Средние величины. Сущность средних величин, их виды. Виды средних величин

Лекция 6. Средние величины

Среди показателей, характеризующих статистические совокупности, важное место занимают средние величины.

Средняя величина - показатель, который даёт обобщённую (усреднённую) характеристику единиц изучаемой совокупности. В средней величине отражается то общее, что имеется в каждой единице совокупности.

Сущность статистической обработки методом средней величины заключается в замене индивидуальных значений признака их средним показателем. При этом общий объём совокупности остаётся неизменным.

Пример: есть данные о выработке 5 рабочих: 135, 141, 153, 159, 162. Определить среднюю выработку. .

Средние величины, которые необходимо знать наизусть:

Средняя арифметическая;

Средняя гармоническая;

Средняя хронологическая;

Средняя квадратическая, кубическая;

Средняя геометрическая;

Структурные средние: мода, медиана.

1. Средняя арифметическая: чаще всего в статистике и социально-экономических исследованиях применяется арифметическая величина.

Средняя арифметическая простая рассматривается в случаях, когда значение признака повторяется один или одинаковое число раз в ряде распределения:

Где n -количество единиц совокупности.

Средняя арифметическая взвешенная применяется в случаях, когда каждое значение признака повторяется неодинаковое число раз, или частота ряда распределения превышает единицу хотя бы для одного признака:

Где f -вес.(сколько раз повторяется каждая еденица совокупности)

2. Средняя гармоническая: в ряде случаев бывают известны варианты (x) и произведения варианты на частоту (x f), в то время как сами частоты (f) неизвестны, тогда применяется средняя гармоническая, которая бывает простой и взвешенной.

Произведение x f выражается через сложный экономический показатель M (M = x f ). Для расчёта средней величины, когда x f =M =1 , применяется средняя гармоническая простая: .

Если x f =M? 1 , то для расчёта применяется средняя гармоническая взвешенная: .

Средняя гармоническая - величина, обратная средней арифметической, из обратных значений признака.

Свойства средних величин

1. Если от каждой варианты отнять или прибавить одно и то же число, то средняя увеличится или уменьшится на то же число.

2. Если каждую варианту увеличить или уменьшить в a раз, то средняя увеличится или уменьшится в столько же раз.

3. Если все частоты увеличить или уменьшить в a раз, то средняя не изменится.

4. Если все частоты увеличить или уменьшить на a , то средняя изменится непредсказуемо.

5. Средняя арифметическая суммы нескольких величин равна суме средних арифметических этих величин.

6. Алгебраическая сумма отклонений значений признака от средней арифметической всегда равна нулю.

Пример: Найти среднюю урожайность в 2003 и 2004 гг.

Где f -вес

3. Средняя хронологическая: применяется для расчёта средней величины, если исходные данные представлены на определённые даты, моменты времени:

Пример: Найти среднюю стоимость ОПФ

стоимость ОПФ

Приведем все расчеты к одному знаменателю: Х=эээ

4. Средняя квадратическая: применяется для измерения вариации признака в совокупности:

5. Средняя кубическая: .

6. Средняя геометрическая: применяется чаще всего для определения средних темпов роста в единицу времени: ,

Пример: Рассчитайте среднегодовые темпы роста

Где m=n-1.

Средняя геометрическая, чаще всего, применяется в экономических расчетах, но учитывает только начало и конец ряда и недостаточно точно отражает динамику изменения, т.е. она не учитывает сумму ряда.

7. Средняя кумулятивная:

Формула кумулятивной средней более чётко отражает динамику изменений и помогает увидеть сумму ранжированного ряда.

Все рассмотренные средние величины (кроме средней хронологической) являются степенными средними и выводятся из следующей формулы: , где получается при

k=-1 ? средняя гармоническая;

k=0 ? средняя геометрическая;

k=1 ? средняя арифметическая;

k=2 ? средняя квадратическая;

k=3 ? средняя кубическая.

Все эти показатели рассчитываются для варьирующего признака для простых средних. Если все значения признака в ряде распределения одинаковы, то все значения средних равны. Между указанными средними величинами имеет место зависимость (для одного ряда распределения):

Это неравенство называется правилом мажорантности средних величин.

8. Структурные средние:

1) Структурное среднее мода () - наиболее часто встречающееся значение ряда, другими словами, мода - это варианта, имеющая наибольшую частоту. В дискретных рядах мода определяется визуально, в интервальных рядах визуально определяется модальный интервал, а мода (точечная) определяется по формуле: , где

x 0 ? нижняя граница модального интервала;

i ? шаг интервального ряда;

f ? частота модального интервала;

f Mо-1 ? частота интервала, предшествующего модальному;

f Mо+1 ? частота интервала, следующего за модальным.

Пример: Найти Мо в дискретном и интервальном рядах.


2) Структурное среднее медиана () - значение, которое делит ранжированный ряд пополам.

В нечётных, чётных и дискретных рядах медиана определяется визуально, но в дискретных рядах она определяется с помощью накопленных частот. В интервальном ряду медианный интервал находится визуально, с помощью накопленных частот, а сама медиана (точечно) по формуле:

x 0 ? нижняя граница медианного интервала;

i ?шаг интервального ряда;

?f ? сумма накопленных частот;

S Me-1 ? сумма частот, накопленных до медианного интервала;

f Me ? частота медианного интервала.

Пример: Найти Ме в нечетных, четных, дискретных, интервальных рядах.


интервальный ряд:

Если х сред. равно Мо = Ме - это симметричное распределение, если х сред не равно Мо, не равно Ме - распределение ассиметричное.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их.

Однако для того чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно одно–родных единиц. Это требование является основным условием научно обоснованного применения средних величин величин и предполагает тесную связь метода средних и метода группировок в анализе социально-экономических явлений.

Средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Средняя, рассчитанная по совокупности в целом, называется общей средней, средние, исчисленные для каждой группы,– групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику размера явления, складывающуюся в конкретных условиях данной группы.

В статистике используют различные виды средних величин, которые делятся на два больших класса:

1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);

2) структурные средние (мода, медиана).

Самый распространенный вид средней – средняя арифметическая. Формула простой средней арифметической:

Средняя арифметическая взвешенная:

где xi –варианты осредняемого признака; f – частота, которая показывает, сколько раз встречается i-е значение в совокупности.

Формула простой средней гармонической:

где хi – отдельные варианты; n – число вариантов осредняемого признака. Средняя геометрическая простая рассчитывается по формуле:

Формула средней геометрической взвешенной:

Формула средней квадратической:

Формула средней квадратической взвешенной:

Формула средней кубической:

Средняя кубическая взвешенная:

3. Структурные средние: мода и медиана

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле:

h – величина интервала;

fm – частота интервала;

fm-1 – частота предшествующего интервала;

fm+1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

Sm- 1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.

Относительные величины структуры - это отношение между размерами части и целого. Они характеризуют состав, структуру совокупности. Форма представления - удельный вес или проценты. Сумма относительных величин структуры равняется 1 или 100%. Разницу между соответствующими долями двух совокупностей называют процентным пунктом.

Абсолютными величинами в статистике называются численности единиц и суммы по группам и в целом по совокупности, которые являются непосредственным результатом сводки и группировки данных.

Абсолютные величины - это именованные числа, то есть они имеют свои единицы измерения (например, штуки, тонны, гривны). В составе абсолютных показателей выделяют показатели численности совокупности (численность предприятий) и объема признаков (продукция, прибыль). Различают три группы измерителей признаков - натуральные, трудовые и стоимостные .

Натуральные измерители отражают присущие явлениям физические свойства (меры веса, длины, времени). Иногда используют комбинированные единицы измерения, которые представляют собой произведение величин разной размерности (производство электроэнергии в кВт-часах).

Не всегда абсолютные величины можно получить непосредственно суммируя значения признака у отдельных единиц. В этом случае отдельные слагаемые, входящие в абсолютную величину, приводят к соизмеримому выражению. Для этого часто используют условно-натуральные измерители . Так, например, при расчете количества потребленного топлива, разные его виды в соответствии с их теплотворной способностью выражают в единицах условного топлива, теплотворная способность которого 7000 кал/кг.

Трудовые измерители (человеко-час, человеко-смена) используются при измерении затрат труда на производство продукции или на выполнение отдельных работ, для определения производительности труда, а также для измерения трудовых ресурсов.

Стоимостные измерители дают возможность обобщить и сопоставить разнообразные явления. Их используют при определении таких важнейших показателей, как товарооборот, прибыль, капитальные вложения.

Зачастую абсолютная величина показателя рассчитывается по определенному правилу на основании других показателей. Например, валовая прибыль рассчитывается как разница между валовым доходом и валовыми издержками.

Многие абсолютные величины представляются в форме баланса, который предусматривает расчет показателя по двум разделам: по источникам формирования (приходная часть баланса) и по направлениям использования (расходная часть). Возможно представление абсолютных показателей и в динамической балансовой форме. Например, прирост количества единиц оборудования на предприятии за год можно представить как разность числа единиц оборудования на конец и начало года, а можно - как разность между числом единиц вновь введенного и выбывшего оборудования.



Глава 4.3. Относительные величины.

Относительные величины отображают количественные отношения социально-экономических явлений. Алгебраическая форма их - это частное от деления двух одноименных или разноименных величин. Знаменатель отношения рассматривается как база сравнения или основа относительной величины.

Базой сравнения могут быть 100, 1000, 10 000 или 100 000 единиц. Тогда относительная величина будет выражена соответственно в процентах (%), в промилле (%о), продецимилле (%оо), просантимилле (%ооо).

Применяют различные по содержанию и природе относительные величины.

Отношение между разноименными абсолютными величинами дает относительную величину интенсивности . Это именованная величина, в которой объединяются единицы измерения числителя и знаменателя. Например, производство продукции на душу населения. Относительные величины интенсивности характеризуют степень распространения или развития явления в определенной среде. В их состав также входят демографические коэффициенты (рождаемости, смертности, интенсивности миграционных потоков), которые исчисляются отношением числа событий (смерть, рождение)за определенный промежуток времени к средней численности населения за тот же период.

Сравнение одноименных величин позволяет выделить следующие виды относительных величин: структуры, координации, динамики, планового задания, выполнения плана, сравнения характеристик объектов.

Относительные величины координации - это соотношения между отдельными частями целого или отношения отдельных частей совокупности к одной из них, принятой за базу сравнения. Пример, число городских жителей, приходящихся на 100 сельских; число женщин, приходящихся на 100 мужчин. Эти величины выражаются в процентах, промилле или кратных отношениях (например, на 100 мужчин приходится 114 женщин).

Для оценки интенсивности развития используют относительную величину динамики , которая исчисляется отношением уровней изучаемого явления за два периода.

Относительные величины сравнения исчисляются как отношения одноименных показателей, характеризующих разные объекты или территории и имеющих одинаковую временную определенность.

Некоторые процессы планируются и для показателей, которые их отражают, устанавливают плановые задания. Путем сравнения плановых и фактических значений показателей исчисляют относительные величины: планового задания и выполнения плана .

Если обозначить фактический уровень текущего периода y1 , базового y0 и плановый уровень yпл , то относительную величину:

Кд= y1 / y0 ,

2) планового задания

Кпз =yпл / y0,

3) выполнения плана

Квп =y1 / yпл .

Глава 4.4. Виды и формы средних величин.

Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности в конкретных условиях места и времени. Величина средней дает характеристику всей совокупности и характеризует ее в отношении одного, данного признака.

Средняя величина отражает то общее, что присуще всем единицам исследуемой совокупности.

Так, например, средняя заработная плата дает обобщающую количественную характеристику состояния оплаты труда рассматриваемой совокупности работников.

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения, вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака некоторой уравновешенной средней величиной Х.

Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:

Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.

Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.

Средние величины делятся на два больших класса:

Степенные средние:

Арифметическая

Гармоническая

Геометрическая

Квадратическая

Структурные средние:

Мода

Медиана

Самым распространенным видом средней является средняя арифметическая:

Средняя арифметическая простая

Средняя арифметическая взвешенная

Средняя арифметическая для интервального ряда.

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в совокупности данных поровну распределяется между всеми единицами, входящими в данную.

Так, среднегодовая выработка продукции на одного работающего - это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле.

Средние величины

В процессе обработки и обобщения статистических данных возникает необходимость определения средних величин. Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности могут колебаться в ту или иную сторону под влиянием множества факторов, среди которых как основные, так и случайные. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей. Так там, где возникает потребность обобщения, расчет таких характеристик приводит к замене множества различных индивидуальных значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общественным явлениям. Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания ее типических черт и качественных особенностей нужна система средних показателей.

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется одна из средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д. Перечисленные средние относятся к классу степенных средних и объединяются общей формулой (при разных значениях ш):

где * - среднее значение исследуемого явления; ш - показатель степени средней; х - текущее значение признака; п - число признаков.

В зависимости от значения показателя степени ш различают следующие виды степенных средних:

  • при ш = - 1 - средняя гармоническая х гар;
  • при ш = 0 - средняя геометрическая х г ;
  • при ш =1 - средняя арифметическая х ;
  • при ш =2 - средняя квадратическая х кв ;
  • при ш =3 - средняя кубическая х куб .

Это свойство степенных средних возрастает с повышением показателя степени определяющей функции и называется в статистике правилом мажорантности средних.

Наиболее распространенным видом является средняя арифметическая. Средней арифметической величиной называется такое значение признака в расчете на единицу совокупности, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значении признаков отдельных ее единиц. Чтобы исчислить среднюю арифметическую, нужно сумму всех значений признаков разделить на их число.

Средняя арифметическая применяется в форме простой средней и взвешенной средней. Исходной, определяющей формой служит простая средняя.

Средняя арифметическая простая равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеются несгруппиро- ванные индивидуальные значения признака):

где - индивидуальные значения варьирующего признака;

п - число единиц совокупности.

Средняя из вариантов, которые повторяются различное число раз, или имеют различный вес, называется взвешенной. В качестве весов выступают численности единиц разных группах совокупности (в группу объединяют одинаковые варианты). Средняя арифметическая

взвешенная - средняя сгруппированных величин Х 1 ,Х 2 ,Х 3 ...Х П - вычисляется по формуле:


где - веса (частоты повторения одинаковых признаков);

- сумма произведений величины признаков на их частоты;

- общая численность единиц совокупности.

Вычисление средней арифметической часто сопряжено с большими затратами времени и труда. Однако в ряде случаев процедуру расчета средней можно упростить и облегчить, если воспользоваться ее свойствами. К основным свойствам относится:

  • 1. Если все индивидуальные значения признака уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.
  • 2. Если все варианты признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число А.
  • 3. Если веса всех вариантов уменьшить или увеличить в К раз, то средняя арифметическая не изменится.

В качестве весов средней вместо абсолютных показателей можно использовать удельные веса в общем итоге. Тем самым достигается упрощение расчетов средней.

При расчете статистических показателей помимо средней арифметической могут использоваться и другие виды средних. Однако в каждом конкретном случае в зависимости от характера имеющихся данных существует только одно истинное среднее значение показателя, являющееся следствием реализации его исходного соотношения.

Отметим, что средняя арифметическая применяется в тех случаях, когда известны варианты варьирующего признака х и их частоты f, когда статистическая информация не содержит частот f по отдельным вариантам х совокупности, а представлена как их произведением xf ,

применяется формула средней гармонической. Она используется, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель.


Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

Средняя геометрическая исчисляется извлечением корня степени п из произведений отдельных значений - вариантов признака х:

где п - число вариантов;

П - знак произведения.

Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных и кубических единицах измерения. Тогда применяется средняя квадратическая и средняя кубическая.

Формулы для расчета средней квадратической:

Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

Средняя квадратическая взвешенная:


Формулы для расчета средней кубической аналогичны:

Средняя кубическая простая:


Средняя кубическая взвешенная:


Средняя квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко используется статистика средней квадратической.

Наиболее часто используемыми в экономической практике структурными средними являются мода и медиана. Модой распределения (°) называется такая величина изучаемого признака, которая в

данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие.

Рассмотрим определение моды по несгруппированным данным. Например: 10 студентов имеют следующие экзаменационные оценки: 5, 4, 3, 4, 5, 5, 3, 4, 4, 4. Так как в данной группе больше всего студентов получили 4, то это значение и будет модальным.

Для упорядоченного дискретного ряда распределения мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту с наибольшей частотой.

Модальный интервал в случае интервального распределения с равными интервалами определяется по наибольшей частоте; с неравными интервалами - по наибольшей плотности, а определение моды требует проведения расчетов на основе следующей формуле:

где х т0 - нижняя граница модального интервала;

i m0 - величина модального интервала;

fmo ~ частота модального интервала;

fmo-i - частота интервала, предшествующего модальному;

fmo+i ~ частота интервала, следующего за модальным.

Медиана - вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные части. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппирован- ных данных нахождение медианы сводится к отысканию порядкового номера медианы.

Значение медианы для нечетного объема вычисляется по формуле:

где п - число членов ряда.

В интервальном ряду распределения сразу можно указать только интервал, в котором будет находиться медиана. Для определения ее величины используется специальная формула:

где х ие - нижняя граница интервала, который содержит медиану; i ие - медианный интервал;

- половина от общего числа наблюдений;

F m _ 1 - накопленная частота в интервале, предшествующему медианному;

fме " числ0 наблюдений в медианном интервале.

Таким образом, мода и медиана являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа формы рядов распределения.

Контрольные вопросы и задания

  • 1. Назовите виды статистических показателей. Приведите примеры.
  • 2. Что понимается под абсолютными статистическими величинами и каково их значение? Приведите примеры абсолютных величин.
  • 3. Всегда ли для анализа изучаемого явления достаточно одних абсолютных показателей?
  • 4. Что называется относительными показателями?
  • 5. Каковы основные условия правильного расчета относительной величины?
  • 6. Какие виды относительных величин Вы знаете? Приведите примеры.
  • 7. Дайте определение средней величины.
  • 8. Какие виды средних величин применяются в статистике? Какие виды средних величин используются чаще всего?
  • 9. Как исчисляется средняя арифметическая простая и в каких случаях она применяется?
  • 10. Как исчисляется средняя арифметическая взвешенная и в каких случаях она применяется?
  • 11. Как исчисляется средняя арифметическая из вариационного
  • 12. Каковы основные свойства средней арифметической?
  • 13. Для чего служит средняя гармоническая? Чем она отличается от средней арифметической?