Относительные скорости движения ионов в растворах. Электрическая проводимость. Абсолютная скорость и подвижность ионов

Растворы электролитов. Теория электрической диссоциации.

Электролиты – вещества, которые в растворе или расплаве полностью или частично состоят из ионов. Данные вещества способны проводить электрический ток.

Теория Аринуса:1) При растворении в воде молекулы электролитов распадаются на катионы и анионы, что приводит изменению энергии Гиббса. . 2)Процесс диссоциации обратим, т.е. в растворе существует равновесие. А при разбавлении возможна полная диссоциация. . 3)Сумма катионов равна сумме анионов. 4)Растворы ведут себя, как идеальные газы (истинно только для растворов слабых электролитов).

Для количественной характеристики электролитов была введена степень диссоциации: - число продиссоциированных молекул; - общее число молекул в растворе; По степени диссоциации различают сильные ( =1, диссоциация проходит полностью) и слабые ( электролиты.

Характеристикой слабых электролитов является константа диссоциации:

Связь между и описывает закон разбавления Осфальда: . Растворы электролитов значительно отличаются от идеальных растворов тем, что происходит увеличение частиц в результате диссоциации.

Изотонический коэффициент – отношение фактического числа частиц в растворе, к тому, которое было бы без диссоциации. Связь между и : K – суммарное число ионов, образующихся в процессе диссоциации 1 молекулы электролита.

Сильные электролиты.

ü В растворах полностью диссоциируют на ионы;

ü Между ионами существует электростатическое взаимодействие – каждый ион окружён обратно заряженными ионами, так называемой ионной атмосферой.

Для растворов сильных электролитов используют активности, а не концентрации.

Коэффициент активности () – мера отличия свойств растворов электролитов от свойств идеальных растворов.

Для сильных электролитов нужно учитывать силы электростатического взаимодействия между ионами, т.к. происходит уменьшение скорости движения ионов из-за двух эффектов: 1)Катоффетический – торможение ионов при движении из-за наличия ионной атмосферы. 2)Релаксационный – разрушение старой ионной атмосферы и образование новой.

Механизм движения ионов. Абсолютная скорость ионов.

Для включения электрического поля ионы хаотично движутся,а при наложении поля одно из направлений преобладает,и движение от А к К.По мере увеличения скор.движения возрастает сопротивление среды,оно больше,чем больше вязкость среды и радиус иона.Абсолютная скорость движения ионов равна скорости движения иона при напряжённости электрич.поля = 1 вольт/м2.По мере уменьш. концентрации возрастает число ионов в р-ре.

Движение ионов возникает из-за: 1) неодинакового распределения ионов по обе стороны мембраны; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов.

Способность растворов электролитов проводить электрический ток зависит от природы электролита и растворителя, концентрации и температуры. В растворе электролита сольватированные ионы находятся в беспорядочном тепловом движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам - миграция (перенос). Движение ионов происходит под действием силы, сообщающей им ускорение, однако одновременно с возрастанием скорости их движения увеличивается сопротивление среды. В результате скорость движения ионов через малый промежуток времени становится постоянной.

Сравнение скоростей движения различных видов ионов производится при одинаковом градиенте потенциала поля, равном 1 В/м. Скорость движения ионов в этих условиях называют абсолютной скоростью ионов (электрической подвижностью или абсолютной подвижностью) (u) (она измеряется в )

Движение гидратированного иона может быть уподоблено движению микроскопического шарика в вязкой среде. Данный факт позволяет оценить абсолютную скорость ионов i -го вида формулой Стокса:

где сила, действующая на ион; коэффициент вязкости среды; эффективный радиус частицы, который зависит от размера иона и его гидратации.

Из уравнения (32.41) следует, что чем больше эффективный радиус иона, тем меньше скорость его движения. Например, размеры ионов щелочных металлов увеличиваются в ряду

в то время как способность к гидратации уменьшается в этой же последовательности (ион гидратирован сильнее остальных ионов). В результате эффективные радиусы уменьшаются, а абсолютные скорости при переходе от к возрастают:

Наряду с абсолютной скоростью ионов часто пользуются понятием подвижности ионов. Произведение абсолютной скорости ионов на постоянную Фарадея F называется подвижностью иона (молярной электрической проводимостью). Постоянная Фарадея равно Кл/моль.

Это заряд одного моля электронов т. е. то количество электричества при электролизе, которое необходимо затратить для изменения степени окисле­ния 1 моль вещества на единицу. Единица измерения подвижности ионов , где Cм – (сименс) единица измерения электрической проводимости, обратная единице измерения сопротивления (Ом) т.е. .

Подвижность многозарядных ионов относят к единице заряда, т. е. говорят, например, о подвижности катионов но и анионов но

Числа переноса

Каждый вид ионов переносит определенное количество электричества, зависящее от заряда и концентрации ионов, а также скорости их движения в электрическом поле. Отношение количества электричества перенесенного ионами вида, к общему количеству электричества перенесенному всеми ионами, находящимися в растворе, называют числом переноса ионов:



В соответствии с этим определением сумма чисел переноса всех видов ионов в растворе равна единице.

Для симметричного электролита KA , диссоциирующего на два вида ионов и , количество электричества, перенесенное катионами и анионами, составит соответственно:

где элементарный заряд; заряд катиона и аниона; молярная концентрация катионов и анионов абсолютные скорости ионов. Отношение чисел переноса катионов и анионов равно отношению их абсолютных скоростей или подвижностей:

а поскольку то

Из уравнений видно, что число переноса данного вида иона зависит от абсолютной скорости и подвижности обоих видов ионов, т. е. в растворах разных электролитах числа переноса одного и того же иона различны.

На степень гидратации ионов, величины их абсолютной скорости и числа переноса влияют концентрация раствора и температура. С ростом концентрации примерно до 0,1 моль/л для большинства электролитов числа переноса ионов изменяются незначительно; в области более высоких концентраций это изменение заметнее. При повышении температуры размеры гидратных оболочек слабо гидратированных ионов уменьшаются менее резко, чем сильно гидрати-рованных (а иногда даже увеличиваются). В результате величины абсолютной подвижности катионов и анионов сближаются, и их числа переноса стремятся к 0,5.


Диэлектрическая проницаемость - величина, показывающая, во сколько раз сила взаимодействия двух зарядов в изучаемой среде меньше, чем в вакууме.

Зарядом иона z называют отношение заряда иона, выраженного в кулонах, к заряду электрона Кл; заряд иона, в кулонах, соответственно, равен произведению ez.



Далее во всех случаях, где это особо не оговаривается, с целью упрощения мы будем говорить о коэффициенте активности и активности электролитов, понимая, что речь идет о среднем коэффициенте активности и средней активности. В дальнейшем пренебрегается и различием между тремя способами выражения активности (коэффициента активности), что вполне допустимо для разбавленных растворов.

Используют также определение – радиус (толщина) ионной атмосферы, дебаевский радиус.

Обозначение единицы электрической проводимости сименс, как и всех других единиц, происходящих от имен собственных, пишется с прописной буквы (См). Это обозначение нельзя путать с обозначением единицы измерения длины – сантиметр (см).

Материал из Юнциклопедии


Один из способов определения того, с какой скоростью движутся ионы в растворе под действием электрического поля, состоит в следующем. Вырежьте полоску фильтровальной бумаги длиной 10 см и шириной 2 см и укрепите её на стекле или другой изолирующей подставке. Концы полоски должны соприкасаться с проводящими контактами, а вся электрическая цепь состоять из выпрямителя или батареи с напряжением 15–20 В (можно соединить несколько батарей последовательно), ключа и полоски, соединенных последовательно (см. рис.). Теперь займемся приготовлением электролита. Лекарство пурген (фенолфталеин) надо растворить в спирте или одеколоне и добавить несколько капель к раствору поваренной соли в воде. Пропитайте бумагу раствором и замкните ключ. У катода образуется красное пятнышко, которое разрастается и начинает перемещаться к аноду. В результате электролиза у катода происходит выделение водорода и образование ионов OH − . Они вызывают окрашивание фенолфталеина и под действием электрического поля движутся к аноду. Определив скорость перемещения красного цвета, можно оценить скорость движения ионов в электролите. Она составляет несколько миллиметров в минуту.

Следует позаботиться о том, чтобы за время опыта фильтровальная бумага не высохла, и закрыть её сверху еще одним стеклом.

Меняя напряжение на зажимах и концентрацию солевого раствора, вы можете выяснить ряд закономерностей движения ионов.

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т. д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой w и выражают в м2 × B–1 × c–1. Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 B × с × См × моль–1) на абсолютную скорость движения иона и выражается в См × м2 × моль–1:

U = F × w (1)

Значения абсолютных скоростей движения и подвижностей ионов при 250С представлены в таблице 1:

Таблица 1

Катион

м2 × B–1 × c–1

См × м2 × моль–1

Анион

м2 × B–1 × c–1

См × м2 × моль–1

36,3 × 10–8

349,9 × 10–4

OH–

20,6 × 10–8

199,2 × 10–4

4,0 × 10–8

38,7 × 10–4

F–

5,7 × 10–8

55,4 × 10–4

5,2 × 10–8

50,3 × 10–4

Cl–

7,9 × 10–8

76,3 × 10–4

7,6 × 10–8

73,5 × 10–4

Br–

8,1 × 10–8

78,4 × 10–4

8,0 × 10–8

77,5 × 10–4

I–

8,0 × 10–8

76,9 × 10–4

8,0 × 10–8

77,5 × 10–4

7,4 × 10–8

71,5 × 10–4

7,6 × 10–8

73,5 × 10–4

CH3COO–

4,2 × 10–8

40,9 × 10–4

Mg2+

5,5 × 10–8

106,1 × 10–4

7,2 × 10–8

138,6 × 10–4

Al3+

6,5 × 10–8

183,2 × 10–4

8,3 × 10–8

159,6 × 10–4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na+, Mg2+, Al3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li+ сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na+, Mg2+, Al3+. С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H + ) и гидроксила OH – . Можно предположить, что ион Н+ должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н+, двигающегося в растворе, существует эффективное движение иона Н+ , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.

font-size:13.0pt;line-height:150%">Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость

Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом–1.

Известно, что R = r https://pandia.ru/text/79/437/images/image007_146.gif" width="20 height=41" height="41">.gif" width="16 height=44" height="44">= æ , то:

L == æ × , (3)

где æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 250С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н3О+ и ОН–.

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов (a <<1).

3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т. е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения a сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:

æ = F × C × a × (w А + w K ) – для слабых электролитов (4)

æ = F × C × fa × (w А + w K ) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м3), a – степень диссоциации слабого электролита, fa – коэффициент активности сильного электролита, w А и w K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λm) существует зависимость:

λm = æ/C, (6)

где λm (лямда) – молярная электрическая проводимость, См × м2 × моль–1, æ – удельная электрическая проводимость, См × м–1; С – концентрация электролита в растворе, моль/м3.

Обычно молярная концентрация характеризуется количеством вещества в 1 дм3 (1л), а не в 1м3. В этом случае соотношение имеет вид:

Скорость направленного движения иона, т. е. путь, пройденный ионом в растворе под действием электрического поля в направлении к электроду за единицу времени, зависит от действующей на ион силы, т. е. от напряженности электрического поля:

где v - скорость движения иона, м/с; Е - напряженность поля, В/м; и - коэф­фициент пропорциональности, называемый электрической подвижностью иона или просто подвижностью иона, м 2 /(В * с).

Подвижность иона характеризует его способность преодолевать со­противление среды при направленном движении в электрическом по­ле. Рассмотрим основные факторы, влияющие на подвижность иона в водных растворах при наличии электрического поля.

Заряд и радиус иона, т. е. его природа. Влияние этих характери­стик иона взаимосвязано, но неоднозначно: чем больше заряд и чем меньше радиус иона, тем сильнее гидратируется ион, тем толще его гидратная оболочка и, следовательно, тем ниже подвижность иона в растворе. В соответствии с этим в ряду однозарядных ионов Li + , Na + , К + , Rb + , Cs + , который характеризуется последовательным возрастани­ем ионного радиуса, радиус гидратированного иона, наоборот, умень­шается, а определенная опытным путем электрическая подвижность ионов возрастает от Li + к Cs + :

Отсутствие резких различий в подвижности многозарядных и од­нозарядных ионов также объясняется большей гидратацией многоза­рядных ионов, что увеличивает размер и снижает их подвижность в электрическом поле несмотря на больший заряд.

Природа растворителя, его диэлектрическая проницаемость и вязкость. Чем полярнее растворитель, тем лучше сольватируется ион, тем больше размеры гидратированного иона и, следовательно, меньше его подвижность. Вязкость растворителя обуславливает сопротивление среды движущемуся иону: чем больше вязкость, тем меньше подвиж­ность иона.

Температура раствора. При повышении температуры уменьшают­ся вязкость растворителя и толщина сольватных оболочек ионов, а также снижается межионное взаимодействие. Все это приводит к уве­личению подвижности ионов.

Ионная сила раствора. Чем больше ионная сила раствора, тем сильнее межионное электростатическое взаимодействие и создаваемые им тормозящие эффекты.

Концентрация ионов. Чем больше концентрация ионов в раство­ре, тем сильнее электростатическое взаимодействие ионов, снижающее их подвижность. Концентрация ионов зависит от силы электролита и его количества в растворе. При разбавлении растворов сильных электро­литов подвижность соответствующих ионов растет, поскольку уменьша­ется их концентрация, а следовательно, снижается межионное взаимо­действие в растворе. В растворах слабых электролитов (обычно а < 0,03) подвижность ионов практически не зависит от разбавления, так как концентрация ионов в этих растворах всегда невелика.

Поскольку подвижность ионов зависит от многих факторов, и прежде всего от их концентрации в растворе, то для характеристики свойств ионов используются значения предельной электрической под­вижности ионов в данном растворителе при данной температуре, кото­рые для водных растворов приведены в табл. 24.1.

Предельной подвижностью иона (и°, м 2 /(В * с)) называется средняя скорость его направленного движения, приобретаемая им в бесконечно разбавленном растворе в однородном элек­трическом поле напряженностью 1 В/м.

Различают предельные подвижности катионов и + 0 и анионов и - 0, поскольку в электрическом поле эти частицы движутся в противопо­ложных направлениях.

Предельная подвижность иона в данном растворителе зависит только от природы иона и температуры. Приведенные в таблице дан­ные показывают, что у большинства ионов предельные подвижности очень малы: (3 - 8) * 10 -8 м 2 /(В * с). Значительно больше подвижность ионов Н + (Н3О +) и ОН-. Это связано с тем, что данные ионы образуют­ся при обратимой диссоциации молекул воды, поэтому для них харак­терен «эстафетный» механизм перемещения. Под действием электри­ческого поля ион гидроксония передает протон по водородной связи молекуле воды ближайшего ассоциата. В результате этот ассоциат приобретает избыточный положительный заряд, который он передает соседнему ассоциату, отдавая протон от ближайшей к нему молекулы воды вдоль силовых линий электрического поля:

Таким образом, за счет перескока протона от ассоциата к ассоциа­ту по водородной связи происходит быстрое перемещение иона гидрок-сония к отрицательному полюсу.

Аналогично происходит перемещение иона гидроксила в водной среде к положительному полюсу путем отщепления им протона от мо­лекулы воды ближайшего ассоциата. Однако подвижность иона гид­роксила меньше, чем иона Н 3 0 + , так как протон в ионе Н 3 0 + связан менее прочно, чем в молекуле воды. В неводных растворителях, где невозможен "эстафетный" механизм движения, ионы Н + и ОН - не имеют аномально большой скорости движения.