15 ученых физиков и их открытия. Самые известные физики мира

Представляем вашему вниманию список ученых, чье мировоззрение было религиозным. Для придания списку большей «надёжности» мы старались всеми силами избегать включения в него людей, о мировоззрении которых имеются противоречивые сведения, сообщает "Православие.фм".

Физика

Галилео Галилей Galileo Galilei (1564 - 1642)

Мировоззрение. Католик. Утверждал, что «Священное Писание не может ни в каком случае утверждать ложь или ошибаться; изречения его абсолюты и непреложно истинны».

Вклад в науку. Опроверг аристотелевскую физику. Первым использовал телескоп для наблюдения небесных тел. Заложил основы классической механики, основывая её на экспериментальном методе, за что его часто называют «отцом современной физики».

Эдм Мариотт Edme Mariotte (1620 - 1684)

Мировоззрение. Римо-католический священник, настоятель монастыря Сен-Мартэнсубон.

Вклад в науку. Один из основателей Французской Академии Наук. В 1660 году открыл т.н. «слепое пятно» в человеческом глазе. На 17 лет позже Бойля открыл закон зависимости между объемом и упругостью газа. Построил теорию удара в механик, а также создал баллистический маятник. Внес вклад в развитие аэродинамической теории соображениями о соотношении скорости и сопротивления.

Блез Паскаль Blaise Pascal (1623 - 1662)

Мировоззрение. Католик-янсенист. Религиозный философ, Паскаль защищал христианскую веру, спорил с Декартом, спорил с атеистами своего времени, порицал казуистику иезуитов, которые оправдывали пороки высшего общества (в «Письмах к провинциалу»), автор многочисленных размышлений на философские и религиозные темы. Написал произведение «Мысли о религии и других предметах», собрание идей в защиту христианства от критики со стороны атеистов в которое входит знаменитое «пари Паскаля».

Вклад в науку. Создал счетную машину-арфмометр. Опытным путем опроверг в то время господствующую аксиому, воспринятую от Аристотеля о том, что природа «боится пустоты», одновременно сформулировал основной закон гидростатики. В переписке с Ферма заложил основы теории вероятностей. Он также стоит у истоков проективной геометрии и математического анализа.

Сэр Исаак Ньютон Sir Isaac Newton (1642 - 1727)

Мировоззрение . Англиканин, взгляды близки к ереси арианства. Ньютон исследовал Библию, причём объем его текстов по исследованию Писания превосходит объем написанных им научных текстов. Своим трудом «Principia Mathematica» надеялся побудить мыслящего человека поверить в Бога.

Пьер Луи де Мопертюи Pierre-Louis Moreau de Maupertuis (1698 - 1759)

Мировоззрение. Католик, философ. Вольтер написал против него множество сатир, например «Доктор Акакий, папский лекарь», перед смертью ученый признал, что христианство «ведёт человека к величайшему благу при помощи величайших возможных средств».

Вклад в науку. Ввел в механику понятие принципа наименьшего действия, причем сразу указал на его универсальную природу. Был первопроходцем в генетике, в частности некоторые находят, что его взгляды способствовали становлению теории эволюции и естественного отбора.

Луиджи Гальвани Luigi Galvani (1737 - 1798)

Мировоззрение. Католик. Изучал богословие, хотел связать свою жизнь с Церковью, но выбрал путь науки. О глубокой религиозности Гальвани говорит его биограф, профессор Вентуроли. В 1801 году об ученом пишет другой его биограф, Алиберт: «можно добавить, что в своих публичных демонстрациях, он никогда не завершал свои лекции без призыва к свои слушателям к обновлению веры, всегда обращая их внимание на идею вечного Провидения, которое развивает, сохраняет и заставляет жизнь литься среди многих других видов вещей».

Вклад в науку. Одним из первых исследовал электрофизиологию и «животное электричество». В честь него был назван феномен «гальванизм».

Алессандро Вольта Alessandro Volta (1745 - 1827)

Мировоззрение. Католик. Догматы, общественная жизнь и обряды римской Церкви составляли большую часть жизни (культуры) Вольта. Его лучшими друзьями были клирики. Вольта оставался близок к своим братьям: канонику и архидиакону и был воцерковленным человеком (практикующим, в католической терминологии). Среди примеров его религиозности - заигрывание с Янсенизмом в 1790х годах, исповедание веры 1815 года, написанное для того, чтобы защитить религию от сциентизма. В 1794 году Вольта написал несколько писем: своим братьям и профессору богословия из университета Павии, в этих письмах он просил у них совета о своем возможном браке.

Вклад в науку. Физик, в 1800 году изобрел химическую батарею. Открыл метан. Нашел способы измерить заряд (Q) и потенциал (V). Создал первый в мире химический источник тока.

Андре-Мари Ампер André-Marie Ampère (1775 - 1836)

Мировоззрение. Католик. Ученому приписывают следующее высказывание: «Учись, исследуй земное - это обязанность мужа науки. Одной рукой исследуй природу, а другою, как за одежду отца, держись за край Божией ризы». В 18 лет ученый считал, что в его жизни было три кульминационных момента: «Первое причастие, прочтение работы Антуана Томаса «хвалебная речь Декарту», и взятие Бастилии». Когда умерла его жена, Ампер выписал две строфы из Псалмов и молитву «О Господе, Боже Милостивый, соедини меня на Небесах с теми, кого ты разрешил мне любить на Земле», в то время его обуревали сильные сомнения, и в свободное время ученый читал Библию и Отцов Церкви.

Вклад в науку. Физик и математик. В электродинамике: установил правило для определения направления действия магнитного поля на магнитную стрелку («правило Ампера»), обнаружил влияние магнитного поля Земли на движущиеся проводники с током, открыл взаимодействие между электрическими токами, сформулировал закон этого явления («закон Ампера»). Внес вклад в развитие теории магнетизма: открыл магнитный эффект соленоида. Ампер был и изобретателем - именно он придумал коммутатор и электромагнитный телеграф. Ампер внес вклад и в химию, своими совместными работами с Авогадро

Ханс Кристиан Эрстед Hans Christian Ørsted (1777 - 1851)

Мировоззрение. Лютеранин (предположительно). В своей речи 1814 года, озаглавленной «Развитие науки, понимаемое как задача религии» (эту речь ученый поместил в свою книгу «The Soul in Nature», в ней он пишет, что данное выступление включает в себя многие идеи, которые более развиты в других частях книги, но здесь они представлены как единое целое), Эрстед утверждает следующее: «мы попытаемся установить наше убеждение о существующей гармонии между наукой и религией, показав, как человек науки должен смотреть на свои занятия, если он понимает их правильно, а именно, как на задачу религии». Далее идет длинное рассуждение, которое можно найти в книге.

Вклад в науку. Физик и химик. Открыл, что электрический ток создает магнитное поле. Первый современный мыслитель, который подробно описал и дал название мыслительному эксперименту. Работы Эрстеды явились важным шагом на пути к унифицированному понятию энергии.

Майкл Фарадей Michael Faraday (1791 - 1867)

Мировоззрение . Протестант, церковь Шотландии. После женитьбы служил дьяконом и церковным старостой в одном из домов собраний своей юности, исследователи отмечают, что «сильное чувство согласия между Богом и природой пропитывало собой всю его жизнь и работу».

Вклад в науку. Внес вклад в электромагнетизм и электрохимию. Считается лучшим экспериментатором и одним из самых влиятельных ученых в истории науки. Открыл бензол. Заметил явление, названное им диамагнетизмом. Открыл принцип электромагнитной индукции. Изобретение им электромагнитных вращателей послужило основой для электродвигателя. В том числе благодаря его усилиям электричество стало использоваться в технологиях.

Джеймс Прескотт Джоуль James Prescott Joule (1818 - 1889)

Мировоззрение. Англиканин (предположительно). Джоуль писал: «Феномен природы, будь то механическая, химическая, жизненная, почти полностью продолжительно переходит сама в себя. Таким образом, поддерживается порядок и ничто не выведено из строя, ничто не потеряно навечно, но весь механизм, как он есть, работает гладко и гармонично весь управляем Божьей волей». Был одним из ученых, подписавших «Декларацию студентов Естественных и физических наук», написанной в ответ на волну Дарвинизма, пришедшую в Англию.

Вклад в науку. Сформулировал первый закон термодинамики, открыл Закон Джоуля о мощности тепла при протекании электрического тока. Первым посчитал скорость молекул газа. Вычислил механический эквивалент тепла.

Сэр Джордж Габриель Стокс Sir George Gabriel Stokes (1819 - 1903)

Мировоззрение. Англиканин (предположительно). В 1886 году стал президентом Института Виктории (Victoria Institute), целью которого было дать ответ эволюционному движению 60х годов, в 1891 Стокс выступил с лекцией в этом институте, также был президентом Британского и Зарубежного (Foreign) Библейского общества, активно занимался миссионерскими проблемами. Стокс говорил «Я не знаю никаких здравых выводов науки, которые бы противоречили христианской религии».

Вклад в науку. Физик и математик, автор теоремы Стокса, внес значительный вклад в развитие гидродинамики, оптики и математической физики.

Уильям Томсон, лорд Кельвин William Thomson, 1st Baron Kelvin (1824 - 1907)

Мировоззрение. Пресвитерианин. На протяжении всей жизни был набожным человеком, каждый день посещал церковь. Как видно из выступления ученого в «Christian Evidence Society» (организация, созданная, чтобы побороть атеизм в викторианском обществе), Томпсон считал, что его вера помогает ему познавать действительность, информирует его. В широком смысле этого слова, ученый был креационистом, однако он ни в коем случае не был «геологом потопа», можно сказать, что он поддерживал взгляд, известный как теистическая эволюция. Часто открыто не соглашался с последователями Ч. Дарвина, вступал с ними в споры.

Вклад в науку. Математический физик и инженер. Сформулировал первый и второй законы термодинамики, помог унифицировать возникающие дисциплины в физике. Он догадался, что существует нижний предел температуры, абсолютный ноль. Известен также как изобретатель, автор около 70 патентов.

Джеймс Клерк Максвелл James Clerk Maxwell (1831 - 1879)

Мировоззрение. Христианин евангелической веры. В конце жизни стал церковным старостой в Церкви Шотландии. В детстве посещал богослужения как в Церкви Шотландии (деноминация его отца) так и в Епископальной Церкви (деноминация его матери), в апреле 1853 года ученый обратился в евангельскую веру, из-за чего стал придерживаться антипозитивистских взглядов.

Вклад в науку. Физик, основное достижение которого состояло в формулировке классической теории электромагнетизма. Таким образом, он объединил до этого разрозненные наблюдения, эксперименты и уравнения в электричестве, магнетизме и оптике в единую теорию. Уравнения Максвелла показывают, что электричество, магнетизм и свет есть одно и то же явление. Эти его достижения были названы «вторым величайшим объединением в физике» (после работ Исаака Ньютона). Ученый также помог разработать распределение Больцмана-Максвелла, которая есть статистическое средство описания некоторых аспектов в кинетической теории газов. Максвелл также известен, как человек, создавший первую долговечную цветную фотографию в 1861 году.

Сэр Джон Амброз Флеминг Sir John Ambrose Fleming (1849 - 1945)

Мировоззрение. Конгрегационалист. Флеминг был креационистом и отвергал идеи Дарвина, считая их атеистическими (из книги Флеминга «Evolution or Creation?»). В 1932 году он помог основать «Движение против эволюции» («Evolution Protest Movement»). Флеминг однажды проповедовал в лондонской церкви Святого Мартина «что в полях», и проповедь его была посвящена свидетельству Воскресения. Большую часть своего наследства ученый завещал христианским благотворительным организациям, помогавшим нищим.

Вклад в науку. Физик и инженер. Считается отцом современной электротехники. Сформулировал два известных физике правила: левой и правой руки. Изобрел так называемую лампу Флеминга («Fleming valve»)

Сэр Джозеф Джон Томсон Sir Joseph John Thomson (1856 - 1940)

Мировоззрение. Англиканин. Рэймонд Сиджер в своей книге «J. J. Thomson, Anglican» утверждает следующее: «Как профессор, Томпсон посещал вечернюю воскресную службу университетской часовни, и как глава университета, утреннюю. Более того, он проявлял интерес к Миссии Тринити в Кэмбервелле. С уважением к своей личной религиозной жизни, Томпсон неизменно молился каждый день, и читал Библию перед сном. Он действительно был верующим христианином!».

Вклад в науку. Физик, открыл электрон и изотоп. Лауреат Нобелевской премии по физике 1906 года за «открытие электрона и заслуги в области теоретических и экспериментальных исследований проводимости электричества в газах». Ученый также изобрел масс-спектрометр, открыл естественную радиоактивность у калия и показал, что водород имеет лишь один электрон на атом, в то время как предыдущие теории допускали множество электронов у водорода.

Макс Планк Max Karl Ernst Ludwig Planck (1858 - 1947)

Мировоззрение. Католик (обратился за шесть месяцев до смерти), до этого - глубоко религиозный деист. В своей работе «Религия и естествознание» ученый написал (цитата проведена с контекстом, с начала абзаца: «При таком совпадении следует, однако, обратить внимание на одно принципиальное различие. Религиозному человеку Бог дан непосредственно и первично. Из Него, Его всемогущей воли исходит вся жизнь и все явления как телесного, так и духовного мира. Хотя Он и непознаваем разумом, но тем не менее непосредственно проявляет себя через посредство религиозных символов, вкладывая свое святое послание в души тех, кто, веруя, доверяется Ему. В отличие от этого для естествоиспытателя первичным является только содержание его восприятий и выводимых из них измерений. Отсюда путем индуктивного восхождения он пытается по возможности приблизиться к Богу и Его миропорядку как к высшей, вечно недостижимой цели. Следовательно, и религия, и естествознание нуждаются в вере в Бога, при этом для религии Бог стоит в начале всякого размышления, а для естествознания - в конце».

Вклад в науку. Основоположник квантовой физики, из-за чего стал лауреатом Нобелевской премии по физике 1918 года. Сформулировал постулат Планка (радиация темный тел), выражение для спектральной плотности мощности излучения абсолютно чёрного тела.

Пьер Дюэм Pierre Maurice Marie Duhem (1861 - 1916)

Мировоззрение. Католик. Часто спорил с Марселем по поводу религиозных вопросов. Д. ОКоннор и Е. Робинсон в биографии Дюгема утверждают, что его религиозные взгляды сыграли большую роль в определении его взглядов научных. Ученый также занимался философией науки, в своей главной работе он показал, что начиная с 1200 года наука не игнорировалась, и что Римо-Католическа Церковь поощряла развитие Западной науки.

Вклад в науку. Известен своими работами по термодинамике (отношение Гиббса-Дюэма, уравнение Дюэма-Маргулеса), также внес вклад в гидродинамику, теорию упругости.

Сэр Уильям Брэгг Sir William Lawrence Bragg (1890 - 1971)

Мировоззрение. Англиканин (возможно, англо-католик). Дочь Брэгга, писала о вере ученого: «Для У. Брэгга религиозная вера была готовностью поставить все на гипотезу, что Иисус Христос был прав, и проверить это экспериментом по совершению дела милосердия на протяжении всей жизни. Чтение Библии было обязательным. Брэгг часто говорил, что «если у меня вообще есть какой-либо стиль письма, то это все из-за того, что я был воспитан на Авторизованной Версии [Библии]». Он знал Библию и мог обычно выдать «главу или стих». Молодой профессор У. Брэгг стал церковным старостой в Церкви св. Иоанна в Аделаиде. Он также получил разрешение проповедовать».

Вклад в науку. Физик, лауреат Нобелевской премии 1915 года за «заслуги в исследовании кристаллов с помощью рентгеновских лучей». Брэгг также создал первый прибор для регистрации дифракционной картины. Вместе с сыном он разработал основы метода определения структуры кристаллов по дифракционной картине рентгеновских лучей.

Артур Холли Комптон Arthur Holly Compton (1892 - 1962)

Мировоззрение. Пресвитерианин. Рэймонд Сиджер в своей статье «Compton, Christian Humanist», опубликованной в журнале «The Journal of the American Scientific Affiliation» пишет следующее: «Вместе с тем как Артур Комптон взрослел, расширялся и его кругозор, но это всегда был четкий христианский взгляд на мир. На протяжении всей жизни ученый был активен в делах церкви, начиная с преподавания в воскресной школе и работы церковным старостой, заканчивая должности в «Presbyterian Board of Education». Комптон верил, что основная проблема человечества, вдохновляющий смысл жизни, лежит вне науки. По информации журнала «Times» за 1936 год, ученый некоторое время был диаконом в Баптисткой Церкви.

Вклад в науку. Физик, за открытие «эффекта Комптона» был удостоен Нобелевской премии 1927 года. Изобрел метод демонстрации вращения Земли.

Жорж Леметр Monseigneur Georges Henri Joseph Édouard Lemaître (1894 - 1966)

Мировоззрение. Католический священник (с 1923 года). Леметр считал, что вера может быть преимуществом для ученого: «По мере того, как наука проходит простую стадию описания, она становится истинной наукой. Также она становится более религиозной. Математики, астрономы и физики, например, являются очень религиозными людьми, за немногими исключениями. Чем глубже они проникают в тайну Вселенной, тем глубже становится их убеждение, что сила, стоящая за звездами, электронами и атомами, есть закон и благость».

Вклад в науку. Космолог, является автором теории расширяющейся Вселенной, Леметр первым сформулировал зависимость между расстоянием и скоростью галактик и предложил в 1927 году первую оценку коэффициента этой зависимости, известную ныне как постоянная Хаббла. Теория Леметра об эволюции мира начиная с «первоначального атома» иронично была названа «Большим взрывом» Фредом Хойлом в 1949 году. Это название, «Большой взрыв», исторически закрепилось в космологии.

Вернер Карл Гейзенберг Werner Karl Heisenberg (1901 - 1976)

Мировоззрение. Лютеранин, хотя, к концу жизни его считали мистиком, так как его взгляды на религию не были ортодоксальными. Автор высказывания: «Первый глоток из стакана естествознания делает атеистом, но на дне стакана ожидает Бог».

Вклад в науку. Лауреат Нобелевской премии 1932 года за создание квантовой механики. В 1927 году ученый опубликовал свой принцип неопределенности, который принес ему всемирную известность.

Сэр Невилл Мотт Sir Nevill Francis Mott (1905 - 1996)

Мировоззрение. Христианин. Приводим высказывание ученого: «Я верю в Бога, который может ответить на молитвы, которому мы можем довериться и без которого жизнь на Земле была бы бессмысленной (сказкой, рассказанной умалишенным). Я верю, что Бог открыл Себя нам многими путями, через многих мужчин и женщин, и для нас, живущих на Западе, понятнейшее откровение через Иисуса Христа и тех, кто за ним последовал».

Вклад в науку. В 1977 году получил Нобелевскую премию по физике за «фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем».

Николай Николаевич Боголюбов (1909 - 1992)

Мировоззрение. Православный. А. Боголюбов пишет о нём: «Вся совокупность его знаний была единым целым, и основу его философии составляла его глубокая религиозность (он говорил, что нерелигиозных физиков можно пересчитать на пальцах). Он был сыном православной церкви и всегда, когда ему позволяло время и здоровье, он ходил к вечерне и к обедне в ближайшую церковь».

Вклад в науку. Доказал теорему «об остроте клина», создал совместно с Н. Крыловым теорию нелинейных колебаний. Создал последовательную теорию сверхпроводимости. В теории сверхтекучести вывел кинетические уравнения. Предложил новый синтез теории Бора квазипериодических функций.

Артур Леонард Шавлов Arthur Leonard Schawlow (1921 - 1999)

Мировоззрение. Методист. Генри Маргено приводит следующее высказывание ученого: «И вижу необходимость в Боге как во Вселенной, так и в своей жизни». Когда ученого спросили, является ли он человеком религиозным, то он ответил: «Да, я был воспитан протестантом и я был в нескольких деноминациях. Я хожу в церковь, в очень хорошую методистскую церковь». Ученый также заявлял о том, что он - ортодоксальный протестант.

Вклад в науку. Физик, получил Нобелевскую премию по физике 1981 года за «вклад в развитие лазерной спектроскопии». Помимо оптики, Шавлов также исследовал такие области физики как сверхпроводимость и ядерный магнитный резонанс.

Абдус Салам Mohammad Abdus Salam (محمد عبد السلام‎) (1926 - 1996)

Мировоззрение . Мусульманин общины ахмадитов. В своей нобелевской речи учёный цитирует Коран. Когда пакистанское правительство приняло поправку к конституции, объявляющей членов общины Ахмадия не-мусульманами, ученый в знак протеста покинул страну.

Вклад в науку. В 1979 году получил Нобелевскую премию по физике за теорию объединения слабых и электромагнитных взаимодействий. Одними из его главный достижений были также: модель Пати-Салама, магнитный фотон, векторные мезоны, работа по суперсимметрии.

Чарлз Хард Таунс Charles Hard Townes (род. 1915)

Мировоззрение . Протестант (Объединенная Церковь Христа). В своем интервью журналу «The Guardian» за 2005 год, ученый сказал, что «был воспитан христианином, и в то время, как мои идеи менялись, я всегда чувствовал себя религиозным человеком», в том же интервью Таунс заявил следующее: «Что такое наука? Наука есть попытка понять как работает Вселенная, включая человеческий род. Что такое религия? Она есть попытка понять назначение и смысл Вселенной, включая род человеческий. Если существует это назначение и смысл, тогда оно должно быть взаимосвязано со структурой Вселенной и тем, как она работает (…) Поэтому вера должна научить нас чему-то в науке и наоборот».

Вклад в науку. Один из создателей квантовой электроники, в 1964 году получил Нобелевскую премию по физике за «фундаментальные работы в области квантовой электроники, которые привели к созданию излучателей и усилителей на лазерно-мазерном принципе». В 1969 году совместно с другими учеными открыл т.н. «мазерный эффект» (излучение космических молекул воды на длине волны 1,35 см.), совместно с коллегой первым посчитал массу черной дыры в центре нашей галактики. Ученый также внес вклад и в нелинейную оптику: обнаружил вынужденное рассеяние Мандельштама Бриллюэна, ввел представление о критической мощности пучка света и явлении самофокусировки, экспериментально наблюдал эффект автоколлимации света.

Фримен Джон Дайсон Freeman John Dyson (род. 1923)

Мировоззрение. Христианин без деноминации, хотя взгляды Дайсона можно охарактеризовать как агностицизм (в одной из своих книг он написал, что не считает себя верующим христианином, но лишь практикующим и заявил, что не видит смысл в теологии, которая заявляет, что знает ответы на фундаментальные вопросы). Ученый энергично не соглашается с редукционизмом, так, в своей темпелтоновской лекции, Дайсон сказал: «Наука и религия есть два окна, в которые люди смотрят, пытаясь понять Вселенную, понять почему они здесь находятся. Эти два окна открывают различный вид, но они направлены на одну и ту же Вселенную. Ни один из них не полон, оба они односторонни. Оба исключают существенные части реального мира».

Вклад в науку. Теоретический физик и математик, известный своими работами по квантовой электродинамики, астрономии и ядерной инженерии.

Энтони Хьюиш Antony Hewish (род. 1924)

Мировоззрение . Христианин. Из письма Т. Дмитрову: «Я верю в Бога. Мне представляется бессмысленной та мысль, что Вселенная и наше существование лишь случайность космического масштаба и что жизнь возникла в результате беспорядочных физических процессов, просто потому что для этого сложились благоприятные условия. Как христианин, я начинаю понимать смысл жизни благодаря вере в Творца, Чья природа отчасти открылась в Человеке, рожденном 2000 лет назад».

Вклад в науку. В 1974 году удостоен Нобелевской премии по физике за «определяющую роль в открытии пульсаров».

Арно Аллан Пензиас Arno Allan Penzias (род. 1933)

Мировоззрение . Иудей, в книге Джерри Бергмана приводится следующая цитата ученого: «Наилучшие данные, которые у нас имеются, представляют из себя то, что я бы сумел предсказать, имей я перед собой только Пятикнижие Моисеево, книгу Псалмов и Библию целиком». В своих речах ученый часто говорил, что видит во Вселенной смысл, и указывал на нежелание научной среды принимать Теорию Большого Взрыва, так как она указывает на сотворение мира.

Вклад в науку. Физик, за открытие реликтового излучения в 1976 году получил Нобелевскую премию по физике. С помощью мазера решил задачу увеличения точности настройки антенны.

Джозеф Тейлор младший Joseph Hooton Taylor, Jr. (род. 1941)

Мировоззрение. Квакер. Мировоззрении ученого известно из книги Иштвана Харгитая, на вопрос «Не могли бы вы рассказать о своем отношении к религии?» ученый ответил следующим образом: «Мы с семьей активные члены религиозной общины «Друзья», то есть квакерской общины. Религия составляет важную часть нашей жизни (особенно для нас с женой; для наших детей в меньшей мере). Мы с женой часто проводим время с другими верующими нашей общины; это помогает нам лучше осознать свое отношение к жизни, напоминает о том, для чего мы на Земле и что мы можем сделать для других. Квакеры это группа христиан, верящих в возможность непосредственного общения человека с Духом, Которого мы называем Богом. Размышление и самосозерцание помогает общаться с этим Духом и узнавать многое о себе и о том, как следует жить на Земле. Квакеры считают, что войны не способны разрешить противоречия и что долговременные результаты достигаются путем мирного решения проблем. Мы всегда отказывались и отказываемся участвовать в войне, но готовы служить своей стране другими способами. Мы верим, что в каждом человеке есть нечто Божественное, поэтому человеческая жизнь священна. В людях нужно искать глубину духовного присутствия, даже в тех, с кем расходишься во взглядах».

Вклад в науку. Физик, награжден Нобелевской премией по физике 1993 года за «открытие нового типа пульсаров, давшее новые возможности в изучении гравитации».

Уильям Дэниел Филлипс William Daniel Phillips (род. 1948)

Мировоззрение. Методист. Один из создателей «Междуранродного обшества за Науку и Религию». Известен своим частым участие в диалоге «веры и науки». В своей автобиографии на сайте Нобелевской премии Филлипс пишет: «В 1979 году, после того, как Джейн (жена ученого, прим. перев.) и я переехали в Гэсерсбург, мы присоединились к Объедененной Методистской Церкви (…) Наши дети были для нас неисчерпаемым источником благословения, приключения и вызова. На то время мы с Джейн старались найти новые работы, и появление детей требовало тонкого равновесия между работой, домом и церковной жизнью. Но так или иначе, наша вера и наша юношеская энергия провела нас через эти времена».

Вклад в науку. Физик, лауреат Нобелевской премии по физике 1997 года за «создание методов охлаждения и улавливания атомов лазерным лучом».

Математика

Рене Декарт René Descartes (1596 - 1650)

Мировоззрение. Католик. Одной из причин написания его «Размышлений» была защита христианской веры, в частности в одной из глав Декарт по-новому сформулировал онтологическое доказательство бытия Бога, он также писал: «В каком-то смысле можно сказать, что, не зная Бога, нельзя иметь достоверного познания ни о чем».

Вклад в науку. Математик, создал декартову систему координат и заложил основы аналитической геометрии. Первый вывел математически закон преломления света на границе двух различных сред.

Пьер де Ферма Pierre de Fermat (1601 - 1665)

Мировоззрение. Католик.

Вклад в науку. Математик, создатель теории чисел, автор Великой теоремы Ферма. Ученый сформулировал общий закон дифференцирования дробных степеней. Основал аналитическую геометрию (наряду с Декартом), применил её к пространству. Стоял у истоков теории вероятностей.

Христиан Гюйгенс Christiaan Huygens (1629 - 1695)

Мировоззрение. Протестант Реформаторской Церкви. Когда французская монархия перестала в 1881 году относиться терпимо к протестантизму (отмена Нантского эдикта), Гюйгенс покинул страну, хотя для него хотели сделать исключение, что свидетельствует о его религиозных убеждениях.

Вклад в науку. Первый президент Фарнцузской Академии наук, пробыл им 15 лет. Открыл теорию эволют и эвольвент. Изобрел часы с маятником и опубликовал классический труд по механике «Маятниковы часы». Вывел законы равноускоренных свободно падающих тел и сформулировал тринадцать теорем о центробежной силе. Совместно с Ферма и Паскалем заложил основы теории вероятностей. Открыл спутник Сатурна Титан и описал кольца Сатурна, обнаружил ледяную шапку на Южном полюсе Марса. Изобрел особый окуляр, состоящий из двух плоско-выпуклых линз, названный в его честь. Первый призвал выбрать всемирную натуральную меру длины. Одновременно с Валлисом и Реном решил вопрос о соударении упругих тел.

Готфрид Вильгельм Лейбниц Gottfried Wilhelm von Leibniz (1646 - 1716)

Мировоззрение. Христианин, предположительно, - протестант. Выступал и против богословской ортодоксии, и против материализма и атеизма. Создал свое философское учение т.н. монадологию Лейбница, которая была близка к деизму и пантеизму.

Вклад в науку. Предосновал математический анализ и комбинаторику. Заложил основы математической логики и комбинаторики. Сделал очень важный шаг к созданию ЭВМ, впервые описал двоичную систему исчисления. Был единственным человеком, свободно работающим как с непрерывными, так и с дискретными. Впервые сформулировал закон сохранения энергии. Создал механический калькулятор (вместе с Х.Гюйгенсом).

Леонард Эйлер Leonhard Euler (1707 - 1783)

Мировоззрение. Христианин. Верил в Боговдохновенность Писания, спорил с Денни Дидро о существовании Бога, написал апологетический трактат «Защита Божественного Откровения от возражений Вольнодумцев».

Вклад в науку. Часто говорят, что с точки зрения математики XVIII век - век Эйлера. Многие называют его величайшим математиком всех времен, Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. отрасли математики в единую систему, перечисление всех его открытий поименно невозможно ввиду формата этой рубрики.

Карл Фридрих Гаусс Johann Carl Friedrich Gauß (1777 - 1855)

Мировоззрение . Лютеранин. Хотя Гаусс и не верил в личного Бога и считался деистом, можно утверждать о том, что он имел религиозное мировоззрение, к примеру, он верил в бессмертие души и жизнь после смерти. Согласно Дуннингтону, Гаусс верил в бессмертного, праведного, всезнающего и всемогущего Бога. При всей своей любви к математики, Карл Фридрих её никогда не абсолютизировал, он говорил: «Есть задачи, решению которых я бы приписал бесконечно большую важность по сравнению с задачами математическими, например, задачи, связанные с этикой, или нашим отношением к Богу, или касающиеся нашей судьбы и нашего будущего; но их решение лежит полностью за нашими пределами и абсолютно за рамками науки».

Вклад в науку. Ученого часто называют Королем математики (лат. Princeps mathematicorum), это отражает его неоценимый и неохватный вклад в «царицу наук». Так, в алгебре Гаусс придумал строгое доказательство основной теоремы алгебры, открыл кольцо целых комплексных чисел, создал классическую теорию сравнений. В геометрии ученый внес вклад в дифференциальную геометрию, впервые занялся внутренней геометрией поверхностей: открыл характеристику поверхности (названную в его честь), доказал основную теорему поверхностей, Гаусс также создал отдельную науку - высшую геодезию. Дуннингтон утверждал, что Гаусс первым начал изучать неевклидову геометрию, но боялся опубликовать свои результаты, сочтя их бессмысленными. В математическом анализе Гаусс создал теорию потенциала, занимался эллиптическими функциями. Интересовался ученый и астрономией, где изучал орбиты малых планет, нашел способ определения элементов орбиты по трем полным наблюдениям. Многие его ученики впоследствии стали великими математиками. Ученый также занимался физикой, где он развил теорию капиллярности и теорию систем линз, а также заложил основы теории электромагнетизма, сконструировал (совместно с Вебером) первый примитивный электрический телеграф.

Бернард Больцано Bernard Placidus Johann Nepomuk Bolzano (1781 - 1848)

Мировоззрение. Католический священник. Помимо своих научных исследований Больцано также занимался теологическими и философскими вопросами.

Вклад в науку. Труды Больцано способствовали формированию строгих определений анализа, использующих «эпсилон» и «дельта». Во многих областях математики ученый был первопроходцем, опережал свое время: ещё до Кантора, Больцано исследовал бесконечные множества, при помощи геометрических соображений ученый получил примеры непрерывных, но нигде не дифференцируемых функций. Ученый выдвинул идею арифметической теории вещественного числа, в 1817 году доказал теорему Больцано-Вейерштрасса (независимо от последнего, который открыл её спустя полвека), теорему Больцано-Коши.

Огюстен Луи Коши Augustin Louis Cauchy (1789 - 1857)

Мировоззрение. Католик. Был близок к ордену Иезуитов, входил в Общество святого Викентия де Поля, у Огюстена часто возникали трудности с коллегами из-за его взглядов.

Вклад в науку. Разработал основу математического анализа, впервые строго определил предел, непрерывность, производную, интеграл, сходимость ряда в математическом анализе ввел понятие сходимости ряда, создал теорию интегральных вычетов, заложил основы математической теории упругости, внес значительный вклад в другие области науки.

Чарльз Бэббидж Charles Babbage (1791 - 1871)

Мировоззрение. Англиканин (предположительно). Убежденно защищал достоверность библейских чудес в эпоху, когда люди все сильнее отходили от христианского мировоззрения.

Если вы заметили ошибку, выделите ее мышкой и нажмите Ctrl+Enter

17.01.2012 12.02.2018 by ☭ СССР ☭

В нашей стране было много выдающихся деятелей, о которых мы, к сожалению, забываем, не говоря уже об открытиях, которые были сделаны русскими учеными и изобретателями. События, перевернувшие историю России, также известны не каждому. Я хочу исправить эту ситуацию и вспомнить самые известные российские изобретения.

1. Самолет — Можайский А.Ф.

Талантливый русский изобретатель Александр Федорович Можайский (1825-1890 гг.) первый в мире создал самолет в натуральную величину, способный поднять в воздух человека. Над решением этой сложной технической задачи до А. Ф. Можайского, как известно, работали люди многих поколений как в России, так и в других странах, шли они разными путями, но никому из них не удавалось довести дело до практического опыта с натурным самолетом. А. Ф. Можайский нашел верный путь к решению этой задачи. Он изучил труды своих предшественников, развил и дополнил их, используя свои теоретические познания и практический опыт. Конечно, не все вопросы удалось ему разрешить, но сделал он, пожалуй, все, что было возможно в то время, несмотря на крайне неблагоприятную для него обстановку: ограниченность материальных и технических возможностей, а также недоверие к его работам со стороны военно-бюрократического аппарата царской России. В этих условиях А. Ф. Можайский сумел найти в себе духовные и физические силы для завершения постройки первого в мире самолета. Это был творческий подвиг, навеки прославивший нашу Родину. К сожалению, сохранившиеся документальные материалы не позволяют в необходимых подробностях дать описание самолета А. Ф. Можайского и его испытаний.

2. Вертолёт – Б.Н. Юрьев.


Борис Николаевич Юрьев - выдающийся ученый-авиатор, действительный член Академии наук СССР, генерал-лейтенант инженерно-технической службы. В 1911 году изобрел автомата перекоса (основной узел современного вертолёта) — устройство, сделавшее возможным постройку вертолётов с характеристиками устойчивости и управляемости, приемлемыми для безопасного пилотирования рядовыми лётчиками. Именно Юрьев проложил дорогу для развития вертолётов.

3. Радиоприёмник — А.С.Попов.

А.С. Попов впервые продемонстрировал действие своего прибора 7 мая 1895г. на заседании Русского физико-химического общества в Петербурге. Этот прибор стал первым в мире радиоприемником, а день 7 мая стал днем рождения радио. И сейчас он ежегодно отмечается в России.

4. Телевизор — Розинг Б.Л.

25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

5. Парашют ранцевый — Котельников Г.Е.

В 1911 году русский военный, Котельников, под впечатлением увиденной им на Всероссийском празднике воздухоплавания в 1910 году гибели русского лётчика капитана Л. Мациевича изобрёл принципиально новый парашют РК-1. Парашют Котельникова был компактен. Его купол изготовлен из шёлка, стропы разделялись на 2 группы и крепились к плечевым обхватам подвесной системы. Купол и стропы укладывались в деревянный, а позднее алюминиевый ранец. Позже, в 1923 году Котельников предложил ранец для укладки парашюта, сделанный в виде конверта с сотами для строп. За 1917 год в русской армии было зарегистрировано 65 спусков с парашютами, 36 - для спасения и 29 добровольных.

6. Атомная электростанция.

Запущена 27 июня 1954 года в Обнинске (тогда поселок Обнинское Калужской области). Была оснащена одним реактором АМ-1 («атом мирный») мощностью 5 МВт.
Реактор Обнинской АЭС, помимо выработки энергии, служил базой для экспериментальных исследований. В настоящее время Обнинская АЭС выведена из эксплуатации. Её реактор был заглушен 29 апреля 2002 года по экономическим причинам.

7. Периодическая таблица химических элементов – Менделеев Д.И.


Периодическая система химических элементов (таблица Менделеева) - классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы).

8. Лазер

Прототип лазера мазеры были сделаны в 1953-1954 гг. Н. Г. Басовым и А. М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».

9. Бодибилдинг


Русский атлет Евгении Сандов, название его книги «строительство тела» – bodybuilding было дословно переведино на англ. язык.

10. Водородная бомба – Сахаров А.Д.

Андрей Дмитриевич Сахаров (21 мая 1921, Москва - 14 декабря 1989, Москва) - советский физик, академик АН СССР и политический деятель, диссидент и правозащитник, один из создателей первой советской водородной бомбы. Лауреат Нобелевской премии мира за 1975 год.

11. Первый искуственный спутник земли, первый космонавт и т.д.

12. Гипс — Н. И. Пирогов

Пирогов впервые в истории мировой медицины применил гипсовую повязку, которая позволила ускорить процесс заживления переломов и избавила многих солдат и офицеров от уродливого искривления конечностей. Во время осады Севастополя, для ухода за ранеными, Пирогов воспользовался помощью сестёр милосердия, часть которых приехала на фронт из Петербурга. Это тоже было нововведение по тем временам.

13. Военная медицина

Пирогов изобрел этапность оказания военной медицинской службы, а также методы исследования анатомии человека. В частности он является основоположником топографической анатомии.


Антарктида была открыта 16 (28 января) 1820 года русской экспедицией под руководством Фаддея Беллинсгаузена и Михаила Лазарева, которые на шлюпах «Восток» и «Мирный» подошли к ней в точке 69°21? ю. ш. 2°14? з. д. (G) (район современного шельфового ледника Беллинсгаузена).

15. Иммунитет

Обнаружив в 1882 явления фагоцитоза (о чём доложил в 1883 на 7-м съезде рус. естествоиспытателей и врачей в Одессе), разработал на их основе сравнительную патологию воспаления (1892), а в дальнейшем - фагоцитарную теорию иммунитета («Невосприимчивость в инфекционных болезнях», 1901 - Нобелевская премия, 1908, совместно с П. Эрлихом).


Основная космологическая модель, в которой рассмотрение эволюции Вселенной начинается с состояния плотной горячей плазмы, состоящей из протонов, электронов и фотонов. Впервые модель горячей вселенной рассматривалась в 1947 Георгием Гамовым. Происхождение элементарных частиц в модели горячей вселенной с конца 1970-х описывают с помощью спонтанного нарушения симметрии. Многие недостатки модели горячей вселенной были решены в 1980-х в результате построения теории инфляции.


Самая извесная компьютерная игра, изобретена Алексеем Пажитновым в 1985 году.

18. Первый автомат — В.Г.Фёдоров

Автоматический карабин, предназначенный для стрельбы очередями с рук. В.Г.Фёдоров. За рубежом этот вид оружия именуется «штурмовой винтовкой».

1913 год – опытный образец под специальный промежуточный по мощности патрон(между пистолетным и винтовочным).
1916 год – принятие на вооружение (под японский винтовочный патрон) и первое боевое применение (Румынский фронт).

19. Лампа накаливания – лампа Лодыгина А.Н.

У электрической лампочки нет одного-единственного изобретателя. История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. Однако заслуги Лодыгина в создании ламп накаливания особенно велики. Лодыгин первым предложил применять в лампах вольфрамовые нити (в современных электрических лампочках нити накала именно из вольфрама) и закручивать нить накаливания в форме спирали. Также Лодыгин первым стал откачивать из ламп воздух, чем увеличил их срок службы во много раз. Другим изобретением Лодыгина, направленным на увеличение срока службы ламп, было наполнение их инертным газом.

20. Водолазный аппарат

В 1871 году Лодыгин создал проект автономного водолазного скафандра с использованием газовой смеси, состоящей из кислорода и водорода. Кислород должен был вырабатываться из воды путем электролиза.

21. Индукционная печь


Первый гусеничный движитель (без механического привода) был предложен в 1837 г. штабс-капитаном Д.Загряжским. Его гусеничный движитель строился на двух колесах, обведённых железной цепью. А в 1879 г. русский изобретатель Ф.Блинов получил патент на созданный им «гусеничный ход» для трактора. Он его называл «паровоз для грунтовых дорог»

23. Кабельная телеграфная линия

Линия Петербург-Царское Село была построена в 40-егг. XIX века и имела протяженность 25 км.(Б.Якоби)

24. Синтетический каучук из нефти – Б.Бызов

25. Оптический прицел


«Инструмент математический с перспективною зрительною трубкою, с протчими к тому принадлежностями и ватерпасом для скорого навождения из батареи или с грунта земли по показанному месту в цель горизонтально и по олевации». Андрей Константинович НАРТОВ (1693-1756).


В 1801 г. уральский мастер Артамонов решил задачу облегчения веса повозки за счет сокращения числа колес с четырех до двух. Таким образом, Артамонов создал первый в мире педальный самокат прообраз будущего велосипеда.

27. Электросварка

Способ электрической сварки металлов придумал и впервые применил в 1882 году русский изобретатель Николай Николаевич Бенардос (1842 - 1905). «Сшивание» металла электрическим швом он назвал «электрогефестом».

Первый в мире персональный компьютер был изобретен не американской фирмой «Эппл компьютерз» и не в 1975 году, а в СССР в 1968
году советским конструктором из Омска Арсением Анатольевичем Гороховым (род. 1935). В авторском свидетельстве № 383005 подробно описан «программирующий прибор», как его тогда назвал изобретатель. На промышленный образец денег не дали. Изобретателя попросили немного подождать. Он и подождал, пока в очередной раз за рубежом не изобрели отечественный «велосипед».

29. Цифровые технологии.

- отец всех цифровых технологий в передаче данных.

30. Электродвигатель – Б.Якоби.

31. Электромобиль


Двухместный электромобиль И.Романова образца 1899 г. изменял скорость движения в девяти градациях – от 1,6 км в час до максимальной в 37,4 км в час

32. Бомбардировщик

Четырехмоторный самолет «Русский витязь» И.Сикорский.

33. Автомат Калашникова


Символ свободы и борьбы с угнетателями.

Где мой любимый ученый? Он на много опередил время! Знал то, что не знал даже ЭйнШтейн! Добавьте Тесла!

Нико́ла Те́сла (серб. Никола Тесла; 10 июля 1856, Смиляны, Австро-Венгрия, ныне в Хорватии - 7 января 1943, Нью-Йорк, США) - американский физик, инженер, изобретатель в области электротехники и радиотехники.

Широко известен благодаря своему научно-революционному вкладу в изучение свойств электричества и магнетизма в конце XIX - начале XX веков. Патенты и теоретические работы Теслы сформировали базис для современных устройств, работающих на переменном токе, многофазовых систем и электродвигателя, позволивших совершить второй этап промышленной революции.

Современники-биографы считали Теслу «человеком, который изобрёл XX век» и «„святым заступником“ современного электричества». После демонстрации радио и победы в «Войнах токов» Тесла получил повсеместное признание как выдающийся инженер-электрик Америки. Ранние работы Теслы проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение. В США по известности Тесла мог конкурировать с любым изобретателем или учёным в истории или популярной культуре.

Переменный ток

С 1889 года Тесла приступил к исследованиям токов высокой частоты и высоких напряжений. Изобрёл первые образцы электромеханических генераторов ВЧ (в том числе индукторного типа) и высокочастотный трансформатор (трансформатор Теслы, 1891), создав тем самым предпосылки для развития новой отрасли электротехники - техники ВЧ.

В ходе исследований токов высокой частоты Тесла уделял внимание и вопросам безопасности. Экспериментируя на своём теле, он изучал влияние переменных токов различной частоты и силы на человеческий организм. Многие правила, впервые разработанные Теслой вошли в современные основы техники безопасности при работе с ВЧ токами. Он обнаружил, что при частоте тока свыше 700 периодов в секунду болевое воздействие на нервные окончания прекращает восприниматься. Электротехнические аппараты, разработанные Теслой для медицинских исследований, получили широкое распространение в мире.

Эксперименты с высокочастотными токами большого напряжения (до 2 млн вольт) привели изобретателя к открытию способа очистки загрязнённых поверхностей. Аналогичное воздействие токов на кожу показало, что таким образом возможно удалять мелкую сыпь, очищать поры и убивать микробы. Данный метод используется в современной электротерапии.

Теория полей

В 1888 году Тесла (независимо от Г. Феррариса и несколько ранее его) дал строгое научное описание сути явления вращающегося магнитного поля. В том же году Тесла получил свои основные патенты на изобретение многофазных электрических машин (в том числе асинхронного электродвигателя) и системы передачи электроэнергии посредством многофазного переменного тока. С использованием двухфазной системы, которую он считал наиболее экономичной, в США был пущен ряд промышленных электроустановок, в том числе Ниагарская ГЭС (1895), крупнейшая в те годы.

Тесла одним из первых запатентовал способ надежного получения токов, которые могут быть использованы в радиосвязи. Патент U.S. Patent 447920 (англ.), выданный в США 10 марта 1891 года описывал «Метод управления дуговыми лампами» («Method of Operating Arc-Lamps»), в котором генератор переменного тока производил высокочастотные (по меркам того времени) колебания тока порядка 10 000 Гц. Запатентованной инновацией стал метод подавления звука, производимого дуговой лампой под воздействием переменного или пульсирующего тока, для чего Тесла придумал использовать частоты, находящиеся за рамками восприятия человеческого слуха. По современной классификации генератор переменного тока работал в интервале очень низких радиочастот.

Тесла демонстрирует принципы радиосвязи, 1891 г.

В 1891 г. на публичной лекции описал и продемонстрировал принципы радиосвязи. В 1893 году вплотную занялся вопросами беспроволочной связи и изобрел мачтовую антенну.

Резонанс

Катушки Тесла до сих пор используются кое-где именно для получения искусственных молний. В 1998 году инженер из Стенфорда Грег Лей продемонстрировал публике эффект «молнии по заказу», стоя в металлической клетке под гигантским контуром Тесла и управляя молниями с помощью металлической «волшебной палочки». Недавно он развернул кампанию по сбору средств на строительство еще двух «башен Тесла» где-то на юго-западе США. Проект обойдется в 6 миллионов долларов. Однако укротитель молний надеется вернуть расходы, продав установку Федеральному управлению авиации. С помощью нее авиаторы смогут изучать, что происходит с самолетами, попавшими в грозу.

Беспроводная передача энергии

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

Всемирное тяготение

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.


Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

Законы движения

Возьмем, например хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.


Среди тех, кто занимался этим вопросом, был немецкий ученый . В 1865 году он сформулировал Второй закон термодинамики . Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия , объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

Электромагнетизм


Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физикомДжеймсом Клерком Максвеллом , который использовал их, чтобы еще лучше понять принципы электромагнетизма . Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

Теория относительности

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.


В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов» . Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

E=mc 2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c 2 . Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри , например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах .


Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик , наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.


Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга . И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света , т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.


О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром .

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники .

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.


Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называетсясверхпроводимостью .

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее. С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка .

Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера . Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки. (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Великие физики и их открытия. Подготовила ученица 7 «А» класса МБОУ СОШ № 1 Сыромятникова Юлия

2 слайд

Описание слайда:

Исаак Ньютон (физик) Родился: 4 января 1643 Умер: 31 марта 1727 г. (84 года) Английский физик, математик, механик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики, создал многие другие математические и физические теории.

3 слайд

Описание слайда:

Открытия И. Ньютона Исаак Ньютон первым научно объяснил природу цветных полос, получающихся при разложении солнечного света оптической призмой. Он считал, что белый солнечный свет есть сумма световых лучей, обладающих различной силой преломления. Каждый такой световой луч вызывает присущее только ему цветовое впечатление. При прохождении белого света через стеклянные призмы он разлагается на простые цветные лучи. При прохождении через собирающую линзу разложенные призмой цветные лучи собираются и опять образуют белый свет. Наконец, пропустив цветные лучи через вторую призму, Ньютон нашел, что они далее не разлагаются. Ньютон был первым, кто расположил цвета спектра в форме круга. Он различал в спектре семь областей аналогично семи ступеням октавы. Терминология, употреблявшаяся Ньютоном для обозначения явлений цвета, была очень точной. Он говорил, например, не о красных или зеленых лучах, а о световых лучах, которые вызывают ощущение красного или зеленого цвета. Следует отметить, что после открытий Ньютона оптика начала развиваться очень быстро. Он сумел обобщить такие открытия своих предшественников, как дифракция, двойное преломление луча и определение скорости света. Но самым известным открытием Ньютона стал закон всемирного тяготения. Также он смог доказать, что силы гравитации распространяются не только на земные, но и на небесные тела. Эти законы были описаны в 1687 году после издания книги Ньютона, посвященной использованию математических методов в физике.

4 слайд

Описание слайда:

Галилео Галилей (астроном) Родился: 15 февраля 1564 г., Италия, Пиза. Умер: 8 января 1642г., (77 лет), Арчетри. Итальянский физик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Галилей - основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической механики. При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

5 слайд

Описание слайда:

Открытия Г. Галилея Первым стал использовать понятие инертность Вывел преобразования координат которые назвали его именем Доказал что вопреки тогда общепринятому мнению, что естественным состоянием тела кроме покоя является состояние равномерного прямолинейного движения Первым додумался использовать телескоп для наблюдения небесных тел(он его не изобретал) Создал более менее соответствующую модель солнечной системы

6 слайд

Описание слайда:

Альберт Эйнштейн (физик) Родился: 14 марта 1879 г. Умер: 18 апреля 1955 г. (76лет) Физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии, Швейцарии и США. Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР.

7 слайд

Описание слайда:

Открытия А. Эйнштейна Увлечения физикой и математикой, постоянные исследования приводят к публикации ряда статей по статической механике, физике молекул. Наиболее известным учением Эйнштейна является теория относительности. Эта теория была развита на основе геометрической теории относительности Лобачевского. К другим величайшим открытиям ученого относят работы по фотоэффекту, броуновскому движению. Используя квантовую статистику Эйнштейн вместе с физиком Бозе открыл пятое состояние вещества, названное в их честь конденсатом Бозе-Эйнштейна.

8 слайд

Описание слайда:

Ломоносов Михаил Васильевич (российский учёный) Родился:19 ноября 1711 г., деревня Мишанинская (ныне - село Ломоносово) Умер:15 апреля 1765 г. (53 года) Первый русский учёный-естествоиспытатель мирового значения, энциклопедист, химик и физик; он вошёл в науку как первый химик, который дал физической химии определение, весьма близкое к современному, и предначертал обширную программу физико-химических исследований; его молекулярно-кинетическая теория тепла во многом предвосхитила современное представление о строении материи и многие фундаментальные законы, в числе которых одно из начал термодинамики; заложил основы науки о стекле. Астроном, приборостроитель, географ, металлург, геолог, поэт, филолог, художник, историк и генеалог, поборник развития отечественного просвещения, науки и экономики. Разработал проект Московского университета, впоследствии названного в его честь.

9 слайд

Описание слайда:

Открытия М. Ломоносова Особо Ломоносова привлекала химия и физика. Русскому учёному принадлежит первое место в мире в истории закона сохранения энергии и массы. Именно Ломоносов в 1748 году в своей новой лаборатории открыл один из основополагающих законов природы - закон сохранения материи. Опубликован этот закон был только через 12 лет. Ломоносов первым сформулировал основы кинетической теории газов, хотя сегодня многие связывают это открытие с именем Бернулли. Михаил Васильевич утверждал, что любое тело состоит из мельчайших частиц – атомов и молекул, которые при охлаждении движутся медленнее, а при нагревании – быстрее. Ломоносов открыл тайну гроз, природу северных сияний и даже смог оценить их высоту. Ему принадлежит догадка о вертикальных атмосферных течениях и оригинальная теория цветов.

10 слайд

Описание слайда:

Вавилов Николай Иванович (учёный) Родился: 25 ноября 1887 г., Москва Умер: 26 января 1943 г. (55 лет) Российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент, вице-президент ВАСХНИЛ, президент Всесоюзного географического общества, основатель и бессменный до момента ареста директор Всесоюзного института растениеводства, директор Института генетики АН СССР, член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета, член Императорского Православного Палестинского Общества.

11 слайд

Описание слайда:

Открытия Н. Вавилова Создатель учений о мировых центрах происхождения культурных растений и об иммунитете растений, закона гомологических рядов в наследственной изменчивости организмов, сети научных учреждений по биологии и смежным наукам

12 слайд

Описание слайда:

Мария Склодовская-Кюри (физик - химик) Родилась:7 ноября 1867 г., Варшава Умерла:4 июля 1934 г. (66 лет) Французский учёный-экспериментатор польского происхождения, педагог, общественный деятель. Удостоена Нобелевской премии: по физике и по химии, первый дважды нобелевский лауреат в истории. Основала Институты Кюри в Париже и в Варшаве. Жена Пьера Кюри, вместе с ним занималась исследованием радиоактивности. Совместно с мужем открыла элементы радий и полоний.

13 слайд

Описание слайда:

Открытия М. Склодовской -Кюри Мария Склодовская-Кюри выделила чистый металлический радий, доказав, что это самостоятельный химический элемент. Она получила Нобелевскую премию по химии за этого открытие и стала единственной женщиной в мире с двумя Нобелевскими премиями.

14 слайд

Описание слайда:

Блез Паскаль (физик - математик) Родился:19 июня 1623 г., Клермон-Ферран Умер:19 августа 1662 г. (39 лет) Французский математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.

15 слайд

Описание слайда:

Открытия Б. Паскаля Двенадцать лет своей короткой жизни Паскаль отдает созданию счетной машины (1640-1652). В нее он вложил все свои знания по математике, механике, физике, талант изобретателя. По словам сестры Паскаля Жильберты, "эта работа очень утомляла брата, но не из-за напряжения умственной деятельности и не из-за механизмов, изобретение которых не вызывало у него особых усилий, а из-за того, что рабочие плохо понимали его". Паскалю нередко самому приходилось браться за напильник и молоток или ломать голову над тем, как изменить в соответствии с квалификацией мастера сложную конструкцию.