Тройная ковалентная связь примеры. Одинарная, двойная и тройная связи, а- и я-связь. Механизмы образования ковалентной связи

    простая связь (ординарная связь, одинарная связь) - химическая ковалентная связь, осуществляемая парой электронов, движущихся в поле двух атомных ядер. В химических соединениях, в которых среднее число электронов, связывающих каждую пару атомных ядер, не равно двум, могут возникнуть… …

    Связь - : Смотри также: химическая связь металлическая связь ионная связь ковалентная связь … Энциклопедический словарь по металлургии

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей …

    металлическая связь - межатомная связь, характерная для металлов с равномерной плотностью электронного газа. Металлическая связь обусловлена взаимодействием отрицательно заряженного электронного газа и положительно заряженных ионных остовов,… … Энциклопедический словарь по металлургии

    ковалентная связь - межатомная связь, обусловленная коллективизацией внешних электронов взаимодействующих атомов. Для ковалентной связи характерны насыщенность и направленность. Насыщенность проявляется в том, что в ковалентную связь вступает такое… … Энциклопедический словарь по металлургии

    ионная связь - электро, гетеровалентная связь один из видов химической связи, в основе которого лежит электростатическое взаимодействие между противоположно заряженными ионами. Такие связи в сравнительно чистом виде образуются в галогенидах… … Энциклопедический словарь по металлургии

    химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образованных данным атомом с соседними. Термин «химическое строение» ввел академик А. М. Бутлеров в… … Энциклопедический словарь по металлургии

    Ординарная связь, одинарная связь, химическая ковалентная связь, осуществляемая парой электронов (с антипараллельной ориентацией спинов), движущихся в поле 2 атомных ядер. Например, в молекулах H2, Cl2 и HCl имеется по одной ковалентной… … Большая советская энциклопедия

Кратные (двойные и тройные) связи

Во многих молекулах атомы соединены двойными и тройными связями:

Возможность образования кратных связей обусловлена геометрическими характеристиками атомных орбиталей. Атом водорода образует свою единственную химическую связь с участием валентной 5-орбитали, имеющей сферическую форму. У остальных атомов, включая даже атомы элементов 5-блока, появляются валентные р-орбитали, имеющие пространственную направленность вдоль осей координат.

В молекуле водорода химическая связь осуществляется электронной парой, облако которой сконцентрировано между атомными ядрами. Связи такого типа называют ст-связями (а - читается «сигма»). Они образуются при взаимном перекрывании как 5-, так ир-орбиталей (рис. 6.3).


Рис. 63

Для еще одной пары электронов места между атомами не остается. Как тогда образуются двойные и даже тройные связи? Возможно перекрывание электронных облаков, ориентированных перпендикулярно к оси, проходящей через центры атомов (рис. 6.4). Если ось молекулы совместить с координатой х у то перпендикулярно к ней ориентированы орбитали p lf и р 2 . Попарное перекрывание р у и р 2 орбиталей двух атомов дает химические связи, электронная плотность которых сконцентрирована симметрично с двух сторон от оси молекулы. Они называются л-связями.

Если у атомов на р у и (или) р 2 орбиталях имеются неспарениые электроны, то образуются одна или две л-связи. Этим и объясняется возможность существования двойных (а + я) и тройных (а + я + я) связей. Простейшей молекулой с двойной связью между атомами является молекула углеводорода этилена С 2 Н 4 . На рис. 6.5 представлено облако я-связи в этой молекуле, а ст-связи обозначены схематически штрихами. Молекула этилена состоит из шести атомов. Вероятно, читателям приходит в голову, что двойную связь между атомами изображают в более простой двухатомной молекуле кислорода (0=0). В действительности, электронное строение молекулы кислорода более сложно, и ее строение удалось объяснить только на основе метода молекулярных орбиталей (см. ниже). Примером простейшей молекулы с тройной связью является азот. На рис. 6.6 представлены я-связи в этой молекуле, точками показаны неподеленные электронные пары азота.


Рис. 6.4.


Рис. 6.5.

Рис. 6.6.

При образовании я-связей прочность молекул возрастает. Для сравнения возьмем некоторые примеры.

Рассматривая приведенные примеры, можно сделать следующие выводы:

  • - прочность (энергия) связи возрастает при увеличении кратности связи;
  • - на примере водорода, фтора и этана можно также убедиться, что прочность ковалентной связи определяется не только кратностью, но и природой атомов, между которыми возникла эта связь.

В органической химии хорошо известно, что молекулы с кратными связями более реакционноспособны, чем так называемые насыщенные молекулы. Причина этого становится понятной при рассмотрении формы электронных облаков. Электронные облака a-связей сконцентрированы между ядрами атомов и как бы экранированы (защищены) ими от воздействия других молекул. В случае я-связи электронные облака не экранированы ядрами атомов и легче смещаются при сближении реагирующих молекул. Этим облегчаются последующие перестройка и превращение молекул. Исключением среди всех молекул является молекула азота, которая характеризуется одновременно очень большой прочностью и крайне низкой реакционной способностью. Поэтому азот и оказатся главной составляющей атмосферы.

Простая (одинарная) связь Типы связей в биоорганических соединениях.

Наименование параметра Значение
Тема статьи: Простая (одинарная) связь Типы связей в биоорганических соединениях.
Рубрика (тематическая категория) Химия

Ковалентная связь. Кратная связь. Неполярная связь. Полярная связь.

Валентные электроны. Гибридная(гибридизованная) орбиталь. Длина связи

Ключевые слова.

Характеристика химических связей в биоорганических соединœениях

АРОМАТИЧНОСТЬ

ЛЕКЦИЯ 1

СОПРЯЖЕННЫЕ СИСТЕМЫ: АЦИКЛИЧЕСКИЕ И ЦИКЛИЧЕСКИЕ.

1. Характеристика химических связей в биоорганических соединœениях. Гибридизация орбиталей атома углерода.

2. Классификация сопряженных систем: ациклические и циклические.

3 Виды сопряжения: π , π и π , р

4. Критерии устойчивости сопряженных систем - ʼʼ энергия сопряженияʼʼ

5. Ациклические(нециклические) сопряженные системы, виды сопряжения. Основные представители (алкадиены, непредельные карбоновые кислоты, витамин А, каротин, ликопин).

6. Циклические сопряженные системы. Критерии ароматичности. Правило Хюккеля. Роль π-π- , π-ρ-сопряжения в образовании ароматических систем.

7.Карбоциклические ароматические соединœения: (бензол, нафталин, антрацен, фенантрен, фенол, анилин, бензойная кислота)- строение, образование ароматической системы.

8. Гетероциклические ароматические соединœения (пиридин, пиримидин, пиррол, пурин, имидазол, фуран, тиофен)- строение, особенности образования ароматической системы. Гибридизация электронных орбиталей атома азота при образовании пяти - и шестичленных гетероароматических соединœений.

9. Медико- биологическое значение природных соединœений, содержащих сопряженные системы связей, и ароматических.

Исходный уровень знаний для усвоения темы (школьный курс химии) :

Электронные конфигурации элементов(углерод, кислород, азот, водород, сера. галогены), понятие ʼʼорбитальʼʼ, гибридизация орбиталей и пространственная ориентация орбиталей элементов 2 периода., виды химических связей, особенности образования ковалентных σ-и π –связей, изменение электроотрицательности элементов в периоде и группе, классификацию и принципы номенклатуры органических соединœений.

Органические молекулы образованы посредством ковалентных связей. Ковалентные связи возникают между двумя ядрами атомов за счёт общей (обобществленной) пары электронов. Такой способ относится к обменному механизму. Образуются неполярные и полярные связи.

Неполярные связи характеризуются симметричным распределœением электронной плотности между двумя атомами, которые эта связь соединяет.

Полярные связи характеризуются несимметричным (неравномерным) распределœением электронной плотности, происходит ее смещение в сторону более электроотрицательного атома.

Ряды электроотрицательности (составлены в сторону уменьшения)

А) элементы: F > O > N > C1 > Br > I ~~ S > C > H

Б) атом углерода: C (sp) > C (sp 2) > C (sp 3)

Ковалентные связи бывают двух типов: сигма (σ) и пи (π).

В органических молекулах сигма (σ) связи образованы электронами, расположенными на гибридных(гибридизованных) орбиталях, электронная плотность располагается между атомами на условной линии их связывания.

π -Связи (пи -связи) возникают при перекрывании двух негибридизованных р-орбиталей. Главные оси их располагаются параллельно друг другу и перпендикулярны линии σ -связи. Сочетание σ и π --связей носит название двойная(кратная) связь, состоит из двух пар электронов. Тройная связь состоит из трех пар электронов- одна σ - и две π -связи.(в биоорганических соединœениях встречается крайне редко).

σ -Связи участвуют в образовании скелœета молекулы, они являются главными, а π -связи можно рассматривать как дополнительные, но придающие молекулам особые химические свойства.

1.2. Гибридизация орбиталей атома углерода 6 С

Электронная конфигурация невозбужденного состояния атома углерода

выражается распределœением электронов 1s 2 2s 2 2p 2 .

При этом в биоорганических соединœениях, как впрочем, и в большинстве неорганических веществ, атом углерода имеет валентность равную четырем.

Происходит переход одного из 2s электронов на свободную 2р орбиталь. Возникают возбужденные состояния атома углерода, создающие возможность образования трех гибридных состояний, обозначаемых как С sp 3 , С sp 2 , С sp .

Гибридная орбиталь имеет характеристики, отличные от ʼʼчистыхʼʼ s, p, d- орбиталей и является ʼʼ смесьюʼʼ двух или более типов негибридизованных орбиталей .

Гибридные орбитали свойственны атомам только в молекулах.

Понятие гибридизации введено в 1931г Л.Полингом, лауреатом Нобелœевской премии,.

Рассмотрим расположение в пространстве гибридных орбиталей.

С s p 3 --- -- -- ---

В возбужденном состоянии образуются 4 равноценные гибридные орбитали. Расположение связей соответствует направлению центральных углов правильного тетраэдра, величина угла между двумя любыми связями равна 109 0 28 , .

В алканах и их производных (спирты, галогеналканы, амины) всœе атомы углерода, кислорода, азота находятся в одинаковом гибридном sp 3 cостоянии. Атом углерода образует четыре, атом азота три, атом кислорода две ковалентные σ -связи. Вокруг этих связей возможно свободное вращение частей молекулы относительно друг друга.

В возбужденном состоянии sp 2 возникает три равноценные гибридные орбитали, расположенные на них электроны образуют три σ -связи, которые располагаются в одной плоскости, угол между связями 120 0 . Негибридизованные 2р - орбитали двух сосœедних атомов образуют π -связь. Она располагается перпендикулярно плоскости, в которой находятся σ -связи. Взаимодействие р-электронов носит в данном случае название ʼʼ бокового перекрыванияʼʼ. Кратная связь не допускает вокруг себя свободного вращения частей молекулы. Фиксированное положение частей молекулы сопровождается образованием двух геометрических плоскостных изомерных форм, которые носят название: цис(cis) – и транс(trans)- изомеры. (цис-лат - по одну сторону, транс- лат - через).

π -связь

Атомы, связанные двойной связью, находятся в состоянии гибридизации sp 2 и

присутствуют в алкенах, ароматических соединœениях, образуют карбонильную группу

>С=О, азометиновую группу (имино группу) -СН= N-

С sp 2 - --- -- ---

Структурная формула органического соединœения изображается с помощью структур Льюиса (каждая пара электронов между атомами заменяется черточкой)

С 2 Н 6 СН 3 - СН 3 H H

1.3. Поляризация ковалентных связей

Ковалентная полярная связь характеризуется неравномерным распределœением электронной плотности. Для обозначения направления смещения электронной плотности используют два условных изображения.

Полярная σ – связь . Смещение электронной плотности обозначают стрелкой вдоль линии связи. Конец стрелки направлен в сторону более электроотрицательного атома. Появление частичных положительных и отрицательных зарядов указывают с помощью буквы ʼʼ бʼʼ ʼʼ дельтаʼʼ с нужным знаком заряда.

б + б- б+ б + б- б + б-

СН 3 - > О<- Н СН 3 - > С1 СН 3 - > NН 2

метанол хлорметан аминометан (метиламин)

Полярная π -связь . Смещение электронной плотности обозначают полукруглой (выгнутой) стрелкой над пи-связью также направленной в сторону более электроотрицательного атома. ()

б + б- б+ б-

Н 2 С = О СН 3 - С ===О

метаналь |

СН 3 пропанон -2

1.Определите тип гибридизации атомов углерода, кислорода, азота в соединœениях А, Б, В. Назовите соединœения, используя правила номенклатуры IUPAC .

А. СН 3 -СН 2 - СН 2 -ОН Б. СН 2 = СН – СН 2 - СН=О

В. СН 3 - N Н– С 2 Н 5

2. Сделайте обозначения, характеризующие направление поляризации всœех указанных связей в соединœениях (А – Г)

А. СН 3 – Вr Б. С 2 Н 5 – О- Н В. СН 3 -NН- С 2 Н 5

Г. С 2 Н 5 – СН= О

Простая (одинарная) связь Типы связей в биоорганических соединениях. - понятие и виды. Классификация и особенности категории "Простая (одинарная) связь Типы связей в биоорганических соединениях." 2017, 2018.

В которой один из атомов отдавал электрон и становился катионом , а другой атом принимал электрон и становился анионом .

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов . Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 А и является центром симметрии молекулярного иона водорода H 2 + .

Энциклопедичный YouTube

  • 1 / 5

    Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома .

    A· + ·В → А: В

    В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

    Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществлённые электроны располагаются на более низкой по энергии связывающей МО.

    Образование связи при рекомбинации атомов

    Однако, механизм межатомного взаимодействия долгое время оставался неизвестным. Лишь в 1930 г. Ф. Лондон ввёл понятие дисперсионное притяжение - взаимодействие между мгновенным и наведённым (индуцированными) диполями. В настоящее время силы притяжения, обусловленные взаимодействием между флуктуирующими электрическими диполями атомов и молекул носят название «Лондоновские силы ».

    Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости α и обратно пропорциональна расстоянию между двумя атомами или молекулами в шестой степени .

    Образование связи по донорно-акцепторному механизму

    Кроме изложенного в предыдущем разделе гомогенного механизма образования ковалентной связи, существует гетерогенный механизм - взаимодействие разноименно заряженных ионов - протона H + и отрицательного иона водорода H - , называемого гидрид-ионом :

    H + + H - → H 2

    При сближении ионов двухэлектронное облако (электронная пара) гидрид-иона притягивается к протону и в конечном счёте становится общим для обоих ядер водорода, то есть превращается в связывающую электронную пару. Частица, поставляющая электронную пару, называется донором, а частица, принимающая эту электронную пару, называется акцептором. Такой механизм образования ковалентной связи называется донорно-акцепторным .

    H + + H 2 O → H 3 O +

    Протон атакует неподелённую электронную пару молекулы воды и образует устойчивый катион, существующий в водных растворах кислот .

    Аналогично происходит присоединение протона к молекуле аммиака с образованием комплексного катиона аммония :

    NH 3 + H + → NH 4 +

    Таким путём (по донорно-акцепторному механизму образования ковалентной связи) получают большой класс ониевых соединений , в состав которого входят аммониевые , оксониевые, фосфониевые, сульфониевые и другие соединения .

    В качестве донора электронной пары может выступать молекула водорода, которая при контакте с протоном приводит к образованию молекулярного иона водорода H 3 + :

    H 2 + H + → H 3 +

    Связывающая электронная пара молекулярного иона водорода H 3 + принадлежит одновременно трём протонам.

    Виды ковалентной связи

    Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

    1. Простая ковалентная связь . Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

    • Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью . Такую связь имеют простые вещества , например: 2 , 2 , 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например, в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.
    • Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами , то такое соединение называется ковалентной полярной связью .

    В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвёртого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π {\displaystyle \pi } -связью.

    В линейной молекуле ацетилена

    Н-С≡С-Н (Н: С::: С: Н)

    имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π {\displaystyle \pi } -связи между этими же атомами углерода. Две π {\displaystyle \pi } -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

    Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвёртых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π {\displaystyle \pi } -связи, а единая π {\displaystyle \pi } диэлектрики или полупроводники . Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями) могут служить

    Ковалентная химическая связь возникает в молекулах между атомами за счет образования общих электронных пар. Под типом ковалентной связи может пониматься как механизм ее образования, так и полярность связи. Вообще ковалентные связи можно классифицировать так:

    • По механизму образования ковалентная связь может образовываться по обменному или донорно-акцепторному механизму.
    • По полярности ковалентная связь может быть неполярной или полярной.
    • По кратности ковалентная связь может быть одинарной, двойной или тройной.

    Это значит, что ковалентная связь в молекуле обладает тремя характеристиками. Например, в молекуле хлороводорода (HCl) ковалентная связь образуется по обменному механизму, она полярная и одинарная. В катионе аммония (NH 4 +) ковалентная связь между аммиаком (NH 3) и катионом водорода (H +) образуется по донорно-акцепторному механизму, кроме того эта связь полярна, является одинарной. В молекуле азота (N 2) ковалентная связь образована по обменному механизму, она неполярна, является тройной.

    При обменном механизме образования ковалентной связи у каждого атома есть свободный электрон (или несколько электронов). Свободные электроны разных атомов образуют пары в виде общего электронного облака.

    При донорно-акцепторном механизме образования ковалентной связи у одного атома есть свободная электронная пара, а у другого есть пустая орбиталь. Первый (донор) отдает пару в общее пользование со вторым (акцептор). Так в катионе аммония у азота есть неподеленная пара, а у иона водорода есть свободная орбиталь.

    Неполярная ковалентная связь образуется между атомами одного химического элемента. Так в молекулах водорода (H 2), кислорода (O 2) и др. связь неполярна. Это значит, что общая электронная пара в равной степени принадлежит обоим атомам, т. к. у них одинаковая электроотрицательность.

    Полярная ковалентная связь образуется между атомами разных химических элементов. Более электроотрицательный атом смещает к себе электронную пару. Чем больше различие электроотрицательностей атомов, тем сильнее будут смещены электроны, и связь будет более полярной. Так в CH 4 смещение общих электронных пар от атомов водорода к атому углерода не столь велико, т. к. углерод не намного электроотрицательней водорода. Однако во фтороводороде HF связь сильно полярная, т. к. разница в электроотрицательности между водородом и фтором значительна.

    Одинарная ковалентная связь образуется, если атомы делят одну электронную пару, двойная - если две, тройная - если три. Примером одинарной ковалентной связи могут быть молекулы водорода (H 2), хлороводорода (HCl). Пример двойной ковалентной связи - молекула кислорода (O 2), где каждый атом кислорода имеет два неспаренных электрона. Пример тройной ковалентной связи - молекула азота (N 2).