (Salpeter IMF), хотя Pozzetti et al. (2007), Duncan et al. (2014) и Mortlock et al. (2015) в своих работах использовали начальные функции масс Шабрие (), а Muzzin et al. (2013) использовали начальные функции масс Кроупа (Kroupa IMF).

{{ show2_MathJax ? "Закрыть":"Таблице 1" }} .

Заметим, что мы рассматриваем только те функции масс, где параметр α в применимых моделях Шехтера разрешается изменять. Если результат функции массы получается от фиксированного значения α , то это приводит к искажению числа галактик, поскольку это значение имеет существенное влияние на число тусклых галаких с небольшой массой в заданном объеме (§3.2). Поэтому мы исключаем результаты функции масс из исследований, использующих α GOODS (Great Observatories Origins Deep Survey project) в рамках глубокого космического внегалактического обзора в ближнем инфракрасном диапазоне (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), а также из .
Для высоких значений космологического красного смещения функции масс являются относительно новым параметром, поэтому в целях получения согласованных и непротиворечивых данных мы также проанализировали полученные функции светимости в ультрафиолетовом диапазоне, в основном при 1500˚A. Для этого мы использовали данные, опубликованные в работах Bouwens et al. (2011), McLure et al. (2009), McLure et al. (2013), Bouwens et al. (2015) и Finkelstein et al. (2015). McLure et al. (2013) и Bouwens et al. (2015) анализируют данные, полученные из самых дальних обзоров , включая обзор HUDF12 , который исследовал галактики для самых высоких значений космологического красного смещения при $z = 8$ и $z = 9$.
Для преобразования лимта звездных масс к пределу УФ-величины, мы используем отношения между этими двумя величинами, рассчитанные в работе Duncan et al. (2014). Duncan et al. (2014) смоделировали линейное отношение между массой и светом в УФ и как она развивается при различных значениях космологического красного смещения. Мы используем их, чтобы определить, предел УФ-величины, соответствующий нашему стандартному лимиту масс $M_* = 10^6M_\odot$. Таким образом, мы можем связать наш лимит звездной массы с пределом абсолютной величины в УФ. Мы не используем эти значения в наших расчетах, но используем эти функции светимости для проверки соответствия наших результатов, полученных от функций звездных масс. Мы находим высокую согласованность с функциями звездной массы, в том числе при использовании различных вариаций преобразования звездной массы в УФ-светимость (например, Duncan et al. 2014; Song et al. 2015). Более того, все наши функции масс для высоких значений космологического красного смещения более или менее согласованы, за исключением Grazian et al. (2015), результаты которого приводят к несколько более низкому значению $\phi_T$.

5. Краткие итоги исследования

Мы исследовали фундаментальный вопрос о распределение плотности галактик во Вселенной. Мы анализируем эту задачу несколькоми способами и обсуждаем последствия для эволюции галактики и космологии. Мы используем недавно полученные массовые функции для галактик до z ∼ 8 для определения распределения плотности галактик во Вселенной. Наш основной вывод заключается в том, что плотность числа галактик уменьшается с течением времени как $\phi_T(z) \sim t^{-1}$, где t – возраст Вселенной.
Далее мы обсуждаем последствия этого увеличения плотности числа галактик с ретроспективного взгляда назад для множества ключевых астрофизических вопросов. Интегрируя плотность числа галактик мы рассчитали количество галактик во Вселенной , значение которого составило $2.0 {+0.7\choose -0.6} \times {10^{12}}$ для $z = 8$, которое в принципе можно наблюдать. Это примерно в десять раз больше, чем при прямом подсчете. Это означает, что нам еще предстоит обнаружить большую популяцию слабых далеких галактик.

В терминах астрофизической эволюции галактик мы показываем, что увеличение интегрируемых функций масс всех галактик с красным смещением объясняется моделью слияния. Мы показываем, что простая модель слияния способна воспроизводить снижение числа галактик с временным масштабом слияния $\tau=1.29 ± 0.35 Gyr$. Полученная скорость слияния при z = 1.5 составляет R ∼ 0.05 слияний $Gyr^{−1} Mpc^{−3}$, близко к значению, полученному при структурном и парном анализе. Большинство из этих сходящихся галактик представляют собой системы с более низкой массой, увеличивающие со временем плотность числа галактик с нижнего предела до более высоких масс при вычислении общей плотности.

Наконец, мы обсуждаем последствия наших результатов для будущих исследований.

В будущем, поскольку функции масс становятся более известными благодаря лучшему моделированию SED и более глубоким и более широким данным с JWST и Euclid / LSST, мы сможем более точно измерить общую плотность числа галактик и, таким образом, получить лучшую меру этой фундаментальной величины.

2:38 11/05/2016

👁 545

Совсем недавно, в 1920 годах, знаменитый астроном Эдвин Хаббл сумел доказать, что наш - это не единственная существующая . Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во находится рядом с нами? Сегодня мы найдем ответ на этот вопрос.

От одной до бесконечности

Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш Млечный Путь метагалактикой - объектом, покрывающим собой всю обозримую Вселенную. Их заблуждение вполне логично объяснялось несовершенством того времени - даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями.

Считалось, что из них со временем формируются и , как сформировалась когда-то наша . Эту догадку подтвердило обнаружение первой в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же , звезды в которых еще не успели образоваться.

Первые шаги

Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям Парсонс построил исполинский для тех времен телескоп «Левиафан», размер которого приближался к двум метрам. Желая доказать, что «туманности» на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким .

Однако споры продлились аж до XX века. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме Млечного Пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность - .

В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900–1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, «слипшимися» в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.

Современная картина

В 1924 году, пользуясь телескопом-рекордсменом начала столетия, Эдвину Хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к Млечному Пути (притом, что оценка Хаббла была в три раза меньше современной). Еще астроном обнаружил в «туманности» множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег, Хаббл представил результаты своей работы на конференции Американского астрономического сообщества.

Это выступление дало начало новому периоду в истории астрономии - ученые «переоткрывали» туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого Хаббла - например, открытие красного смещения. Число известных галактик росло с постройкой новых телескопов и запуском новых - например, начала широкого применения радиотелескопов после Второй Мировой.

Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера препятствует даже самым большим телескопам получить точную картину - газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты Вселенной. Но ученые сумели обойти эти ограничения, запустив , названный в честь уже знакомого вам астронома.

Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых - и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых «Хабблу» - это минимум десятая часть от их настоящего количества.

Финальный подсчет

И все же, сколько именно галактик существует во Вселенной? Сразу предупрежу, что считать придется нам вместе - такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики - но лишь для более глобальных целей вроде изучения крупномасштабной структуры Вселенной.

Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой Вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов - куда меньше, чем существует галактик на самом деле.

Для определения примерного числа возьмем какое-то из высокоточных изучений космоса - например, «Ultra Deep Field» телескопа «Хаббл» от 2004 года. На участке, равному 1/13000000 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности «Хаббла» мы видим 130 миллиардов галактик со всей Вселенной.

Однако это еще не все. После «Ultra Deep Field» было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует «Хаббл», но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов световых лет нам доступно 7 триллионов 375 миллиардов галактик.

Но это, опять-таки, минимальная оценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов - 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту выйдет телескоп «Джеймс Уэбб». Этот аппарат за минуты достигнет туда, куда «Хаббл» пробирался днями, и проникнет еще дальше в глубины Вселенной.

По материалам

Солнце увлекается общим орбитальным движением рукава Ориона нашей Галактики со скоростью 220 км/с в полную неизвестность, куда-то в сторону созвездия Геркулеса. Звездное окружение Солнца тоже не статично, все вокруг находится в постоянном движении, и, конечно, это приводит к наличию на небе Земли некоторого количества звезд с большим собственным смещением на нашем небе - порядка нескольких угловых секунд в год. Тут мы должны вспомнить про . Многие из них - это близкие к нам звезды, которые находятся на расстояниях в десятки световых лет, и это выглядит довольно логично - чем ближе звезда, тем больше должна проявляться ее собственная скорость относительно Солнца и тем больше она должна перемещаться на нашем небе.

Второй комплект данных космической обсерватории GAIA , которая занимается определением трехмерных координат, скоростей, блеска и прочих важных характеристик звезд нашей Галактики, - неисчерпаемая сокровищница знаний для любого ученого, который посвятил свою жизнь астрофизике, звездной астрономии, астрометрии или даже эволюции галактик. GAIA DR2 содержит данные десятков миллионов звезд, которые все еще ждут своих исследователей, в то время пока профессионалы применяют к этой гигантской базе данных технологии data science, снимая самые сливки. Именно здесь немецкий астроном Ральф - Дитер Шольц недавно обнаружил странную тесную систему из красного и коричневого карликов на расстоянии всего в 22 световых года от нас. С точки зрения астрофизика система сама по себе довольно примечательна и требует дальнейшего тщательного изучения, но тут пришли специалисты по астрометрии и потащили одеяло на себя.

Два астронома - Эрик Мамаек (Eric Mamajek) из программы по исследованию экзопланет NASA и его коллега Валентин Иванов - удивились тому, что звезда Шольца совсем не никак не перемещается на небе, хотя, по идее, должна была бы. То есть, получается, что она движется строго по лучу нашего зрения - или к нам или от нас. Вычисления допплеровского смещения показали, что система Шольца удаляется от нас со скоростью 80 км/с, и это, в свою очередь, означает, что какое-то время назад она пролетела совсем близко к Солнечной системе! Дальнейшие вычисления показали, что такой момент был 70 тысяч лет назад и точка встречи находилась в 55 тысячах а.е. от Солнца, далеко вне пределов Облака Оорта, но в 5 раз ближе Проксимы Центавра!

Можете представить такое?

Более того, покопавшись в той же базе GAIA , они увидели, что есть еще одна звезда GJ710, которая направляется к нам с твердым намерением через 1.3 млн лет просвистеть мимо Солнечной Системы на каком-то неуказанном в статье расстоянии.

Эти вещи, в отличие от танцев вокруг мифической Нибиру, - реальны. Их можно пощупать, и, при наличии навыка, вывести какие-то обоснованные версии о том, что может быть дальше. Близкие к Солнечной Системе проходы других звездных систем могут привести к разным последствиям. Во-первых, конечно, объекты облака Оорта - в основном, ледяные кометы, начнут активно вбрасываться внутрь системы, перемещаясь ближе к Солнцу, чтобы или, обогнув его, уйти навсегда в пространство, или, может быть, претерпев многочисленные гравитационные взаимодействия с планетами-гигантами - прежде всего, Юпитером, быть захваченными ими или же начать изменять свои траектории самым причудливым образом. Не исключено, что некоторые из этих траекторий могут впоследствии пересечься с орбитой Марса или Земли и устроить нам похохотать. Вполне возможно, что именно такой механизм и был в основе появления воды на указанных планетах когда очень, очень давно.

Во-вторых действительно близкое прохождение звезды может сместить с мест карликовые планеты пояса Койпера - наподобие Плутона, добавить им спутников, или наоборот, отнять. Сами планеты могут при этом также выбрасываться внутрь системы или же наружу и пропадать в темноте космоса навсегда.

Ну и, конечно, нельзя исключать возможности, что в самом худшем случае и Земля может быть вырвана из ласковых объятий Солнца и отправиться куда подальше, или найти себе любую другую смерть на свой выбор. Впрочем, вероятность подобного исчезающе мала, и серьезно беспокоиться на этот счет я бы не стал.

То есть мы видим, что подобные сближения могут существенно влиять на эволюцию и структуру Солнечной Системы.

Итак, система Шольца, состоящая из красного и коричневого карликов, просвистела с относительной скоростью 80 км/с на расстоянии 55 тыс а.е. от Солнца 70 тысяч лет назад. Наши предки с каменными топорами и копьями даже не подозревали о таком грозном соседе, ибо его видимый блеск на небе был в 100 раз меньше 6й звездной величины, доступной глазу.

Но мне так хочется верить, что, если б звезда Шольца была видима, обязательно нашелся бы какой-нибудь питекантроп, который задал себе вопрос "почему то? почему так?" и написал бы об этом в каменном блоге, подписанном как-то вроде "Неба хватит на всех"...