Производная разности u v двух функций равна. Что такое производная? Производная натурального логарифма

С правочные материалы по теме «производная». Базовый школьный уровень.
Теоретические сведения для учеников, преподавателей и репетиторов по математике. В помощь к проведению занятий.

Определение: производной функции в точке называется предел отношения приращения функции к приращению переменной, то есть

Таблица производных основных математических функций:

Правила вычисления производных

Производная суммы двух любых выражений равна сумме производных этих выражений (производная суммы равна сумме производных)

Производная разности двух любых выражений равна разности производных этих слагаемых (производная разности равна разности производных).

Производная от произведения двух множителей равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго (сумма поочередно взятых производных от множителей).
Комментарий репетитора по математике: когда я короткими фразами напоминаю ученику о правиле вычисления производной от произведения, я говорю так: производная первого множителя на второй плюс обмен штрихами!


Производная от частного двух выражений равна частному разности поочередно взятых производных от множителей и квадрата знаменателя.

Производная от произведения числа на функцию . Чтобы найти производную от произведения числа на буквенное выражение (на функцию) нужно умножить это число на производную этого буквенного выражения.

Производная сложной функции:

Для вычисления производной сложной функции необходимо найти производную внешней функции и умножить ее на производную внутренней функции.

Ваши комментарии и отзывы к странице с производными:
Александр С.
Очень нужна была таблица. В интернете одна из самых. За пояснения и правила тоже огромное спасибо. Хотя бы по одному примеру ещё к ним и вообще было бы отлично было. Еще раз огромное спасибо.

Колпаков А.Н, репетитор по математике: хорошо, постараюсь в ближайшее время дополнить страницу примерами.

Виртуальный математический справочник.
Колпаков Александр Николаевич, репетитор по математике.

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Задача нахождения производной от заданной функции является одной из основных в курсе математики старшей школы и в высших учебных заведениях. Невозможно полноценно исследовать функцию, построить ее график без взятия ее производной. Производную функции легко можно найти, зная основные правила дифференцирования, а также таблицу производных основных функций. Давайте разберемся, как найти производную функции.

Производной функции называют предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Понять это определение достаточно сложно, так как понятие предела в полной мере не изучается в школе. Но для того, чтобы находить производные различных функций, понимать определение не обязательно, оставим его специалистам математикам и перейдем сразу к нахождению производной.

Процесс нахождения производной называется дифференцированием. При дифференцировании функции мы будем получать новую функцию.

Для их обозначения будем использовать латинские буквы f, g и др.

Существует много всевозможных обозначений производных. Мы будем использовать штрих. Например запись g" означает, что мы будем находить производную функции g.

Таблица производных

Для того чтобы дать ответ на вопрос как найти производную, необходимо привести таблицу производных основных функций. Для вычисления производных элементарных функций не обязательно производить сложные вычисления. Достаточно просто посмотреть ее значение в таблице производных.

  1. (sin x)"=cos x
  2. (cos x)"= –sin x
  3. (x n)"=n x n-1
  4. (e x)"=e x
  5. (ln x)"=1/x
  6. (a x)"=a x ln a
  7. (log a x)"=1/x ln a
  8. (tg x)"=1/cos 2 x
  9. (ctg x)"= – 1/sin 2 x
  10. (arcsin x)"= 1/√(1-x 2)
  11. (arccos x)"= - 1/√(1-x 2)
  12. (arctg x)"= 1/(1+x 2)
  13. (arcctg x)"= - 1/(1+x 2)

Пример 1. Найдите производную функции y=500.

Мы видим, что это константа. По таблице производных известно, что производная константы, равна нулю (формула 1).

Пример 2. Найдите производную функции y=x 100 .

Это степенная функция в показателе которой 100 и чтобы найти ее производную нужно умножить функцию на показатель и понизить на 1 (формула 3).

(x 100)"=100 x 99

Пример 3. Найдите производную функции y=5 x

Это показательная функция, вычислим ее производную по формуле 4.

Пример 4. Найдите производную функции y= log 4 x

Производную логарифма найдем по формуле 7.

(log 4 x)"=1/x ln 4

Правила дифференцирования

Давайте теперь разберемся, как находить производную функции, если ее нет в таблице. Большинство исследуемых функций, не являются элементарными, а представляют собой комбинации элементарных функций с помощью простейших операций (сложение, вычитание, умножение, деление, а также умножение на число). Для нахождения их производных необходимо знать правила дифференцирования. Далее буквами f и g обозначены функции, а С - константа.

1. Постоянный коэффициент можно выносить за знак производной

Пример 5. Найдите производную функции y= 6*x 8

Выносим постоянный коэффициент 6 и дифференцируем только x 4 . Это степенная функция, производную которой находим по формуле 3 таблицы производных.

(6*x 8)" = 6*(x 8)"=6*8*x 7 =48* x 7

2. Производная суммы равна сумме производных

(f + g)"=f" + g"

Пример 6. Найдите производную функции y= x 100 +sin x

Функция представляет собой сумму двух функций, производные которых мы можем найти по таблице. Так как (x 100)"=100 x 99 и (sin x)"=cos x. Производная суммы будет равна сумме данных производных:

(x 100 +sin x)"= 100 x 99 +cos x

3. Производная разности равна разности производных

(f – g)"=f" – g"

Пример 7. Найдите производную функции y= x 100 – cos x

Эта функция представляет собой разность двух функции, производные которых мы также можем найти по таблице. Тогда производная разности равна разности производных и не забудем поменять знак, так как (cos x)"= – sin x.

(x 100 – cos x)"= 100 x 99 + sin x

Пример 8. Найдите производную функции y=e x +tg x– x 2 .

В этой функции есть и сумма и разность, найдем производные от каждого слагаемого:

(e x)"=e x , (tg x)"=1/cos 2 x, (x 2)"=2 x. Тогда производная исходной функции равна:

(e x +tg x– x 2)"= e x +1/cos 2 x –2 x

4. Производная произведения

(f * g)"=f" * g + f * g"

Пример 9. Найдите производную функции y= cos x *e x

Для этого сначала найдем производного каждого множителя (cos x)"=–sin x и (e x)"=e x . Теперь подставим все в формулу произведения. Производную первой функции умножим на вторую и прибавим произведение первой функции на производную второй.

(cos x* e x)"= e x cos x – e x *sin x

5. Производная частного

(f / g)"= f" * g – f * g"/ g 2

Пример 10. Найдите производную функции y= x 50 /sin x

Чтобы найти производную частного, сначала найдем производную числителя и знаменателя отдельно: (x 50)"=50 x 49 и (sin x)"= cos x. Подставив в формулу производной частного получим:

(x 50 /sin x)"= 50x 49 *sin x – x 50 *cos x/sin 2 x

Производная сложной функции

Сложная функция - это функция, представленная композицией нескольких функций. Для нахождения производной сложной функции также существует правило:

(u (v))"=u"(v)*v"

Давайте разберемся как находить производную такой функции. Пусть y= u(v(x)) - сложная функция. Функцию u назовем внешней, а v - внутренней.

Например:

y=sin (x 3) - сложная функция.

Тогда y=sin(t) - внешняя функция

t=x 3 - внутренняя.

Давайте попробуем вычислить производную этой функции. По формуле необходимо перемножить производные внутренней и внешней функции.

(sin t)"=cos (t) - производная внешней функции (где t=x 3)

(x 3)"=3x 2 - производная внутренней функции

Тогда (sin (x 3))"= cos (x 3)* 3x 2 - производная сложной функции.

При выводе самой первой формулы таблицы будем исходить из определения производнойфункции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не являетсянеопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:

Производная логарифмической функции.

Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:

Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.

Производные тригонометрических функций.

Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.

Следовательно, производная функции cos x есть –sin x .

Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).

Производные гиперболических функций.

Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Чтобы при изложении не было путаницы, давайте обозначать в нижнем индексе аргумент функции, по которому выполняется дифференцирование, то есть, - это производная функции f(x) по x .

Теперь сформулируем правило нахождения производной обратной функции.

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x) , то в точке существует конечная производная обратной функции g(y) , причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Давайте проверим справедливость этих формул.

Найдем обратную функцию для натурального логарифма (здесь y – функция, а x - аргумент). Разрешив это уравнение относительно x , получим (здесь x – функция, а y – ее аргумент). То есть, и взаимно обратные функции.

Из таблицы производных видим, что и .

Убедимся, что формулы нахождения производных обратной функции приводят нас к этим же результатам:

Как видите, получили такие же результаты как и в таблице производных.

Теперь мы обладаем знаниями для доказательства формул производных обратных тригонометрических функций.

Начнем с производной арксинуса.

. Тогда по формуле производной обратной функции получаем

Осталось провести преобразования.

Так как областью значений арксинуса является интервал , то (смотрите раздел основные элементарные функции, их свойства и графики). Поэтому , а не рассматриваем.

Следовательно, . Областью определения производной арксинуса является промежуток (-1; 1) .

Для арккосинуса все делается абсолютно аналогично:

Найдем производную арктангенса.

Для обратной функцией является .

Выразим арктангенс через арккосинус, чтобы упростить полученное выражение.

Пусть arctgx = z , тогда

Следовательно,

Схожим образом находится производная арккотангенса:

Наверное, понятие производной знакомо каждому из нас ещё со школы. Обычно у учеников возникают трудности с пониманием этой, несомненно, очень важной вещи. Она активно применяется в различных областях жизни людей, и многие инженерные разработки были основаны именно на математических расчётах, полученных с помощью производной. Но прежде чем перейти к разбору того, что же такое производные чисел, как их вычислять и где они нам пригодятся, окунёмся немного в историю.

История

Являющееся основой математического анализа, было открыто (лучше даже сказать "изобретено", потому что в природе оно как таковое не существовало) Исааком Ньютоном, которого мы все знаем по открытию закона всемирного тяготения. Именно он впервые применил в физике это понятие для связывания природы скорости и ускорения тел. И многие учёные до сих пор восхваляют Ньютона за это великолепное изобретение, ведь по сути он изобрёл основу дифференциального и интегрального исчисления, фактически основу целой области математики под названием "математический анализ". Будь в то время Нобелевская премия, Ньютон с большой вероятностью получил бы её несколько раз.

Не обошлось и без других великих умов. Кроме Ньютона над развитием производной и интеграла потрудились такие именитые гении математики, как Леонард Эйлер, Луи Лагранж и Готфрид Лейбниц. Именно благодаря им мы получили теорию в таком виде, в котором она существует по сей день. Кстати, это Лейбниц открыл геометрический смысл производной, которая оказалась ничем иным, как тангенсом угла наклона касательной к графику функции.

Что же такое производные чисел? Немного повторим то, что проходили в школе.

Что такое производная?

Определять это понятие можно несколькими разными способами. Самое простое объяснение: производная - это скорость изменения функции. Представим график какой-нибудь функции y от x. Если это не прямая, то она имеет некоторые изгибы в графике, периоды возрастания и убывания. Если брать какой-нибудь бесконечно малый промежуток этого графика, он будет представлять собой отрезок прямой. Так вот, отношение размера этого бесконечно малого отрезка по координате y к размеру по координате x и будет являться производной данной функции в данной точке. Если рассматривать функцию в целом, а не в конкретной точке, то мы получим функцию производной, то есть некую зависимость игрек от икс.

К тому же кроме как скорости изменения функции есть ещё и геометрический смысл. О нём мы сейчас и поговорим.

Геометрический смысл

Производные чисел сами по себе представляют собой некое число, которое без должного понимания не несёт никакого смысла. Оказывается, производная не только показывает скорость роста или уменьшения функции, а также тангенс угла наклона касательной к графику функции в данной точке. Не совсем понятное определение. Разберём его поподробнее. Допустим, у нас есть график какой-либо функции (для интереса возьмём кривую). На ней есть бесконечное множество точек, но есть такие области, где только одна единственная точка имеет максимум или минимум. Через любую такую точку можно провести прямую, которая была бы перпендикулярна графику функции в этой точке. Такая линия будет называться касательной. Допустим, мы провели её до пересечения с осью OX. Так вот, полученный между касательной и осью OX угол и будет определяться производной. А точнее, тангенс этого угла будет равняться ей.

Поговорим немного о частных случаях и разберём производные чисел.

Частные случаи

Как мы уже говорили, производные чисел - это значения производной в конкретной точке. Вот например, возьмём функцию y=x 2 . Производная х - число, а в общем случае - функция, равная 2*x. Если нам необходимо вычислить производную, скажем, в точке x 0 = 1, то получаем y"(1)=2*1=2. Всё очень просто. Интересный случай представляет производная Вдаваться в подробное объяснение того, что такое комплексное число, мы не будем. Скажем лишь, что это число, которое содержит в себе так называемую мнимую единицу - число, квадрат которого равен -1. Вычисление такой производной возможно только при наличии следующих условий:

1) Должны существовать частные производные первого порядка от действительной и мнимой части по игрек и по икс.

2) Выполняются условия Коши-Римана, связанные с равенством частных производных, описанных в первом пункте.

Другим интересным случаем, хотя и не таким сложным как предыдущий, является производная отрицательного числа. На самом деле любое отрицательное число можно представить как положительное, умноженное на -1. Ну а производная постоянной и функции равна постоянной, умноженной на производную функции.

Интересно будет узнать о роли производной в повседневной жизни, и именно это сейчас и обсудим.

Применение

Наверное, каждый из нас хоть раз в жизни ловит себя на мысли, что математика вряд ли пригодится ему. А такая сложная штука, как производная, наверное, вообще не имеет применения. На самом деле, математика - и все её плоды развивает в основном физика, химия, астрономия и даже экономика. Производная положила начало который дал нам возможность делать выводы из графиков функций, и мы научились интерпретировать законы природы и обращать их в свою пользу благодаря ему.

Заключение

Конечно, не каждому, возможно, пригодится производная в реальной жизни. Но математика развивает логику, которая уж точно будет нужна. Не зря ведь математику называют царицей наук: из неё складываются основы понимания других областей знаний.