Средние величины и показатели вариации. Средние величины, их сущность и значение. Виды средних величин

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их.

Однако для того чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно одно–родных единиц. Это требование является основным условием научно обоснованного применения средних величин величин и предполагает тесную связь метода средних и метода группировок в анализе социально-экономических явлений.

Средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Средняя, рассчитанная по совокупности в целом, называется общей средней, средние, исчисленные для каждой группы,– групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику размера явления, складывающуюся в конкретных условиях данной группы.

В статистике используют различные виды средних величин, которые делятся на два больших класса:

1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);

2) структурные средние (мода, медиана).

Самый распространенный вид средней – средняя арифметическая. Формула простой средней арифметической:

Средняя арифметическая взвешенная:

где xi –варианты осредняемого признака; f – частота, которая показывает, сколько раз встречается i-е значение в совокупности.

Формула простой средней гармонической:

где хi – отдельные варианты; n – число вариантов осредняемого признака. Средняя геометрическая простая рассчитывается по формуле:

Формула средней геометрической взвешенной:

Формула средней квадратической:

Формула средней квадратической взвешенной:

Формула средней кубической:

Средняя кубическая взвешенная:

3. Структурные средние: мода и медиана

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле:

h – величина интервала;

fm – частота интервала;

fm-1 – частота предшествующего интервала;

fm+1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

Sm- 1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В ведение

В данной курсовой работе рассмотрена тема изучения метода средних величин. В них отображаются основные показатели, которые характеризуют общественные явления, к примеру, товарооборот, заработанная плата, товарные запасы, цены, рождаемость. Характеризуются средними величинами и качественные показатели коммерческой деятельности: прибыль, издержки обращения, рентабельность и т.п. Верное понимания сути средней посредством единичного и случайного позволяет выявить необходимое и общее, а также извлечь тенденцию закономерностей социального и экономического развития. Метод средних величин свое применение находит при статистических исследованиях в любой сфере.

В теоретическом разделе изучим виды средних величин, а именно: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая, а также структурные средние величины - в экономическом анализе и условия их использования.

В практической части представлены задания на нахождение средних величин, на примере данных задач будут показаны разные способы расчета средних величин, а также их использование в экономическом анализе.

1 . Средние величины в экономическом анализе

Как известно статистика исследует массовые социально-экономические явления. Любое из данных явлений может иметь разное количественное выражение одного какого-либо признака. К примеру, зарплата одной какой-либо профессии сотрудников или цены на рынке на какую-либо продукцию и т.д. Средние величины отражают качественные показатели коммерческой деятельности: прибыль, издержки обращения, рентабельность и т.п.

С целью изучения определенной совокупности по варьирующим (изменяющимся количественно) признакам использует статистика средние величины.

Средней величиной называют обобщающий показатель, который характеризует типичный уровень явления в определенных условиях места и времени, который отражает величину варьирующего признака в ходе расчета на 1 ед. качественно однородной совокупности. Число показателей, вычисленных в виде средних величин, и используемых на практике достаточно велико.

Основное свойство средней величины состоит в том, что средняя величина представляет значение конкретного признака во всей совокупности 1-им числом, независимо от количественных различий его у отдельных единиц совокупности, а также выражает то общее, что всем единицам анализируемой совокупности присуще. Итак, через характеристику единицы совокупности средняя величина характеризует всю совокупность в общем.

Они связаны с законом больших чисел. Сущность данной связи заключается в том, что случайные отклонения индивидуальных величин при осреднении по закону больших чисел взаимопогашаются и в средней выявляется главная тенденция развития.

Средние величины могут сравнивать показатели, которые относятся к совокупностям с разной численностью единиц. Основным условием научного использования средних величин в оценке общественных явлений является однородная совокупность, для которой рассчитывается средняя величина. Одинаковая по технике вычисления и форме средняя величина при условии неоднородной совокупности является фиктивной, а для однородной совокупности она соответствует действительности.

Определяется качественная однородность совокупности за счет всестороннего теоретического анализа сущности какого-либо явления. К примеру, в расчете средней урожайности необходимо, чтобы исходные данные относились к однородной культуре (то есть средняя урожайность пшеницы) или группе культур (к примеру, средняя урожайность зерновых). Невозможно рассчитывать среднюю величину для разнородных культур.

Итак, главными свойствами средней являются:

Наличие устойчивости - это позволяет извлекать закономерности развития явлений.

Помогает охарактеризовать развитие уровня явления относительно времени.

Помогает извлекать и охарактеризовать связь между двумя и несколькими явлениями.

Фактор, по которому проводится осреднение, называют усредняемым признаком. А его величина у каждой единицы совокупности называют ее индивидуальным значением.

То значение признака, которое встречается у отдельных единиц или групп единиц и не повторяется, называется его вариантом.

Средняя может принимать значения такие, которые не присущи ни одному из составляющей совокупности. Также на практике очень часто средняя величина выражается для дискретного признака как для непрерывного. К примеру, среднее число родившихся на каждую 1000 населения в регионе: имеются в регионе населенные пункты, где в каждом складывается свой уровень рождаемости. Для расчета средней рождаемости по региону надо численность родившихся всех младенцев соотнести с численностью населения, а полученный результат умножить на 1000.

Итог расчета средней величины по этому показателю может выражаться и в дробях, даже несмотря на то, что число родившихся - это целое число.

Средняя является равнодействующей всех факторов, которые оказывают влияние на исследуемое явление. Другими словами, при их расчете взаимопогашаются влияние случайных факторов, а далее возможно определение закономерности, которая присуще изучаемому явлению.

Значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, существование средних величин является категорией объективной действительности.

Таким образом, к расчету средней предъявляются следующие основные требования:

Их нужно рассчитывать таким образом, чтобы средняя величина погашала то, что мешает извлечению характерных черт и закономерностей в развитии явления, а не затушевывала развитие.

Она может быть рассчитана только для однородной совокупности. Средняя величина, которая была рассчитана для неоднородной совокупности, называется огульной.

Одинаковые по технике вычисления и форме средние величины в одних случаях могут быть огульными, а в иных - общими в зависимости от того, с какой целью их интерпретируют.

Не стоит забывать, что средняя величина дает всегда обобщенную характеристику только по одному признаку. Каждая же единица совокупности имеет много признаков. Поэтому необходимо рассчитывать систему средних, чтобы охарактеризовать явление со всех сторон.

Расчет средних величин производится по правилам, разработанные математической статистикой.

Приемы в математике, которые используются в разных разделах статистики, связаны непосредственно с расчетом средних величин.

В общественных явлениях средние величины относительно постоянны, другими словами, в течение обозначенного промежутка времени однотипные явления отражаются примерно одинаковыми средними.

Важным условием расчета средних величин для изучаемой совокупности является качественная ее однородность. Допустим, отдельные составляющие совокупности, в ходе подверженности влиянию какого-либо случайного фактора, имеют очень большие (малые) размеры изучаемого признака, которые существенно отличаются от остальных. Данные элементы повлияют на размер средней величины для этой совокупности, так что средняя величина не будет выражать наиболее характерную величину признака для совокупности.

Средняя величина является обобщающей статистической характеристикой, в которой получает количественное выражение типичный уровень признака, обладающей членами исследуемой совокупности. Однако одной средней нельзя охарактеризовать все черты распределения статистики. Существуют совпадения средних арифметических величин при разном распределении.

Показатели вариации используются с целью характеристики и упорядочения совокупностей статистики. Вариацией называют различие в величинах определенного признака у разных единиц совокупности в один и тот же период времени. Вариация помогает понять сущность рассматриваемого явления. Относятся к показателям вариации размах вариации, дисперсия, среднее линейное отклонение, среднее квадратическое отклонение, а также коэффициент вариации.

Если изучаемое явление не является однородным, тогда его разбивают на группы, которые содержат однородные элементы. Для данного явления рассчитываются в первую очередь средние по группам, они выражают более типичную величину явления в каждой группе. Далее для всех элементов рассчитывается общая средняя величина, которая характеризует явление в целом. Рассчитывается она как средняя из групповых средних, взвешенных по числу элементов совокупности, которые включены в каждую группу.

Однако на практике безусловное исполнение этого условия повлекло за собой бы ограничение возможностей статистического анализа. Так что средние величины часто рассчитываются по неоднородным явлениям.

Еще одним основным условием использования средних величин в статистическом анализе является достаточное число единиц в совокупности, по которой производят расчет средних значений признака. Достаточность изучаемых единиц обеспечивается корректным определением границ исследуемой совокупности. Такое условие становится решающим в случае использования выборочного наблюдения, когда важно обеспечить репрезентативность выборки.

Определение минимального и максимального значения признака в рассматриваемой совокупности является также условием использования средней величины в статистическом анализе. Если существуют большие отклонения между крайними значениями и средней, то важно проверить принадлежность экстремумов к изучаемой совокупности. Если сильная изменчивость признака вызвана кратковременными и случайными факторами, тогда возможно, что крайние значения не характерны для совокупности. А значит, их необходимо исключить из анализа, поскольку они оказывают влияние на среднюю.

2 . Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

Арифметическая

Гармоническая

Геометрическая

Квадратическая

Структурные средние:

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

Расчет некоторых средних величин:

Средняя заработная плата 1 работника = Фонд заработной платы / Число работников

Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции

Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции

Средняя урожайность = Валовый сбор / посевная площадь

Средняя производительность труда = объем продукции, работ, услуг / Отработанное время

Средняя трудоемкость = отработанное время / объем продукции, работ, услуг

Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг

Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов

Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала

Средний процент брака = (стоимость бракованной продукции / Стоимость всей произведенной продукции) * 100%

Перечисленные виды средних величин можно объединить общей формулой (среднее значение исследуемого явления):

m - показатель степени средней величины;

х - текущее значение осредняемого признака;

n - число признаков.

В зависимости от значения показателя степени m различают следующие виды степенных средних величин, если:

m = -1 - средняя гармоническая;

m = 0 - средняя геометрическая;

m = 1 - средняя арифметическая;

m = 2 - средняя квадратичная.

В экономике используется большое количество показателей, вычисляемых в виде средних величин. К примеру, интегральным показателем доходов работающих акционерного общества (АО) служит средний доход одного рабочего, который определяется отношением суммарного фонда заработной платы и выплат социального характера за определенный период (год, квартал, месяц) к итоговой численности рабочих АО.

Для рабочих с одинаковым уровнем доходов, например, сотрудников бюджетной сферы и пенсионеров по старости можно определить доли расходов на покупку продуктов питания. Так можно расчитать среднюю продолжительность рабочего дня, средний тарифный разряд рабочих, средний уровень производительности труда и т.д.

Правило мажорантности средних: чем выше показатель степени m, тем больше величина средней.

Средняя арифметическая величина обладает следующими свойствами:

Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.

Если все значения признака (х) увеличить (уменьшить) в одно и то же число К раз, то средняя увеличится (уменьшится) в К раз.

Если все значения признака (x) увеличить (уменьшить) на одно и то же число A, то средняя увеличится (уменьшится) на это же число А.

Если все значения весов (f) увеличить или уменьшить в одно и то же число раз, то средняя не изменится.

Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной.

Одновременное использование некоторых свойств позволяют упростить расчет средней арифметической: можно из всех значений признака вычесть постоянную величину А, разности сократить на общий множитель K, а все веса f разделить на одно и то же число и, по измененным данным, рассчитать среднюю. Затем, если полученное значение средней умножить на K, а к произведению прибавить А, то получим искомое значение средней арифметической по формуле:

Полученная, таким образом, преобразованная средняя, называется моментом первого порядка, а вышеизложенный способ расчета средней - способом моментов, или отсчетом от условного нуля.

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины, в качестве значения признака в группах, принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака необходимо определять экспертным путем, исходя из сущности свойств признака и совокупности.

При отсутствии возможности экспертной оценки, значения признака в открытых интервалах для нахождения недостающей границы открытого интервала, применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»). Иными словами - ширину (шаг) открытого интервала определяют по величине рядом стоящего интервала.

3. П рактическое применение средних величин

Средние величины используются для нахождения уравнения регрессии.

Исходные данные показателей x и y, а также промежуточные расчеты для нахождения коэффициентов уравнения линейной регрессии представлены в таблице 1.

Таблица 1 - Расчеты, необходимые для нахождения параметров регрессии

Надой молока на 1 корову (Y)

Формула уравнения регрессии:

Найдем коэффициент регрессии a1

Линейное уравнение регрессии: у = 183,7241х + 2171,751

2) Прежде, чем построить эмпирическую и теоретическую линии зависимости у от х, построим таблицу значений.

Таблица 2 - Значения теоретической и эмпирической функций

Продолжительность вегетативного периода(Х)

Надой молока на 1 корову (Y)

Точки линейной регрессии и эмпирические значения представлены на графике ниже (рис. 1).

Рисунок 1 - Эмпирические и теоретические значения

3) Линейный коэффициент корреляции:

Связь между признаками прямая, несущественная.

4) Коэффициент детерминации:

R2 = (0,28*0,28)*100% = 7,84%

Коэффициент алиенации: А= 0,96

5) Рассчитаем ошибку коэффициента корреляции и достоверность коэффициента.

Проверим значимость r с помощью критерия Стьюдента при уровне значимости а=0,05

6) Коэффициент Спирмэна будет невозможно правильно сравнить с табличным значением, поскольку объем выборки больше 40.

7) Коэффициент корреляции знаков Ферхена

Таблица 3 - Число С, Н

Надой молока на 1 корову (Y)

Продолжительность вегетативного периода(Х)

С=24; Н=41-24 = 17

Кф = (24-17)/41 = 0,17<0,3 => связь несущественная

8) Коэффициент корреляции показывает, что связь между продолжительностью вегетативного периода и надоем молока на 1 корову прямая, но несущественная. Коэффициент детерминации намного меньше 50%, следовательно, зависимость между двумя признаками слабая. По всем способам проверки значимости коэффициента детерминации было выяснено, что коэффициент линейной корреляции незначим.

Модой называется значение признака (варианта), чаще всего встречающееся в изучаемой совокупности. В дискретном ряду распределения модой будет варианта с наибольшей частотой.

Например: Распределение проданной женской обуви по размерам характеризуется следующим образом:

Таблица 4 - Проданная женская обувь по размерам

В этом ряду распределения модой является 37 размер, т.е. Мо = 37.

Для интервального ряда распределения мода определяется по формуле:

где ХMo - нижняя граница модального интервала;

hMo - величина модального интервала;

fMo - частота модального интервала;

fMo-1 и fMo+1 - частота интервала соответственно

предшествующего модальному и следующего за ним.

Например: Распределение рабочих по стажу работы характеризуется следующими данными.

Таблица 5

Определить моду интервального ряда распределения.

Мода интервального ряда составляет:

Мо = 6+2х(35-20)/(35-20+35-11) = 6,77 года.

Мода всегда бывает несколько неопределённой, т.к. она зависит от величины групп и точного положения границ групп. Мода широко применяется в коммерческой практике при изучении покупательского спроса, при регистрации цен и т.п.

Медианой в статистике называется варианта, расположенная в середине упорядоченного ряда данных, и которая делит статистическую совокупность на две равные части так, что у одной половины значения меньше медианы, а у другой половины - больше её. Для определения медианы необходимо построить ранжированный ряд, т.е. ряд в порядке возрастания или убывания индивидуальных значений признака.

В дискретном упорядоченном ряду с нечётным числом членов медианой будет варианта, расположенная в центре ряда.

Например: Стаж пяти рабочих составил 2, 4, 7, 9 и 10 лет. В таком ряду медиана-7 лет, т.е. Ме=7 лет

Если дискретный упорядоченный ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух смежных вариант, стоящих в центре ряда.

Например: Стаж работы шести рабочих составил 1, 3, 4, 5, 10 и 11лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 4 и 5. Средняя арифметическая из этих значений и будет медианой ряда:

Ме = (4+5)/2 = 4,5 года

Чтобы определить медиану для сгруппированных данных, необходимо считать накопленные частоты.

Например: По имеющимся данным определим медиану размера обуви

Таблица 6

Размер обуви

Количество проданных пар

Сумма накопленных частот

средний величина медиана мода

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину суммы частот ряда. В нашем примере сумма частот составила 300, её половина - 150. Накопленная сумма частот получилась равной 169. Варианта, соответствующая этой сумме, т.е. 37 и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине суммы частот ряда, то медиана определяется как средняя арифметическая этой варианты и последующей.

Например: По имеющимся данным определим медиану заработной платы рабочих

Таблица 7

Медиана будет равна:

Ме = (16,0+16,8)/2 = 16,4 тыс. руб.

Медиана интервального вариационного ряда распределения определяется по формуле:

Где ХМе - нижняя граница медианного интервала;

hMe - величина медианного интервала;

F - сумма частот ряда;

fМе - частота медианного интервала;

Таблица 8

Число предприятий

Сумма накопленных частот

Определим, прежде всего, медианный интервал. В данном примере сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу 400-500.Это и есть медианный интервал, т.е. интервал, в котором находится медиана ряда. Определим её значение:

Ме = 400+100х(80/2 -11)/30 = 400+96,66 = 496,66 чел.

Если же сумма накопленных частот против одного из интервалов равна точно половине суммы частот ряда, то медиана определяется по формуле:

где n - число единиц в совокупности.

Например: По имеющимся данным о распределении предприятий по численности промышленно - производственного персонала рассчитать медиану в интервальном вариационном ряду

Таблица 9

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

Медиана рассчитывается следующим образом:

Ме = 500+100((80+1)/2 - 40)/20 = 502,5 чел.

Моду и медиану в интервальном ряду можно определить графически:

Моду в дискретных рядах - по полигону распределения;

Моду в интервальных рядах - по гистограмме распределения;

Медиану - по кумуляте.

Мода интервального ряда распределения определяется по гистограмме распределения определяют следующим образом.

Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника - с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

Рисунок 2 - Графическое определение моды по гистограмме

Медиана рассчитывается по кумуляте. Для её определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Рисунок 3 - Графическое определение медианы по кумуляте

Кроме моды и медианы в вариантных рядах могут быть определены и другие структурные характеристики - квантили.

Квантили предназначены для более глубокого изучения структуры ряда распределения.

Квантиль - это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности.

Предоставляют важную информацию о структуре вариационного ряда какого-либо признака. Вместе с медианой они делят вариационный ряд на 4 равные части. Квартилей две, их обозначают символами Q, верхняя и нижняя квартиль. 25% значений меньше, чем нижняя квартиль, 75% значений меньше, чем верхняя квартиль.

Для расчёта квартили надо поделить вариационный ряд медианой на две равные части, а затем в каждой из них найти медиану. К примеру, если выборка состоит из 6 элементов, тогда за начальную квартиль выборки принимается второй элемент, а за нижнюю квартиль пятый элемент.

Различают следующие виды квантилей:

Квартили - значения признака, делящие упорядоченную совокупность на четыре равные части;

Децили - значения признака, делящие упорядоченную совокупность на десять равных частей;

Перцентели - значения признака, делящие упорядоченную совокупность на сто равных частей.

Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значение признака, мода, медиана.

При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:

Для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую.

Такие процессы характеризуются симметричными распределениями, в которых

Для неустойчивых процессов положение центра распределения характеризуется с помощью Mo или Me.

Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку занимает положение между средней арифметической и модой.

З аключение

Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте, именно по - этому средняя имеет большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего - проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель - это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является потому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности.

Средняя величина является отражением значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп.

Литература

1. Батурина И., Непринцева Е. Производство и предложение. Издержки и прибыль. \\ Жур. «Российский экономический журнал». № 3., 2009, с. 119.

2. Беложецкий И.А. Прибыль предприятия. // Жур. «Финансы», № 3, 2009, с. 40.

3. Булатова А.С. Экономика: Учебник. - М.: Изд-во БЕК. - 2008. - с. 632.

4. Вероятность. Примеры и задачи: А. Шень - Москва, МЦНМО, 2009 г.- 64 с.

5. Долан Э. Дж., Линдсей Д. Микроэкономика. - 2009. - с. 448.

6. Елисеева И.И. Общая теория статистики: учебник для вузов / И.И. Елисеева, М.М. Юзбашев; под ред. И.И. Елисеевой. - М.: Финансы и статистика, 2009. - 656 с.

7. Ефимова М.Р. Практикум по общей теории статистики: учебное пособие для вузов / М.Р. Ефимова и др. - М.: Финансы и статистика, 2007. - 368 с.

8. Зубко Н.М. Экономическая теория - Мн.: НТЦ АПИ. - 2008. - с. 311.

9. Емцов Р.Г., Лукин М.Ю. Микроэкономика: Учебник. - М.: МГУ им. М.В. Ломоносова, Изд-во ДИС. - 2009. - с. 320.

10. Эдвин Дж. Долан, Дейвид Е. Линдсей. Рынок: микроэкономическая модель. Пер. с англ. СПб.: 2010. - с. 224.

11. Хайман Д.Н. Современная микроэкономика: анализ и применение. Пер. с англ. М.: Финансы и статистика, 2008 г., т. 1 с. 116.

12. Кодацкий В.П. Проблемы формирования прибыли. // Жур. «Экономист», № 3, 2010, с. 49-60.

13. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: учебник для вузов / О.Э. Башина и др.; под ред. О.Э. Башиной, А.А. Спирина. - М.: Финансы и статистика, 2008. - 440 с.

14. Салин В.Н. Курс теории статистики для подготовки специалистов финансово-экономического профиля: учебник / В.Н. Салин, Э.Ю. Чурилова. - М.: Финансы и статистика, 2008. - 480 с.

15. Социально-экономическая статистика: практикум: учебное пособие / В.Н. Салин и др.; под ред. В.Н. Салина, Е.П. Шпаковской. - М.: Финансы и статистика, 2009. - 192 с.

16. Статистика: учебное пособие / А.В. Багат и др.; под ред. В.М. Симчеры. - М.: Финансы и статистика, 2010. - 368 с.

17. Статистика: учебник / И.И. Елисеева и др.; под ред. И.И. Елисеевой. - М.: Высшее образование, 2008. - 566 с.

18. Теория статистики: учебник для вузов / Р.А. Шмойлова и др.; под ред. Р.А. Шмойловой. - М.: Финансы и статистика, 2008. - 656 с.

19. Шмойлова Р.А. Практикум по теории статистики: учебное пособие для вузов / Р.А. Шмойлова и др.; под ред. Р.А. Шмойловой. - М.: Финансы и статистика, 2009. - 416 с.

Размещено на Allbest.ru

Подобные документы

    Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция , добавлен 13.02.2011

    Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа , добавлен 24.09.2012

    Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция , добавлен 25.09.2011

    Применение приема балансовых сопоставлений для определения соотношения между источниками ресурсов. Сопоставление статей баланса на отчетный период. Средние величины в экономическом анализе: среднеарифметические, геометрические, простые, средневзвешенные.

    контрольная работа , добавлен 06.08.2015

    Расчет средних уровней производительности труда и показателей вариации. Понятие моды и медианы признака, построение полигона и оценка характера асимметрии. Методика выравнивания ряда динамики по прямой линии. Индивидуальные и агрегатные индексы объема.

    контрольная работа , добавлен 24.09.2012

    Изучение сущности, видов, сферы применения средних величин. Характеристика степенных средних величин: средняя арифметическая; средняя гармоническая; средняя геометрическая; средняя квадратическая. Анализ структурных величин: медиана, мода, их расчет.

    курсовая работа , добавлен 16.01.2010

    Технико-экономические показатели групп заводов; ряды распределения. Относительные величины интенсивности, цепные и базисные индексы товарооборота. Расчет средней величины, моды и медианы. Среднее квадратическое отклонение; дисперсия, коэффициент вариации.

    контрольная работа , добавлен 06.10.2013

    Средние статистические величины и аналитическая группировка данных предприятия. Результаты расчета коэффициента Фехнера по цехам. Измерение степени тесноты связи в статистике с помощью показателя корреляции. Поля корреляции и уравнения регрессии для цеха.

    практическая работа , добавлен 26.11.2012

    Определение фактического уровня безработицы. Макроэкономические показатели экономики России. Расчеты величины спроса после изменения цены. Определение величины бухгалтерской и экономической прибыли за год. Расчеты величины реального ВВП государства.

    контрольная работа , добавлен 15.01.2011

    Условия применения средних величин в анализе. Виды средних величин. Средняя арифметическая. Средняя гармоническая. Средняя геометрическая. Средняя квадратическая и средняя кубическая. Структурные средние.

В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего - один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п -» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п -> оо можно записать х ~ М[Х], здесь х - средняя величина. То есть средняя величина - это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х - среднее значение;

х { - текущее значение изучаемого признака;

т - показатель степени средней;

п - количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

  • - среднюю гармоническую х гар, если т = -1;
  • - среднюю геометрическую эс геом, если т = 0;
  • - среднюю арифметическую х ар, если т = 1;
  • - среднюю квадратическую х квад, если т = 2;
  • - среднюю кубическую х куб., если т = 3,
  • - ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

В табл. 6.1 х. - результаты, принятые некоторой случайной величиной X в г-м опыте; р. - частота события - показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

Относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая - наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) - значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Мо нижн - нижняя граница модального интервала;

г Мо - длина модального интервала;

Рмо - частота модального интервала;

М-мо_, - частота интервала, предшествующего модальному;

М-мо +1 -- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике - варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где - нижняя граница медианного интервала;

Длина медианного интервала;

Полусумма частот;

Сумма частот, накопленная до начала медианного интервала;

Частота медианного интервала.

Средняя величина является наиболее ценной с аналитической точ­ки зрения и универсальной формой выражения статистических пока­зателей. Наиболее распространенная средняя - средняя арифметичес­кая - обладает рядом математических свойств, которые могут быть использованы при ее расчете. В то же время при исчислении конкрет­ной средней всегда целесообразно опираться на ее логическую фор­мулу, представляющую собой отношение объема признака к объему совокупности. Для каждой средней существует только одно истинное исходное соотношение, для реализации которого, в зависимости от имеющихся данных, могут потребоваться различные формы средних. Однако во всех случаях, когда характер осредняемой величины под­разумевает наличие весов, нельзя вместо взвешенных формул сред­них использовать их невзвешенные формулы.

Средняя величина - это наиболее характерное для совокупности значение признака и распределенный равными долями между единицами совокупности раз­мер признака совокупности.

Признак, для которого рассчитывается средняя величи­на, носит название осредняемый .

Средняя величина - показатель, рассчитываемый сопоставлением абсолютных или относительных величин. Среднюю величину обозначают

Средняя величина отражает влияние всех факторов, влия­ющих на исследуемое явление, и является для них равнодей­ствующей. Другими словами, погашая индивидуальные откло­нения и устраняя влияние случаев, средняя величина, отражая общую меру результатов этого действия, выступает общей закономерностью изучаемого явления.

Условия применения средних величин:

Ø однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значитель­но отличающиеся от остальных величины изуча­емого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее ти­пичную для совокупности величину признака. Если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам - груп­повые средние, выражающие наиболее характерную вели­чину явления в каждой группе, а затем рассчитывается об­щая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из группо­вых средних, взвешенных по числу включенных в каждую группу элементов совокупности;

Ø достаточное количество единиц в совокупности;

Ø максимальное и минимальное значения признака в изучаемой совокупности.

Средняя величина (показатель) – это обобщенная количественная характеристика признака в систематической совокупности в конкретных условиях места и времени .

В статистике применяется следующие формы (виды) средних величин, называемых степенными и структурными:

Ø средняя арифметическая (простая и взвешенная);

простая

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.