Гидролиз крахмала. Спирт из древесины (гидролизный спирт)

Крахмалопродукты, обладающие сладким вкусом, получают, используя способность крахмала осахариваться под действием кислот и ферментов. При кислотном гидролизе крахмала под действием ионов водорода разрываются а-1,4- и а-1,6-гликозидные связи. По месту разрыва атом водорода воды с кислородом гликозидного мостика образует у первого углеродного атома остатка глюкозы альдегидную группу в полуацетальной форме. С увеличением числа разрывов возрастает редуцирующая способность гидролизатов. Конечный продукт кислотного гидролиза крахмала - глюкоза. Превращение крахмала в глюкозу выражается общим уравнением: В зависимости от условий и длительности кислотного гидролиза получают крахмальные гидролизаты, различающиеся по углеводному составу: содержанию декстринов, тетра- и трисахаридов, мальтозы, глюкозы.

Крахмальные гидролизаты с высоким ГЭ более сладкие, гигроскопичны, повышают осмотическое давление, обладают консервирующим действием. Гидролизаты с низким ГЭ отличаются высокой вязкостью, антикристаллизационным действием, способны стабилизировать пены и эмульсии.

В настоящее время все большее значение приобретает гидролиз крахмала с применением ферментов. Они действуют специфично. Поэтому получают гидролизаты с заданным углеводным составом. Гидролизаты крахмала получают также комбинированным кислотно-ферментативным способом.

Общими стадиями производства гидролизатов крахмала являются: подготовка крахмала к переработке - размывка, очистка от примесей; гидролиз крахмала - клейстеризация, разжижение и осахаривание до нужной стадии (проверяется по йодной пробе); нейтрализация кислоты или инактивация ферментов; очистка гидролизатов от нерастворимых и растворимых примесей, в том числе красящих веществ; концентрирование - выпаривание продуктов, получаемых в жидком виде, выпаривание и высушивание или кристаллизация порошкообразных продуктов.

Крахмальная патока

Крахмальную патоку вырабатывают из злакового и картофельного крахмала.

Патока - продукт неполного гидролиза крахмала; представляет собой сладкую густую, очень вязкую жидкость, бесцветную или с желтоватым оттенком. Патока относится к основным видам сырья кондитерского производства, используется для приготовления товарных сиропов, в хлебопечении. Основные вещества, входящие в состав патоки: декстрины, глюкоза, мальтоза. Редуцирующая способность патоки обусловлена глюкозой и мальтозой. От содержания глюкозы зависят сладость патоки, ее гигроскопичность. Патока, в которой редуцирующие вещества представлены в большей мере мальтозой, менее гигроскопична. Чем больше в патоке декстринов, тем выше ее вязкость и способность задерживать кристаллизацию сахаров.

В зависимости от назначения патоку вырабатывают низкооса-харенную, со средней степенью осахаривания крахмала - карамельную и высокоосахаренную - глюкозную. Массовая доля редуцирующих веществ (в пересчете на сухое вещество, %) в патоке: низкоосахаренной - 30-34, карамельной - 34-44 и глюкозной высокоосахаренной - 44-60.

В кондитерском производстве используют патоку с пониженным содержанием глюкозы для изготовления изделий, способных легко поглощать влагу из окружающей среды,- карамели, халвы, а с повышенным - для изделий, быстро высыхающих при хранении,- помады, сбивных конфет, бисквитов и др. На состав и качество патоки существенно влияет способ гидролиза крахмала.

Патока кислотного гидролиза. При получении патоки гидролиз крахмала под действием соляной кислоты осуществляют при избыточном давлении и температуре около 140 °С.

Низкоосахаренная патока кислотного гидролиза наряду с глюкозой содержит высокомолекулярные декстрины разной степени полимеризации, в том числе приближающиеся по свойствам к крахмалу. Такие декстрины способны к быстрой ретроградации. Патока легко утрачивает прозрачность, становится молочного цвета. Ее высокая вязкость и липкость осложняют выработку карамели.

При более глубоком кислотном гидролизе крахмала наряду с его осахариванием протекают побочные реакции реверсии и разложения глюкозы. Реверсия глюкозы - обратимый процесс ее полимеризации с образованием в основном дисахаридов - гентиобиозы, изомальто-зы и других, а также трисахаридов и более сложных олигосаха-ридов: В крахмальных гидролизатах продукты реверсии глюкозы могут составлять 5 % и более. Они задерживают процессы кристаллизации сахарозы в сахаропаточных сиропах вследствие повышения растворимости смеси сахаров.

Разложение глюкозы при гидролизе крахмала обусловлено кислой реакцией среды и высокой температурой. В этих условиях возможна дегидратация глюкозы. При отделении от глюкозы трех молекул воды образуется оксиметилфурфурол - неустойчивое

соединение, способное разлагаться до левулиновой и муравьиной кислот. При полимеризации оксиметилфурфурола образуются красящие вещества желто-коричневого цвета.

Накапливающиеся в патоке продукты разложения глюкозы ухудшают ее состав, цвет, повышают гигроскопичность. В патоке обнаружено содержание 0,002-0,008 % оксиметилфурфурола. Примеси, присутствующие в крахмале, способствуют протеканию при высокой температуре и других побочных реакций с образованием темноокрашенных соединений. Патоку, уваренную в вакуум-аппарате до 78 % сухих веществ, быстро охлаждают до 40-45 °С. Кислотным способом получают в основном карамельную патоку - средней степени осахаривания.

Высокоосахаренная - глюкозная патока, полученная кислотным гидролизом, неустойчива при хранении из-за кристаллизации глюкозы. Она имеет горький привкус вследствие содержания продуктов реверсии, повышенную цветность.

Нормируются (в пересчете на сухое вещество), помимо редуцирующих веществ, зольность - не более 0,4-0,55%, кислотность в зависимости.от сорта и вида крахмала - от 12 до Е7 мл 1 н. раствора NaOH, рН патоки - не ниже 4,6. При варке карамельной пробы из патоки должен образовываться прозрачный леденец без темных пятен и прожилок.

Патока ферментативного гидролиза. Процесс гидролиза протекает при невысокой температуре (около 60 °С). Используют ферменты проросших зерен злаковых культур, плесневых грибов и бактерий. Амилолитические ферменты расщепляют, разжижают и оса-харивают крахмал. Они действуют специфично, поэтому получают гидролизаты с заданным углеводным составом.

Фермент а-амилаза расщепляет а-1,4-гликозидные связи преимущественно в середине макромолекул амилозы и амилопектина, образуя низкомолекулярные декстрины и немного мальтозы. Р-амилаза гидролизует также а-1,4-гликозидные связи крахмала, но отщепляет последовательно с нередуцирующих концов цепей по два остатка глюкозы - мальтозу. Этот фермент гидролизует амилозу почти полностью, амилопектин - на 50-55 %, так как прекращает действие у ответвлений молекул со связью а-1,6-, оставляя нерасщепленными высокомолекулярные декстрины. Глю-коамилаза полностью гидролизует крахмал.

/Низкоосахаренную крахмальную патоку ферментативного гидролиза получают, применяя фермент а-амилазу. Патока отличается пониженным содержанием редуцирующих веществ, особенно глюкозы. В ее состав входят в основном низкомолекулярные декстрины. рН на уровне 5,6. Эта патока остается прозрачной и жидкой при хранении. Ее используют при производстве малогигроскопичной карамели, других кондитерских изделий, для которых важно снижение гигроскопичности.

Высокоосахаренную патоку вырабатывают при кислотно-ферментативном гидролизе. Вначале крахмал гидролизуют кислотой до содержания 42-50 % редуцирующих веществ, затем в нейтрализованный, охлажденный до 55 °С гидролизат добавляют ферментный препарат а-амилазы и доводят содержание глюкозы до 41 - 43 %. При этом способе уменьшается образование продуктов реверсии и разложения глюкозы. Патока имеет чистый сладкий вкус. Она может применяться для частичной замены сахара при производстве пастилы, помадных конфет и других изделий.

Высокоосахаренная патока с более высоким содержанием глюкозы (47%) и общего количества редуцирующих веществ (68-75 %) может быть получена, если использовать фермент глюко-амилазу. Эту патоку используют в хлебопечении, в пивоварении.

УМальтозная патока более известна как продукт, который получают из крахмала и крахмалосодержащего сырья - кукурузы, просяной, сортовой муки. Для осахаривания крахмала добавляют солод, содержащий мальтообразующий фермент р-амилазу. Цвет этой патоки - коричневый, запах - слегка солодоватый, вкус - сладкий, с солодовым привкусом. Редуцттруготдтгх вещеет» содержится не менее 65 %, золы - не более 1,3 % в пересчете на сухое вещеетво. Используют мальтозную патоку в хлебопечении или как сладкий сироп. Разработана новая технология получения мальтозных паток. Их готовят из крахмала с применением ферментных препаратов. Благодаря низкому содержанию глюкозы (до 10 %) полученная таким способом мальтозная патока малогигроскопична, имеет невысокую вязкость, пригодна для приготовления леденцовой карамели.

Высокомальтозную патоку применяют для получения новых продуктов - гидрогенизированных крахмальных сиропов. В зависимости от углеводного состава патоки эти сиропы содержат мальтитол, сорбитол и многоатомные спирты. Они слаще исходной патоки. По сладости мальтитол примерно соответствует сахарозе, организмом не усваивается, поэтому может быть использован при изготовлении, вдзкокалйрииных продуктов питания. Декстрино-мальтозную патоку получают преимущественно из картофельного крахмала под действием ферментов солодовой вытяжки. Это вязкая густая жидкость янтарно-желтого цвета с солодовым запахом и привкусом, содержит примерно равное количество мальтозы и декстринов, немного глюкозы (не бо/iee 10 % к массе сухого вещества патоки).

Мальтозно-декстриновую патоку выпускают с содержанием/сухих веществ 79 или 93 % (сухую). С этой патокой готовят продукты для питания детей раннего возраста - молочные смеси й др.

Мальц - экстракт - диетический пищевой продукт, представляющий собой уваренную водную вытяжку самого солода.

Хранение и транспортирование крахмальной патоки. Патоку хранят в баках вместимостью до 2000 т, внутренняя поверхность которых покрыта иищевым лаком. Транспортируют ее в железнодорожных цистернах, деревянных и металлических бочках с внутренним покрытием лаколЫ^ли цинком. Столовую патоку фасуют в стеклянные банки.

При хранении недопустимо попадание в патоку влаги, так как в местах разжижения она легко забраж-нцает. Высокая температура при хранении приводит к потемнению патоки и способствует развитию брожения. Патоку следует хранить при температуре около 10 °С и относительной влажности воздуха до 70%. Мальтодекстрины. К продуктам ферментативного гидролиза крахмала относятся также мальтодекстрины - полимеры, молекула которых составлен из пяти-десяти глюкозных остатков. На долю редуцирующих веществ в мальтодекстринах приходится около 5-20 %. Мальтодекстрины безвкусны, не имеют запаха; при концентрации свыше 30 %/образуют вязкие растворы, способные замедлять кристаллизацию. Мальтодекстрины испидьзуют при производстве пищевых продуктов в качестве наполнителей. Гелеобразующий мальтодекстрин - мальтин - способен плавиться подобно жирам. Его гель образует стабильные эмульсии. Мальтин как добавку применяют при выработке мороженого, кремов.

Вы в лесу... Вокруг теснятся толстые и тонкие стволы деревьев. Для химика все они состоят из одного и того же материала - древесины, основной частью которой является органическое вещество - клетчатка (C 6 H 10 O 5) х. Клетчатка образует стенки клеток растений, т. е. их механический скелет; довольно чистую мы её имеем в волокнах хлопчатой бумаги и льна; в деревьях она встречается всегда вместе с другими веществами, чаще всего с лигнином, почти такого же химического состава, но обладающего иными свойствами. Элементарная формула клетчатки C 6 H 10 O 5 совпадает с формулой крахмала, свекловичный сахар имеет формулу C 12 H 2 2O 11 . Отношение числа атомов водорода к числу атомов кислорода в этих формулах такое же, как и в воде: 2:1. Поэтому эти и им подобные вещества в 1844 г. были названы «углеводами», т. е. веществами, как бы (но не на самом деле) состоящими из углерода и воды.

Углевод клетчатка имеет большой молекулярный вес. Молекулы её представляют длинные цепи, составленные из отдельных звеньев. В отличие от белых зёрен крахмала, клетчатка представляет прочные нити и волокна. Это объясняется различным, теперь точно установленным, структурным строением молекул крахмала и клетчатки. Чистая клетчатка в технике зовётся целлюлозой.

В 1811 г. академик Кирхгоф сделал важное открытие. Он взял обыкновенный крахмал, полученный из картофеля, и подействовал на него разбавленной серной кислотой. Под действием H 2 SO 4 произошёл гидролиз крахмала и он превратился в сахар:

Эта реакция имела важное практическое значение. На ней основано крахмало-паточное производство.

Но ведь клетчатка имеет ту же самую эмпирическую формулу, что и крахмал! Значит, из неё тоже можно получить сахар.

Действительно, в 1819 г. было впервые осуществлено и осахаривание клетчатки с помощью разбавленной серной кислоты. Для этих целей можно применять и концентрированную кислоту; русский химик Фогель в 1822 г. получил сахар из обычной бумаги, действуя на неё 87-процентным раствором H 2 SO 4 .

В конце XIX в. получение сахара и спирта из дерева стало интересовать уже и инженеров-практиков. В настоящее время спирт из целлюлозы получают в заводских масштабах. Способ, открытый в пробирке учёного, стад осуществляться в больших стальных аппаратах инженера.

Посетим гидролизный завод... В огромные варочные котлы (перколяторы) загружают опилки, стружки или щепу. Это - отходы лесопильных или деревообрабатывающих предприятий. Раньше эти ценные отходы сжигались или просто выбрасывались на свалку. Через перколяторы непрерывным током проходит слабый (0,2-0,6%) раствор минеральной кислоты (чаще всего серной). Долго держать одну и ту же кислоту в аппарате нельзя: содержащийся в ней сахар, полученный из древесины, легко разрушается. В перколяторах давление 8-10 ат, а температура 170-185°. При этих условиях гидролиз целлюлозы идёт значительно лучше, чем при обычных условиях, когда процесс весьма затруднителен. Из перколяторов получают раствор, содержащий около 4% сахара. Выход сахаристых веществ при гидролизе достигает 85 % от теоретически возможного (по уравнению реакции).

Рис. 8. Наглядная схема получения гидролизного спирта из древесины.

Для Советского Союза, имеющего необозримые лесные массивы и неуклонно развивающего промышленность синтетического каучука, получение спирта из древесины представляет особый интерес. Ещё в 1934 г. XVII съезд ВКП(б) постановил всемерно развивать производство спирта из опилок и отходов бумажной промышленности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. За годы второй и третьей пятилеток у нас были построены и пущены заводы по выработке гидролизного спирта - спирта из древесины. Этот спирт в настоящее время всё в больших количествах перерабатывается в синтетический каучук. Это - спирт из непищевого сырья. Каждый миллион литров гидролизного этилового спирта освобождает для питания около 3 тыс. тонн хлеба или 10 тыс. тонн картофеля и, следовательно, около 600 га посевной площади. Для получения этого количества гидролизного спирта нужно 10 тыс. тонн опилок с 45-процентной влажностью, что может дать за год работы один лесопильный завод средней производительности.

Большинство промышленно важных ферментов относятся к классу гидролаз, потребность в которых исчисляется десятками тысяч тонн. В технологии бродильных производств гидролазам принадлежит огромная роль, так как именно они отвечают за подготовку сырья к сбраживанию.

К гидролазам относятся амилолитические, протеолитические, цитолитические, липолитические, пектолитические и другие ферменты.

Гидролиз крахмала осуществляется амилолитическими ферментами.

Крахмал - полисахарид, состоящий в свою очередь из двух полисахаридов, которые отличаются степенью полимеризации и типом строения – амилозой(примерное содержание 20-30 %)и амилопектином (70- 80 %). Структурной единицей крахмала, а, следовательно, амилозы и амилопектина, является глюкоза, остатки которой соединены между собой α-1,4 и α-1,6- глюкозидньми связями.

Амилоза имеет линейное строение, связь между остатками глюкозы α-1,4 (между 1-м и 4-м углеродными атомами). Растворима в горячей воде без набухания. Образует растворы невысокой вязкости. Молекулярная масса от 60 до 600. С йодом дает синее окрашивание.

о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-

Рисунок 16 – Строение амилозы

Амилопектин представляет собой разветвленную цепь, состоящую из большого числа глюкозных остатков (около 2500). Главная цепочка состоит из 25-30 остатков, а боковые __ из 15-18. В амилопектине остатки глюкозы на линейных участках связаны α-1,4- связью, а в местах ветвления связь α-1,6. В воде не растворяется. При нагревании образует клейстер. С йодом дает фиолетовое окрашивание.

Гидролиз крахмала и продуктов его частичного гидролиза, а также гликогена, осуществляется амилазами (α-амилазой, β-амилазой, глюкоамилазой и другими амилолитическими ферментами).

α- амилаза (декстриногенамилаза) - по механизму действия относится к эндоферментам, т.е. действует на молекулу субстрата изнутри, беспорядочно, что приводит к быстрому снижению вязкости раствора крахмала. Гидролизует связи α-1,4 в полисахаридах, содержащих три и более остатков Д-глюкозы.

Амилоза под действием α-амилазы сначала распадается на декстрины среднего размера, которые затем расщепляются на низкомолекулярные декстрины и мальтозу. При длительном действии фермента амилоза практически полностью превращается в мальтозу и небольшое количество глюкозы.

Действие α-амилазы на амилопектин приводит к образованию мальтозы и низкомолекулярных декстринов.

Общая схема гидролиза крахмала α-амилазой:

α-амилаза

Крахмал низкомолекулярные декстрины

(много)+ мальтоза (мало) + глюкоза (очень мало)


Оптимальные условия действия фермента: рН 5,7, температура 70 °С.

β-амилаза (сахарогенамилаза) __ экзофермент, катализирует гидролиз связей α -1,4 в полисахаридах, последовательно отщепляя остатки мальтозы от нередуцирующего (где отсутствует свободная альдегидная группа) конца цепей. β-амилаза расщепляет амилозу полностью (если количество молекул глюкозы в ней четное) в мальтозу, если нечетное, то наряду с мальтозой образуется мальтотриоза.

В амилопектине β-амилаза действует лишь на свободные нередуцирующие концы глюкозных цепочек с образованием мальтозы и высокомолекулярных декстринов. Действие ее прекращается при приближении к разветвлению (где имеется связь α-1,6) на расстоянии одной молекулы глюкозы. Образовавшиеся декстрины гидролизуются дальше α-амилазой до декстринов меньшей молекулярной массы.

Общая схема гидролиза крахмала под действием β-амилазы:

β-амилаза

Крахмал высокомолекулярные декстрины (много) + мальтоза (много) + мальтотриоза (мало)

Оптимальные условия действия β-амилазы: рН 4,7, температура 63 °С.

Таким образом, при совместном действии α- и β-амилаз на крахмал только 80 % его превращается в сбраживаемые сахара (мальтозу, глюкозу, мальтотриозу) и 20 % __ в декстрины с 5-8 глюкозными остатками.

Предельная декстриназа __ эндофермент, неупорядоченно гидролизует в крахмале, гликогене, декстринах α-1,6-глюкозидную связь. Чаще всего образуется мальтотриоза. Оптимальные параметры действия: рН 6,5, температура 50 о С.

Глюкоамилаза __ экзофермент, гидролизует связи α-1,4 и α-1,6 в полисахаридах, последовательно отщепляя по одному остатку глюкозы с нередуцирующих концов цепей. Связи α-1,4 в крахмале разрушаются быстрее, чем α-1,6. Оптимальные условия: рН 4,5-4,6, температура 55-60°С.

В различных бродильных производствах к гидролизу крахмала предъявляют разные требования. В производстве спирта необходимо прогидролизовать крахмал как можно глубже, чтобы получить больше сбраживаемых сахаров, а, следовательно, более высокий выход спирта.

В производстве пива полный гидролиз крахмала не осуществляют, так как в среде кроме сбраживаемых сахаров (нужных для образования определенного количества спирта) должны находиться низкомолекулярные декстрины, придающие полноту вкуса и вязкость пиву.

В зависимости от источника фермента свойства амилаз и других ферментов могут сильно отличаться не только по механизму действия и конечным продуктам реакции, но и оптимальным условиям для проявления максимальной активности. Выше были приведены оптимальные параметры действия для α- и β-амилаз солода.

Бактериальные амилазы отличаются от солодовых большей термостабильностью. Оптимальные параметры действия: температура 80-85 о С (иногда до 90-95 о С), рН 5,5-5,8.

Грибные амилазы (к ним, в частности, относится глюкоамилаза) более устойчивы к реакции среды: оптимумы температуры 50-60 о С, рН 4,2-4,7.

Таким образом, бактериальные амилазы более термостабильны, а грибные амилазы действуют в более кислой среде в сравнении с солодовыми ферментами.

Злаковые культуры - это основное сырье для производства спирта и получения дистиллята. Прежде всего, это ячмень, овес, рис, кукуруза, пшеница и т.д. Используют их по нескольким причинам:

  • Относительно небольшая стоимость
  • Приятный органолептический профиль получаемого продукта
  • Высокий выход спирта

Традиционная брага делается из сахара и дрожжей. Дрожжи нужны, чтобы расщепить сахар, в результате чего образуется спирт. Однако в зерне сахара как такового нет, зато много крахмала. Чтобы получить брагу из зерна, крахмал нужно разрушить ферментами. Это белковые вещества, которые делают возможными или ускоряют химические реакции, нужные для образования спирта. Ферменты содержатся в пророщенном зерне (солоде) и продаются как препараты в чистом виде.

Следовательно, есть три способа сделать зерновую брагу:

  1. Использовать солод, чтобы осахарить крахмал в зерне. Так можно осахарить до 40% от засыпи не соложенного зерна.
  2. Прорастить зерно, чтобы ферменты накопились в нем естественным образом. То есть сделать солод.
  3. Использовать фермент в виде препарата и несоложеное сырье.

Второй способ дешевле и позволяет получить результат быстрее.

Строение зерна

Чтобы понять, как именно перерабатывается зерно при затирании, необходимо разобраться в его строении. Рассмотрим на примере ячменя.

Внутреннее строение зерна ячменя

1-зародыш стебля, 2-зародыш листа, 3-зародыш корня, 4-щиток, 5-слой эпителия, 6-эндосперм, 7-пустые израсходованные клетки, 8-алейроновый слой, 9-семенная оболочка, 10-плодовая оболочка, 11-мякинная оболочка

Зерно ячменя представляет собой зерновку, оболочка которой состоит из нескольких клеточных слоев.

Оболочки объединяются в мякинную (или цветочную) - наружная оболочка, плодовую (или перикарп) и семенную (или теста).

Мякинная оболочка у большинства ячменей срастается с зерновкой. Мякинная оболочка очень прочная, именно она предохраняет зерно от механических повреждений. В основном состоит из целлюлозы, небольшого содержания кремниевой кислоты, липидов и полифенольных соединений.

Под мякинной оболочкой находятся сросшиеся плодовая и семенная оболочки . Семенная оболочка полупроницаема, она хорошо пропускает воду, но задерживает растворенные в воде вещества. Это свойство семенной оболочки позволяет обрабатывать зерно водой с различными химическими веществами, которые не проникают в зерно и не повреждают зародыш.

Эндосперм (мучнистое тело) покрыт алейроновым слоем. Он состоит из многочисленных клеток, богатых белками. В прорастающем ячмене алейроновый слой является местом образования ферментов.

Основными компонентами клеточных стенок алейронового слоя являются некрахмалистые полисахариды - пентозаны (70%) и β-глюкан (30%).

Мучнистое тело (эндосперм) занимает всю внутреннюю часть зерна, состоит из крахмальных зерен разного размера. Около 98 % сухого вещества зерен приходится на крахмал.

Химический состав

Белковых веществ в ячмене в среднем содержится 10,5-11%.

В ячмене белки содержатся:

  1. алейроновом слое - в виде ферментативного белка (альбумины и глобулины);
  2. На наружной стороне эндосперма - резервный белок (проламины);
  3. эндосперме - тканевый белок (глютелины).

По своему аминокислотному составу белки ячменя относятся к достаточно полноценным (в зерно ячменя входит более 20 аминокислот).

Углеводы представлены моно- и полисахаридами, главным образом крахмалом, содержание которого колеблется от 50 до 64%. Клетчатки содержится 5–6%, сахаров и декстринов до 6% (в том числе до 2% сахарозы и 0,4% непосредственно редуцирующих сахаров), жира - 2,1–2,6%, минеральных веществ - 2,5–3,5%. Большая часть клетчатки и минеральных веществ сосредоточена в пленке и оболочках зерна.

Зерно в производстве спирта: теория

Зерно ячменя обладает высокой активностью ферментов (амилазы, протеазы и пероксидазы), поэтому является хорошим материалом для приготовления солода.

Богатый химический состав предопределяет использование злаков в качестве исходного сырья для производства спирта. Эти вещества являются питательными компонентами для дрожжей, а следовательно брожение в данной среде будет проходит гораздо лучше и конечный продукт будет обладать отличной вкусоароматикой.

Основным источником спирта при брожении являются углеводы. В зерне они представлены крахмалом. Дрожжи перерабатывают на спирт только моно, дисахариды и некоторые декстрины. Крахмал является полисахаридом, состоящим из амилозы и амилопектина. Дрожжи перерабатывают крахмал только при условии разрушения молекулы на простые углеводы (моно и дисахариды). Именно для этого процесса необходимы ферменты.

Температура клейстеризации крахмала – температура при которой происходит набухание и разрушение структуры крахмальных зерен, этот процесс позволяет ферментам произвести полное осахаривание крахмала.

Соответственно если температура клейстеризации выше рабочей температуры фермента, то сначала проводят отварку (нагрев затора до 90-100 градусов) для набухания и разрушения структуры крахмальных зерен, затем производят охлаждения до рабочей температуры и вносят фермент.

Что такое фермент

Ферменты - это биологические катализаторы белковой природы, способные активизировать различные химические реакции в живом организме.

Проще говоря это белковые молекулы, которые ускоряют химические реакции, если поместить их соответствующие условия (температура и рН). У каждого фермента эти условия индивидуальны.

По специфичности воздействия на различные высокомолекулярные полимеры зерна ферментные препараты можно поделить на 3 группы.

  1. Амилолитического действия - способствуют гидролизу крахмала. К ним относятся ферменты разжижающего, декстринирующего и осахаривающего воздействия.
  2. Протеолитического действия - разрушают (гидролизуют) белковые молекулы.
  3. Целлюлолитического действия - гидролизуют некрахмалистые полисахариды, например целлюлозу.
По происхождению
  1. Нативного происхождения - образуются в зерне при проращивании;
  2. Микробиального происхождения - полученные с помощью плесневых грибов;
  3. Бактериального происхождения - культивированы бактериями

Так же ферменты делятся на жидкие и сухие.

Если использовать микробиальные и бактериальные ферменты, отпадает необходимость в соложении зерна. К тому же данные ферменты обладают более широким температурным диапазоном действия по сравнению с нативными.

Есть два способа переработать зерновые культуры, чтобы расщепить крахмал на сахара:

  1. Затирание с помощью нативных ферментов содержащихся в пророщенном зерне. Этот процесс является классической технологией производства заторов. Но он является довольно трудоемким, включающим в себя проращивание зерна, передерживание температурных границ при затирании, так же пророщенное зерно на порядок выше в цене обычного зерна.
  2. Затирание с помощью ферментов полученных бактериально. Данный метод является прогрессирующим и набирающим все большую популярность. Его основным преимуществом является относительная дешевизна и простота в использовании. Бактериальные ферменты позволяют использовать непророщенное зерно, что снижает конечную стоимость готовой продукции а так же экономит время и силы. Так же бактериальные ферменты имеют более широкий температурной диапазон действия что позволяет расширить область его применения в технологическом процессе.

Ферменты в магазинах «Доктор Губер»

Чтобы переработать зерно в домашних условиях в первую очередь необходимы ферменты амилолитического действия. У нас они представлены следующими ферментами:

  1. Амилосубтилин - ферментный препарат мезофильной бактериальной α-амилазы. Гидролизует внутренние α-1,4-гликозидные связи крахмала (амилозы и амилопектина) и продуктов их последовательного расщепления, что приводит к быстрому снижению вязкости клейстеризованных растворов крахмала на стадии разжижения, тем самым, обеспечивая подготовку сусла к действию глюкоамилазы. Активность составляет 1500 ед.Ас/г. Температурный оптимум действия 30-60°С
  2. Глюкаваморин - получают путем глубинного культивирования штамма плесневого гриба Aspergillus awamori. Гидролизует α −1,4 и альфа-1,6-гликозидные связи крахмала, декстринов, олигосахаридов, последовательно отщепляя глюкозу от нередуцирующих концов цепей. Применяется для осахаривания крахмала. Активность составляет 1500 ед.Гс/г. Температурный оптимум действия 30-60 °С

Препараты представлены в сухом виде в фасовке по 20 грамм.

Для работы с непророщенным зерном этих ферментов будет достаточно.

Ферменты в производстве спирта: практика

В первую очередь готовится водный раствор. Для этого сухой препарат растворяют водой в соотношении 1:10, температура воды 25-30 градусов и тщательно перемешивают, в таком состоянии препарат хранится не более 24 часов. Далее рассчитывается необходимое количество фермента.

Активность ферментов выражается в ед./г. вещества.

  • Амилосубтилин - 2-4 ед. на грамм крахмала.
  • Глюкаваморин - 2-4 ед. на грамм крахмала.

Пример расчета:

При затирании в аппарате объёмом 60 литров при гидромодуле 1:3 используем примерно 15 кг зерна (предположим, что зерном в данном случае является пшеница).

В зерне пшеницы в среднем содержится от 55 до 65% крахмала (табличные данные). Возьмем среднее значение 60%.

Это значит, что в 15 кг зерна содержится: 15*0.6= 9кг крахмала.

Дана дозировка ферментов и их активность на грамм крахмала:

  • 1 грамм Амилосубтилина содержит 1500 ед.Гс, дозировка 2-4ед. (среднее 3)
  • 1 грамм Глюкаваморина содержит 1500 ед.Ас, дозировка 2-4 ед (среднее 3)

На 9000 грамм крахмала нам необходимо:

  • 9000*3= 27000 ед.АС для снижения вязкости
  • 9000*3= 27000 ед.Гс для осахаривания крахмала

Что соответствует:

  • 27000/1500= 18 грамм Амилосубтилина
  • 27000/1500= 18 грамм Глюкаваморина

1 пакетика 20 грамм достаточно для осахаривания 15 кг пшеницы.

Расчеты были сделаны для затирания при Т=60°С. При температурах ниже 60°С желательно увеличить дозировку фермента на 20-30%.

После расчета и подготовки препарата его вносят вместе с измельченным зерном в воду и проводят затирание.

Подготовка ферментных препаратов: глубинную культуру плесневых грибов или бактерий дезинфицируют формалином; сухую поверхностную культуру смешивают с водой температурой 28-30 єС в соотношении 1:1. Затем ее тщательно измельчают на дробилках, добавляют воду в количестве 3-4 дм 3 на 1 кг препарата, дезинфицируют раствором формалина, выдерживают 25-30 мин и направляют на осахаривание.

Расход поверхностной культуры - 5 % к массе крахмала разваренной массы. Можно использовать смесь сухой культуры ферментных препаратов и солода. Их вместе измельчают и готовят суспензию наподобие солодового молока. При осахаривании крахмала в спиртовом производстве необходимо достичь полного его гидролиза до сбраживаемых сахаров. На практике осахаривание протекает на нескольких технологических стадиях:

  • - при разваривании сырья;
  • - при осахаривании при оптимальной температуре для действия ферментов;
  • - при брожении (температура благоприятная для жизнедеятельности дрожжей, но не ферментов).

При разваривании под действием бактериальной б-амилазы гидролиз крахмала незначителен, образуются, главным образом, декстрины.

На стадии осахаривания образуется максимальное количество сбраживаемых сахаров. Крахмал гидролизуется на 70-75 % до глюкозы и мальтозы и 25-30 % предельных декстринов. Причем если используется в качестве осахаривающего материала солод, то образуется 71-76 % мальтозы и 24-29 % глюкозы от суммы сбраживаемых сахаров; если применяют ферментные препараты, то 14-21 % мальтозы и 79-80 % глюкозы.

Некрахмальные полисахариды под действием ферментов солода почти не гидролизуются, ферментными препаратами гидролизуются в незначительной степени, что является положительным, так как возрастает количество сбраживаемых сахаров.

При осахаривании гидролизуются также белки под действием протеолитических ферментов до пептонов, полипептидов аминокислот (необходимы для питания дрожжей). Причем солод при гидролизе дает больше аминокислот, чем ферментные препараты.

Предельные декстрины доосахариваются до мальтозы в процессе брожения декстриназой солода или глюкоамилазой ферментных препаратов.

На скорость осахаривания крахмала влияют температура и рН среды. Оптимальная температура для действия амилазы солода на 2 %-й раствор картофельного крахмала составляет 53-58 єС. Однако для клейстеризации нерастворенного крахмала, вносимого с солодом, и стерилизации замеса необходима более высокая температура. При таких температурах (свыше 56 єС) амилаза инактивируется, но медленно. Поэтому осахаривание проводят при температуре 60-62 єС. Эта температура хотя и выше оптимальной, но присутствующие в заторе защитные вещества (сахара, декстрины, пептиды) предохраняют амилазу от инактивации. рН затора 4,9-5,6.

Осахаренное сусло должно иметь следующие показатели:

Полнота осахаривания определяется по йодной пробе. При использовании в качестве осахаривающего материала солодового молока цвет раствора йода с каплей фильтрата не должен изменяться. Красный цвет свидетельствует о наличии в сусле декстринов, сине-фиолетовый - о присутствии неосахаренного крахмала. Применение ферментных препаратов для осахаривания может оставлять окраску фильтрата с йодом светло-коричневой.

Доброкачественность - отношение общего количества содержащихся в сусле сбраживаемых углеводов к общей сумме растворимых сухих веществ, выраженное в процентах. Доброкачественность должна быть в пределах 76-78 %.

Кислотность выражают в градусах кислотности. 1є кислотности соответствует 1 см 3 раствора NаОН концентрацией 1 моль/дм 3 , израсходованного на нейтрализацию 20 см 3 раствора (сусла, бражки). Кислотность должна быть в пределе 0,2-0,3є, что соответствует рН 4,9-5,6. Кислотность сусла меньше 0,2є может привести к развитию посторонней микрофлоры, выше 0,4є - к инактивации ферментов.