Положения центра тяжести некоторых фигур. Способы определения координат центра тяжести Центр тяжести плоской фигуры формула

6.1. Общие сведения

Центр параллельных сил
Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


Рис.6.2

Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

Отсюда находим координату центра параллельных сил zc :

Для определения координаты xc составим выражение момента сил относительно оси Oz .

Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

6.2. Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
Точка С в данном случае носит название центра тяжести площади .
Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

6.3. Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


Рис.6.3

Ответ: x c =17.0см; y c =18.0см.

3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


Рис.6.4

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


Рис. 6.5

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
Согласно формуле для центра тяжести линии:

6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



Рис.6.6

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

6.4. Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

Таблица 6.1

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где α - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где α - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Центр тяжести - точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил (Е. М. Никитин , § 42). Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
x c = (∑ G i x i) / ∑ G i ;
(1) y c = (∑ G i y i) / ∑ G i ;
z c = (∑ G i z i) / ∑ G i .

Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес G i каждого отрезка l i можно представить в виде произведения
G i = l i d,
где d - постоянный для всей фигуры вес единицы длины материала.

После подстановки в формулы (1) вместо G i их значений l i d постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий , примут вид:
x c = (∑ l i x i) / ∑ l i ;
(2) y c = (∑ l i y i) / ∑ l i ;
z c = (∑ l i z i) / ∑ l i .

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
G i = F i p,
где F i - площади каждой поверхности, а p - вес единицы площади фигуры.

После подстановки этого значения G i в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей :
x c = (∑ F i x i) / ∑ F i ;
(3) y c = (∑ F i y i) / ∑ F i ;
z c = (∑ F i z i) / ∑ F i .

Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
G i = V i γ,
где V i - объем каждой части, а γ - вес единицы объема тела.

После подстановки значений G i в формулы (1) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов :
x c = (∑ V i x i) / ∑ V i ;
(4) y c = (∑ V i y i) / ∑ V i ;
z c = (∑ V i z i) / ∑ V i .


При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
(5) x c = (r sin α)/α.

Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
sin α = b/(2r)
и тогда
(5а) x c = b/(2α).

В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
(5б) x c = OC = 2r/π = d/π.

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы:
(6) x c = (2r sin α)/(3α).

Если же задана хорда сектора, то:
(6а) x c = b/(3α).

В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
(6б) x c = OC = 4r/(3π) = 2d/(3π).

Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

3) определить или длины, или площади, или объемы составных частей;

4) выбрать расположение осей координат;

5) определить координаты центров тяжести составных частей;

6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

7) по найденным координатам указать на рисунке положение центра тяжести тела.

§ 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

§ 24. Определение положения центра тяжести фигур, составленных из пластинок

В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 - несколькими способами. Два варианта показаны на рис. 183, а и б.

Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

§ 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.

Допустим, например, что однородное тело имеет плоскость симметрии. Тогда этой плоскостью оно разбивается на две такие части, веса которых и равны друг другу, а центры тяжести находятся на одинаковых расстояниях от плоскости симметрии. Следовательно, центр тяжести тела как точка, через которую проходит равнодействующая двух равных и параллельных сил будет действительно лежать в плоскости симметрии. Аналогичный результат получается и в случаях, когда тело имеет ось или центр симметрии.

Из свойств симметрии следует, что центр тяжести однородного круглого кольца, круглой или прямоугольной пластины, прямоугольного параллелепипеда, шара и других однородных тел, имеющих центр симметрии, лежит в геометрическом центре (центре симметрии) этих тел.

2. Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по формулам (59) - (62). При этом число слагаемых в каждой из сумм будет равно числу частей, на которые разбито тело.

Задача 45. Определить координаты центра тяжести однородной пластины, изображенной на рис. 106. Все размеры даны в сантиметрах.

Решение. Проводим оси х, у и разбиваем пластину на три прямоугольника (линии разреза показаны на рис. 106). Вычисляем координаты центров тяжести каждого из прямоугольников и их площади (см. таблицу).

Площадь всей пластины

Подставляя вычисленные величины в формулы (61), получаем:

Найденное положение центра тяжести С показано на чертеже; точка С оказалась вне пластины.

3. Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известныу

Задача 46. Определить положение центра тяжести круглой пластины радиуса R с вырезом радиуса (рис. 107). Расстояние

Решение. Центр тяжести пластины лежит на линии так как эта линия является осью симметрии. Проводим координатные оси. Для нахождения координаты дополняем площадь пластины до полного круга (часть 1), а затем вычитаем из полученной площади площадь вырезанного круга (часть 2). При этом площадь части 2, как вычитаемая, должна браться со знаком минус. Тогда

Подставляя найденные значения в формулы (61), получаем:

Найденный центр тяжести С, как виднм, лежнт левее точки

4. Интегрирование. Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают сначала на произвольные малые объемы для которых формулы (60) принимают вид

где - координаты некоторой точки, лежащей внутри объема Затем в равенствах (63) переходят к пределу, устремляя все к нулю, т. е. стягивая эти объемы в точки. Тогда стоящие в равенствах суммы обращаются в интегралы, распространенные на весь объем тела, и формулы (63) дают в пределе:

Аналогично для координат центров тяжести площадей и линий получаем в пределе из формул (61) и (62):

Пример применения этих формул к определению координат центра тяжести рассмотрен в следующем параграфе.

5. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации (самолет, паровоз и т. п.) можно определять экспериментально. Один из возможных экспериментальных методов (метод подвешивания) состоит в том, что тело подвешивают на нити или тросе за различные его точки. Направление нити, на которой подвешено тело, будет каждый раз давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела. Другим возможным способом экспериментального определения центра тяжести является метод взвешивания. Идея этого метода ясна из рассмотренного ниже примера.

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

Определение центра тяжести произвольного тела путем последовательного сложения сил, действующих на отдельные его части,- трудная задача; она облегчается только для тел сравнительно простой формы.

Пусть тело состоит только из двух грузов массы и , соединенных стрежнем (рис. 125). Если масса стержня мала по сравнению с массами и , то ею можно пренебречь. На каждую из масс действуют силы тяжести, равные соответственно и ; обе они направлены вертикально вниз, т. е. параллельно друг другу. Как мы знаем, равнодействующая двух параллельных сил приложена в точке , которая определяется из условия

Рис. 125. Определение центра тяжести тела, состоящего из двух грузов

Следовательно, центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс. Если это тело подвесить в точке , оно останется в равновесии.

Так как две равные массы имеют общий центр тяжести в точке, делящей пополам расстояние между этими массами, то сразу ясно, что, например, центр тяжести однородного стержня лежит в середине стержня (рис. 126).

Поскольку любой диаметр однородного круглого диска делит его на две совершенно одинаковые симметричные части (рис. 127), то центр тяжести должен лежать на каждом диаметре диска, т. е. в точке пересечения диаметров - в геометрическом центре диска . Рассуждая сходным образом, можно найти, что центр тяжести однородного шара лежит в его геометрическом центре, центр тяжести однородного прямоугольного параллелепипеда лежит на пересечении его диагоналей и т. д. Центр тяжести обруча или кольца лежит в его центре. Последний пример показывает, что центр тяжести тела может лежать вне тела.

Рис. 126. Центр тяжести однородного стержня лежит в его середине

Рис. 127. Центр однородного диска лежит в его геометрическом центре

Если тело имеет неправильную форму или если оно неоднородно (например, в нем есть пустоты), то расчет положения центра тяжести часто затруднителен и это положение удобнее найти посредством опыта. Пусть, например, требуется найти центр тяжести куска фанеры. Подвесим его на нити (рис. 128). Очевидно, в положении равновесия центр тяжести тела должен лежать на продолжении нити, иначе сила тяжести будет иметь момент относительно точки подвеса, который начал бы вращать тело. Поэтому, проведя на нашем куске фанеры прямую, представляющую продолжение нити, можем утверждать, что центр тяжести лежит на этой прямой.

Действительно, подвешивая тело в разных точках и проводя вертикальные прямые, мы убедимся, что все они пересекутся в одной точке. Эта точка и есть центр тяжести тела (так как он должен лежать одновременно на всех таких прямых). Подобным образом можно определить положение центра тяжести не только плоской фигуры, но и более сложного тела. Положение центра тяжести самолета определяют, вкатывая его колесами на платформы весов. Равнодействующая сил веса, приходящихся на каждое колесо, будет направлена по вертикали, и найти линию, по которой она действует, можно по закону сложения параллельных сил.

Рис. 128. Точка пересечения вертикальных линий, проведенных через точки подвеса и есть центр тяжести тела

При изменении масс отдельных частей тела или при изменении формы тела положение центра тяжести меняется. Так, центр тяжести самолета перемещается при расходовании горючего из баков, при загрузке багажа и т. п. Для наглядного опыта, иллюстрирующего перемещение центра тяжести при изменении формы тела, удобно взять два одинаковых бруска, соединенных шарниром (рис. 129). В том случае, когда бруски образуют продолжение один другого, центр тяжести лежит на оси брусков. Если бруски согнуть в шарнире, то центр тяжести оказывается вне брусков, на биссектрисе угла, который они образуют. Если на один из брусков надеть дополнительный груз, то центр тяжести переместится в сторону этого груза.