Основные методы физико химических измерений. Общая характеристика физико-химических измерений. Особенности измерения состава веществ и материалов

Прогресс ракетно-космической техники позволил осуществить желания многих ученых провести непосредственные исследования химического состава вещества лунной поверхности – «почвы» Луны. При этом стали возможны три вида исследований: 1) исследование общих, глобальных характеристик поверхности с помощью приборов, расположенных на искусственных спутниках Луны; 2) непосредственное изучение состава Луны с помощью приборов, доставленных на ее поверхность; 3) анализ образцов лунного грунта, доставленных на Землю.

Что же конкретно предстояло изучить? Во-первых, нужно было определить химический состав вещества лунной поверхности и сравнить его с составом Земли, метеоритов и Солнца. Во-вторых, предстояло исследовать роль внутренних (излияние лавы, движение коры) и внешних (удары метеоритов, солнечное облучение) процессов в создании современного рельефа лунной поверхности, и, конечно же, ученых прежде всего интересовало, похожи ли по своему составу лунные и земные породы.

Классификация типов земных пород, упомянутая выше (см. 1-ю сноску), исходит из различного содержания в этих породах наиболее распространенных химических элементов – кислорода, натрия, магния, алюминия, кремния, серы, калия, кальция, титана и железа, которые называются основными породообразующими элементами (их суммарное содержание в любых земных породах достигает 99%).

Определение концентраций основных породообразующих элементов позволяет однозначно отнести образец к типу каменных метеоритов или к какому-либо типу земных горных пород. Однако обязательно ли для этого измерять концентрации всех десяти перечисленных элементов? Ведь произвести химический анализ поверхности другого небесного тела – очень сложная научно-техническая задача. Нельзя ли упростить ее и свести число измеряемых элементов к минимально необходимому?

Для этого надо было выяснить, какие же химические элементы являются наиболее «представительными» в том или ином типе породы. Как оказалось, в ряде случаев существенную информацию может дать отношение концентраций различных элементов, среди которых наиболее «представительными» являются магний, алюминий, калий, кальций и железо. Другие элементы представлены в лунных породах в значительно меньших количествах.

Именно содержание этих элементов в лунном грунте и предстояло измерить в первую очередь. Естественно, что выбор метода измерений определялся требованиями, диктуемыми особенностями современного лунного космического эксперимента. На рассматриваемом этапе такой метод должен был обеспечить быстрое и многократное получение информации при полной автоматизации всех процессов анализа, причем в- таких условиях, когда анализируемая поверхность является абсолютно неподготовленной.

На Земле обычно процедура химического анализа состоит из нескольких этапов. Самый начальный – подготовка образца, который в зависимости от метода анализа либо взвешивают и измельчают, либо прессуют в таблетку, а иногда шлифуют или делают тонкие срезы. Идентичность подготовки всех образцов обеспечивает возможность достижения высокой точности анализов и является обязательным условием анализа в земных лабораториях. Совсем другое дело – анализ грунта непосредственно на Луне: грунт неровный, на поверхности видны комки слипшихся частиц, то и дело попадаются камни самых разных размеров (геологи называют это как «грунт в естественном залегании»). Поэтому надо было искать метод, не требующий подготовки образцов, и на его основе создать надежную и легкую аппаратуру с минимальным энергопотреблением.

Требования к этой аппаратуре были очень жесткими. Она должна была переносить весь комплекс вибрационных и ударных нагрузок в период старта ракеты с Земли и в момент доставки прибора на поверхность Луны, а также должна работать в условиях интенсивного космического облучения, глубокого вакуума и резких температурных перепадов (от –150° С в течение двухнедельной лунной ночи до +130° С в дневной период).

Учитывая все эти требования, рассмотрим теперь существующие методы химического анализа и обсудим вопрос о применимости того или иного метода при космических экспериментах непосредственно на поверхности Луны.

К классическим, «мокрым», химическим методам относят те, в которых используются специальные аналитические реакции: по результатам этих реакций судят о наличии (в том числе и количестве) или отсутствии искомого химического элемента. Иногда (при так называемом весовом анализе) определяемый элемент осаждается в виде практически нерастворимого соединения (или простого вещества), отделяется от раствора (фильтрованием, промывкой, сушкой) и взвешивается, а затем по весу осадка рассчитывается количество искомого элемента. Кроме того, можно использовать электролиз, когда определяемый элемент под воздействием постоянного электрического тока выделяют при определенных условиях на электроде. Объемный (титрометрический) анализ основан на применении водного раствора с точно известной концентрацией растворимых реактивов. Применяются также физико-химические способы анализа: колориметрия (изменение интенсивности окраски цветного соединения, получаемого по аналитической реакции), турбудиметрия, нефелометрия (изменение интенсивности света, проходящего через суспензию осадка, полученного в результате аналитической реакции, или рассеянного им), полярографические и адсорбционные методы.

Очевидно, что для проведения анализа грунта этими классическими методами непосредственно на поверхности Луны пришлось бы доставить туда целую лабораторию с хрупкими пробирками, колбами, мензурками, спиртовками, весами и т. д. На Земле каждый анализ проводит квалифицированный химик-аналитик в течение нескольких часов, на Луне все операции должен делать автомат, а они с трудом поддаются автоматизации. Поэтому классические методы с самого начала оказались непригодными для лунных исследований.

Широкое распространение как метод качественного и количественного анализа состава вещества в земных лабораториях получил спектральный оптический анализ. Этот метод подразделяется на два вида (в зависимости от характера используемых спектров). Для анализа спектральных линий излучения, называемых иногда эмиссионными, характерны следующие операции: 1) подготовка образца к анализу, 2) введение его в пламя или воздействие на него электрическим разрядом (для перевода в газообразное состояние и возбуждения свечения с появлением необходимых для анализа спектральных линий), 3) определение спектра и расшифровка соответствующих линий. При этом обычно применяют газовое пламя, дающее температуру до 3000° С. Для другого вида спектрального анализа – по линиям поглощения – пользуются спектрографами со специальными осветительными системами и приемниками, причем объектом непосредственного исследования служат растворы.

Уже из перечисленного ясно, что оба эти вида не удовлетворяют требованиям к космическим экспериментам, так как требуют значительного энергопотребления и не поддаются автоматизации. Кроме того, оптические спектры весьма сложны при расшифровке, а их передача непосредственно на Землю или хранение на борту космического аппарата весьма затруднительны.

Используется на Земле и метод масс-спектрометрического анализа, в результате которого измеряют массы ионизированных атомов и молекул посредством разделения ионов (с разным отношением массы к заряду) в электрическом и магнитном полях. Масс-спектрометрический метод является наиболее полным и точным. К тому же он представляет собой самый прямой метод химического анализа вещества. В случае приемлемого решения проблемы перевода атомов грунта в ионизованное состояние и создания достаточно компактной аппаратуры применение масс-спектрометрического анализа было бы весьма перспективным при исследовании грунта на поверхности Луны. По-видимому, именно метод масс-спектрометрического анализа будет использоваться на последующих этапах освоения Луны, когда станет возможным, с одной стороны, посылать приборы большего веса, потребляющие большую мощность, с другой – будет достигнут существенный прогресс в создании точных масс-спектрометров.

Использование радиоактивности положено в основу метода химического анализа, называемого активационным. При этом используются ядерные реакции, в результате которых атомы исследуемого образца становятся радиоактивными, и по характеристикам их распада (период полураспада, тип радиоактивного излучения и его спектр) осуществляется идентификация элементов, присутствующих в образце. В качестве первичных частиц, вызывающих необходимую реакцию, употребляются нейтроны, а также (иногда) гамма-излучение и заряженные частицы (такие, как протоны и дейтроны). В качестве источников нейтронов применяются реакторы, ускорители различных типов и радиоактивные источники (последние, однако, дают небольшой поток нейтронов). Детекторами в этом методе химического анализа служат счетчики заряженных частиц. Хотя активационный анализ зарекомендовал себя как точный и быстрый метод химического анализа в промышленных и лабораторных условиях, его применение в космических экспериментах требует решения проблемы создания надежно работающего нейтронного источника большой интенсивности, а также преодоления трудностей при передаче и обработке сложных спектров ядерных излучений.

Перейдем теперь к методу рентгеновского спектрометрического анализа химического состава и рассмотрим одно из перспективных его направлений – так называемый «радиоизотопный флуоресцентный анализ».

Если взять радиоактивный источник и с его помощью облучить какое-либо вещество (рис. 1), то под воздействием внешнего излучения произойдет перестройка внешних оболочек атомов. Сначала атомы перейдут в возбужденное состояние, характеризующееся избытком их энергии, но поскольку такое состояние неустойчиво, то через доли секунды атомы освободятся от избыточной энергии, испустив кванты рентгеновского излучения. Это явление называется флуоресценцией.

Примечательно, что энергия кванта для данного вида атомов строго постоянна: различные атомы испускают рентгеновские кванты разной, но характерной для них энергии. Например, энергия этих рентгеновских квантов для алюминия около 1,5 кэВ, кремния – 1,7 кэВ, калия – 3,3 кэВ, кальция – 3,7 кэВ, железа – 6,4 кэВ. Таким образом, определив энергию квантов, можно узнать, какие атомы содержатся в изучаемом веществе, а по интенсивности излучения данной энергии – найти количество атомов в данном веществе.

Для подсчета рентгеновских квантов и одновременно измерения их энергии используются специальные детекторы – пропорциональные счетчики. Попавший в такой детектор рентгеновский квант вызывает ионизацию газа, которым наполнен счетчик, и под действием высокого напряжения, приложенного к счетчику, в нем возникает электрический импульс. Если правильно подобрать величину высокого напряжения, а также давление и сорт газа, размеры детектора, то амплитуда электрического импульса будет пропорциональна энергии рентгеновского кванта (отсюда и название этого детектора).

Совокупность электрических импульсов позволяет получить спектр излучения исследуемого вещества (рис. 2). На этом рисунке мы видим несколько «горбов» – это и есть спектральные «линии» излучения. Спектральные линии теоретически должны быть очень узкими, но из-за специфичности данных детекторов они становятся «размытыми», хотя положение максимумов линий не меняется и соответствует теоретическим значениям.

«Размытие» линий затрудняет их анализ: с помощью пропорциональных счетчиков нельзя определить в отдельности интенсивность двух близких по энергиям линий, поскольку они сливаются в одну. Алюминий и кремний (а также магний) дают одну общую «линию» в спектре горной породы, калий вместе с кальцием образуют другую «линию». Третья «линия» на этом рисунке принадлежит железу. Разница в энергиях между этими тремя «линиями» достаточно велика, так что они довольно легко различаются. Таким образом, полученный спектр дает возможность получить определенную информацию при использовании рентгено-флуоресцентного метода.

Каким же образом определяется интенсивность реальных спектральных линий отдельных элементов? Здесь на помощь приходит так называемый «метод фильтров». Дело в том, что поглощение рентгеновского излучения в каком-либо веществе зависит от энергии этого излучения весьма сложным образом: наряду с плавной зависимостью существуют и резкие перепады – скачки. Следовательно, взаимодействие рентгеновских квантов, незначительно отличающихся по энергии, с каким-либо веществом может весьма различаться для каждого из этих квантов. А это приводит к тому, что сильно отличается и вероятность прохождения этих квантов сквозь вещество. Например, если на пути рентгеновских квантов, соответствующих флуоресцентному излучению алюминия и кремния, поставить алюминиевую фольгу толщиной 10 мкм, то она пропустит 44% излучения алюминия и лишь 0,008% излучения кремния. Таким образом, пропуская линию алюминия в 5500 раз лучше, чем линию кремния, такая фольга будет «отфильтровывать» рентгеновское излучение. Схематически это изображено на рис. 3.

Можно подобрать фильтры для пар различных элементов: алюминий + кремний, калий + кальций и т. д. Поскольку при подобной «фильтрации» интенсивность одной из линий значительно ослаблена (причем заранее известна степень ослабления), то сравнение спектров излучения исследуемого образца, полученных с фильтрами и без фильтров, позволяет в отдельности определить интенсивности всех неразделенных линий.

Важно отметить, что на основе рентгеновского изотопного флуоресцентного метода можно создать довольно простую аппаратуру для проведения химического анализа вещества в космических условиях, удовлетворяющую всем поставленным выше требованиям. Радиоактивные источники, необходимые для облучения грунта, абсолютно надежны в работе, они не требуют настройки, наладки и не нуждаются в электрической энергии. Пропорциональные счетчики, регистрирующие рентгеновское излучение грунта, компактны и легки. Информацию легко перевести в электрические величины – амплитуды импульсов, что очень удобно для передачи по линиям космической радиосвязи. Наконец, исследуемые рентгеновские спектры довольно просты (в них всего несколько линий) по сравнению с оптическими. К настоящему времени в исследованиях химического состава грунта, проведенных непосредственно на поверхности Луны, применялись только два из перечисленных методов. Рентгеновский флуоресцентный метод анализа, предложенный коллективом советских ученых, с успехом был применен при работе автоматических самоходных аппаратов «Луноход-1 и -2». Американские ученые на станциях «Сервейер-5, -6 и -7» использовали метод «обратно рассеянных альфа-частиц» (подробное описание которого будет дано ниже), но впоследствии уже на марсианских станциях «Викинг-1 и -2» они тоже применили рентгеновский флуоресцентный метод.

Химические факторы, негативно влияющие на здоровье работников предприятий, достаточно разнообразны. Многие вещества, используемые в технологических процессах или являющиеся отходами производства, могут оказаться токсичными – они приводят к заболеванию органов дыхания, кожных покровов и к другим трудноизлечимым болезням. Источником опасных веществ на предприятиях являются различные нагревательные элементы, заводские трубы и многое другое. Для проведения анализа воздействия опасных факторов на здоровья персонала проводятся химические измерения.

Такая проверка, как правило, осуществляется в рамках специальной оценки условий труда (СОУТ). Все полученные данные заносятся в соответствующий протокол (отчет).

Химические измерения (измерение химического фактора) в центре «Ростест Урал»

Эксперты сертификационного центра «Ростест Урал» уже много лет оказывают услуги в сфере охраны труда – мы проводим все необходимые химические измерения в лаборатории, а также осуществляем аудит по охране труда, обучаем руководителей и работников предприятий, декларируем соответствие рабочих мест.

Измерение химического фактора предполагает проверку:

  • Воздуха, включая воздух рабочей зоны и атмосферный воздух на границе СЗЗ. Исследование воздуха является чрезвычайно важной составляющей комплекса мероприятий, которые призваны определить уровень экологической безопасности предприятия. Пробы воздуха берутся во время определенных погодных условий;
  • Воды. На производстве вода зачастую используется для охлаждения работающих механизмов, в качестве источника энергии или вспомогательного химического компонента. При этом важно, чтобы отработанная на предприятии вода прошла все предусмотренные очистные процедуры;
  • Почвы. Почва способна долгое время сохранять токсичные вещества, впитывая их в процессе деятельности предприятий;
  • Промышленных выбросов и отходов;
  • Микроклимата помещения.

Центр «Ростест Урал» обладает квалифицированными специалистами и всем необходимым современным оборудованием для точного исследования любых возможных химических факторов, способных навредить здоровью рабочих.

Чтобы пройти химические измерения в лаборатории «Ростест Урал», нужно просто оставить заявку на нашем сайте – эксперт свяжется с вами и составит план проведения проверок. Консультации наших сотрудников бесплатные.

Измерения физических величин, характеризующих состав веществ и материалов, характерны тем, что образцовые средства измерений и эталоны должны опираться на основную «химическую» единицу - моль. Поскольку эталон моля в настоящее время не реализован, в физико-химических измерениях не используется традиционный для других видов измерения способ обеспечения единства измерений с построением подробной поверочной схемы. Специфика измерений состава веществ и материалов заставляет основным методом обеспечения единства измерений выбрать использование стандартных образцов материалов и использование стандартных справочных данных о свойствах чистых веществ, их смесей, сплавов и т. д.

В измерениях влажности для градуировки и калибровки гигрометров используются либо термодинамические свойства воды, либо различного рода генераторы паровоздушных или парогазовых смесей, параметры которых также определяются термодинамическими свойствами воды. Выше упоминалась зависимость парциального давления паров воды от температуры (см. табл. 9.1). Именно эти стандартные справочные данные позволяют вычислять разнообразные характеристики влажности.

Специфическим средством обеспечения единства измерений в гигрометрии являются генераторы относительной или абсолютной влажности. Существует несколько типов генераторов влажного газа: генераторы, работающие по методу двух температур, по методу двух давлений и по методу двух расходов. Во всех типах генераторов изначально создается насыщенный пар при известной температуре. Содержание воды определяется по уравнению упругости. Далее, в генераторе по двум температурам парогазовая смесь направляется в объем, температура которого выше, чем та, при которой проводилось насыщение парогазовой смеси. В генераторе по двум давлениям измеряется давление в камере насыщения, где относительная влажность равна 100%, и давление в рабочей камере, отличающееся от давления в камере насыщения. Далее, используя газовые за коны и считая, что абсолютное количество влаги в генераторе неизменно, вычисляется относительная влажность газа. В этом методе кроме уравнения упругости насыщенных паров необходимо пользоваться стандартными справочными данными о коэффициентах сжимаемости водяного пара, характеризующих степень не идеальности паро-газовой смеси.

Генераторы влажного газа по двум расходам представляют собой два воздушных или газовых потока, один из которых насыщается влагой до значения относительной влажности, близкой к 100%. Второй газовый поток тщательно осушается пропусканием через селикагель или ловушку с пентаксидом (пятиокись фосфора). Относительная влажность рассчитывается в соответствии с соотношением



где Q вл - расход влажного газа, Q сух - расход сухого газа.

Низкие концентрации влаги, соответствующие точке росы ниже 0°С, создаются в генераторах влажного газа, представляющего собой холодильник, в котором необходимо измерить температуру самой холодно и точки. В этой точке выпадает роса или иней, и если газовый тракт герметичен, то абсолютная влажность на выходе определяется давлением насыщенного водяного пара при этой температуре. Поэтому принципу построен образцовый генератор «Полюс», являющийся в настоящее время практически самым достоверным образцовым средством для калибровки и градуировки гигрометров.

Единство измерений в газовом анализе обеспечивается несколькими способами. Самым распространенным является использование поверочных газовых смесей в сосудах под давлением, когда в баллон, выдерживающий давление до 200 атмосфер, напускается газ, концентрации которого желательно измерить. Количество этого газа контролируется гравиметрическим методом, т. е. взвешиванием баллона до и после заполнения. Затем в баллон закачивается газ-разбавитель с таким расчетом, чтобы получилась нужная концентрация измеряемого газа. Обычно газом-разбавителем служит сухой азот или инертные газы. Получаемые таким образом смеси получили в метрологической практике название ПГС - поверочные газовые смеси. В нашей стране и за рубежом выпускаются промышленно сотни и тысячи наименований ПГС. Отличительной особенностью ПГС среди других мер в метрологии является то, что такая мера является расходуемой, т. е. то, что анализируется при выборочном контроле качества приготовления ПГС может не соответствовать тому составу смеси, который остался в баллоне. Еще одним недостатком ПГС как меры состава является возможность фракционирования при отборе газа из баллона, т. е. первые порции ПГС, взятые из баллона, могут не соответствовать по составу тому газу, который будет отобран из баллона позднее.

Для ряда компонентов газовых смесей, в особенности таких, которые не подлежат длительному хранению, для обеспечения единства измерений создаются генераторы газовых смесей по аналогии с описанными выше генераторами влажного газа. Например, для получения смеси сероводорода в воздухе в ампулу из стекла закачиваются химреактивы, которые при нагревании выделяют сероводород. Если существует необходимость приготовления смеси сероводорода в воздухе, такую ампулу помещают в замкнутый объем, разбивают, а химреактивы нагревают на несколько десятков градусов. Из навески химреактивов выделяется определенное количество сероводорода, который смешивается с воздухом в сосуде, образуя смесь нужной концентрации.

Аналогичные генераторы изготавливают на основе так называемых диффузионных трубок. Диффузионная трубка представляет собой ампулу с испаряющимся веществом, например с окислами азота, закрытую пробкой, которая пропускает малые количества паров жидкости-наполнителя за счет диффузии через пробку. Такая трубка помещается в поток газа носителя, и нужная концентрация получается изменением расхода газового потока.

Единство измерений в газовом анализе может быть обеспечено с использованием стандартных справочных данных. Особенно успешно этот способ реализуется в оптических абсорбционных методах газового анализа. В ряде случаев в реализации трассового метода или в атомно-абсорбционном спектральном анализе для получения значений концентраций измеряемых компонентов достаточно знать сечение поглощения δ λ в законе Ламберта-Бугера-Бера и длину волны просвечивающего излучения. Получением зависимостей сечений поглощения от длины волны для огромного числа паров чистых веществ занимаются многие организации и фирмы. Существуют и международные организации, собирающие такие данные и публикующие соответствующие таблицы и справочники.

Приборы газового анализа могут поверяться и другими методами, например по газу-эквиваленту или поэлементно-эквивалентным методом. Примером контроля газоанализаторов по газу эквиваленту может служить шахтный анализатор метана, представляющий собой интерферометр. Такой газоанализатор поверяют, помещая его в камеру с избыточным давлением воздуха. Данный прибор измеряет показатель преломления и поэтому неселективен в показаниях. Изменяя давление воздуха в камере, моделируют проникновение внутрь прибора газа с отличным от воздуха показателем преломления.

В поэлементно-эквивалентном методе показания газоанализатора контролируются по работоспособности отдельных элементов прибора. Например, оптическая часть поверяется как мера пропускания, электроизмерительная часть как электроизмерительный прибор, регистрирующая часть также контролируется отдельно от остального прибора. При положительных результатах таких процедур можно с большой уверенностью считать обеспеченным контроль работоспособности всего прибора.

Примером такого газоанализатора может служить озонометр для контроля общего содержания озона в атмосфере. Этот прибор работает по Солнцу, т. е. регистрирует коротковолновую границу солнечного излучения, дошедшего до Земли. По мере изменения толщины озонового слоя граница прозрачности атмосферы в коротковолновой области сдвигается. Озонометр поверяется отдельно по системе слежения за положением изображения Солнца на входной апертуре прибора. Измерительная часть поверяется как ультрафиолетовый фото метр по фильтрам, аттестованным на пропускание. И регистрирующая часть поверяется как любое выходное устройство спектрометра.

В обеспечении единства измерений жидких сред и твердых образцов основным средством измерения являются стандартные образцы состава. Для металлов и сплавов это болванки диаметром в несколько сантиметров, изготовленные по технологиям, обеспечивающим однородность состава по всему образцу. При плавке образцов в цилиндрических печах неоднородности концентрируются по оси цилиндра. По этой причине при анализе не рекомендуют использовать центральные участки болванки. Некоторые производители высверливают в стандартном образце центральные зоны, где состав может отличаться от состава остальных частей болванки.

Стандартные образцы жидких сред также приготавливаются специально и хранятся либо в герметичной посуде, либо запаиваются в ампулы. Главным моментом в создании стандартных образцов жидких сред является обеспечение стабильности состава. Для этого нужно подбирать такие смеси, в которых не шли бы химические реакции, не было бы фотолиза, не выпадал бы осадок. Специальные центры и лаборатории во многих странах мира занимаются исследованием и приготовлением стандартных образцов самого широкого назначения.

По изготовлении стандартные образцы состава жидких сред ил и твердых образцов рассылаются в несколько аналитических лабораторий для аттестации. Затем результаты собираются воедино и сравниваются. При отсутствии значительных расхождений составляется паспорт стандартного образца, ему присваивается номер, а состав фиксируется в государственных реестрах стандартных образцов. В Российской Федерации такой реестр ведется в Институте стандартных образцов в Екатеринбурге. Аналогичными сведениями располагает и ВНИИМС (Всероссийский научно-исследовательский институт метрологической службы РФ). При наличии расхождений в анализах различных лабораторий собирается согласительная комиссия, которая определяет наиболее надежные результаты аттестации стандартного образца. В Госреестр такой образец заносится только после соответствующей экспертизы.

физико-химическими измерениями в системе Госстандарта РФ принято понимать все измерения, связанные с контролем состава веществ, материалов и изделий. Измерения химического состава веществ могут проводиться самими различными методами, поскольку в измерительном процессе в большинстве случаев измеряется какое-либо свойство материала, а затем состав находят из связи состав-свойство. Таким свойством могут быть механические свойства, электромеханические, тепловые, оптические. Из этого следует, что физико-химические измерения опираются в сути своей на уже рассмотренные виды измерений.

Основной отличительной особенностью физико-химических измерений является важная роль процесса подготовки пробы к анализу. В самом деле, при хранении пробы, при ее транспортировке от места забора к аналитическому прибору и в самом процессе анализа возможны самые разнообразные трансформации состава. К таким трансформациям могут привести изменения температурного режима, изменения влажности, давления. Важным моментом является так называемое влияние третьей компоненты на результат анализа. В химии хорошо известен каталитический эффект - т. е. влияние на скорость химических реакций веществ, не участвующих в химических превращениях, но изменяющих скорость их протекания, а в ряде случаев определяющих конечный результат химической реакции.

По этой причине нельзя отождествлять, например, собственно измерения теплопроводности газов и анализ состава газовых смесей на хроматографе с детектором теплопроводности. То же самое относится к другому распространенному виду физико-химических измерений - масс-спектрометрам. Эти приборы являются средством измерения массы по траектории движения ионов различной массы в магнитном поле.

Указанная особенность физико-химических измерений приводит к двум очень важным моментам. Первое - физико-химические измерения в сути своей используют весь арсенал приборов и методов из других видов измерения. И второе - в физико-химических измерениях очень большое значение имеет стандартизация методики измерений - последовательности действий, включая забор пробы, хранение, транспортировку, подготовку пробы к анализу, получение аналитического сигнала и обработку результатов измерений. В ряде случаев необходимая информация о составе вещества может быть получена только с использованием измерения нескольких свойств, например, массы и теплопроводности или массы и показателя преломления.

Характерным примером важности процесса пробоподготовки в аналитических измерениях является хроматография. Ниже мы рассмотрим более подробно основные принципы создания хроматографов. Здесь укажем, что в измерительной технике хроматографы занимают достойное место среди других приборов. Тем не менее хроматография не является методом измерения, а скорее есть способ пробоподготовки, позволяющий транспортировать к измерительному устройству различные компоненты смесей веществ в разные моменты времени. В зависимости от типа детектора хроматограф может быть механическим, тепловым, электроизмерительным или оптическим прибором.

Возможность определять состав веществ и материалов по различным свойствам отражается на методах оценки систематических погрешностей. В самом деле, использование различных уравнений измерения для определения одной и той же величины, например концентрации какого-либо компонента в смеси газов, жидкостей или твердых тел позволяет с большей степенью достоверности определять состав вещества.

Все аналитические методы можно разделить по способу подготовки пробы на два класса - элементный анализ, в котором определяется состав вещества по элементам периодической системы, и анализ по компонентам, в котором измеряемые составляющие вещества ни во время подготовки пробы, ни в процессе анализа на элементы не разлагаются.

По физическим свойствам анализируемой среды физико-химические измерения делятся на анализ состава газов, анализ состава жидкостей и анализ состава твердых тел. Особое место в та ком подходе занимает гигрометрия -определение содержания воды в газах в виде паров, в жидкостях в виде капельной влаги и в твердых телах в виде кристаллизационной воды. Основные методы, используемые в физико-химических измерениях можно представить в виде схемы, данной на рис. 9.1
.

Еще одной отличительной особенностью физико-химических измерений является разнообразие методов и приборов для определения микроконцентраций и макроконцентраций одного и того же компонента в определенной среде. Под этим термином здесь подразумевается, что в зависимости от относительного содержания компонента в смеси нужно использовать в ряде случаев совершенно разные подходы. По грубым оценкам в газе в 1 см 3 содержится приблизительно 2,6×10 19 частиц. В жидкости и в твердом теле это значение на несколько порядков больше. Соответственно, для решения всевозможных задач измерения содержания определенного вещества во всевозможных смесях необходимо иметь прибор для измерения величин, изменяющихся в 10 19 -10 23 раз. Для большинства компонентов эта задача трудноразрешима. В самом деле для реализации такого анализатора необходимо с одной стороны иметь счетчик отдельных частиц, а с другой стороны иметь средство измерения сверхчистого вещества с уровнем примесей 10 -19 яю&10 -23 . Очевидно, что подобные измерения представляют собой совершенно разные задачи и решать их если и возможно, то с использованием совершенно разных подходов. Тем не менее практическая необходимость создания сверхчистых материалов привела к тому, что для ряда конкретных задач подобные методы и приборы были созданы.

Влажность и содержание молекул воды в веществах и материалах являются одним из наиболее важных характеристик состава. Уже указывалось, что влагу необходимо измерять в газах (концентрация паров воды), в смесях жидкостей (собственно содержание молекул воды) и в твердых телах в качестве кристаллизационной влаги, входящей в структуру кристаллов. Соответственно, набор методов и устройств для измерения содержания молекул воды в материалах оказывается весьма разнообразным.

Традиции измерительной техники, опирающиеся на повседневный опыт, привели к тому, что в измерениях влажности сложилась специфическая ситуация, когда в зависимости от влияния количества влаги нате или иные процессы необходимо знать либо абсолютное значение количества влаги в веществе, либо относительное значение, определяемое как процентное отношение реальной влажности вещества к максимально возможной в данных условиях. Если необходимо знать, например, изменение электрических или механических свойств вещества, в этом случае определяющим является абсолютное значение содержания влаги. То же самое относится к содержанию влаги в нефти, в продуктах питания и т. д. В том случае, когда необходимо определить скорость высыхания влажных объектов, комфортность среды обитания человека или метеорологическую обстановку, на первое место выступает отношение реальной влажности, например воздуха, к максимально возможной при данной температуре.

В связи с этим характеристики влажности, а также величины и единицы влажности подразделяются на характеристики влагосостояния и влагосодержания.

(9.01)

К этому классу характеристик можно отнести парциальное давление водяных паров в газах, абсолютную концентрацию молекул воды для газа, близкого к идеальному, определяемую как:

(9.02)

где Т -абсолютная температура, n 0 - постоянная Лошмидта, равная числу молекул идеального газа в 1 см 3 при нормальных условиях, т. е. при p 0 = 760 Торр= 1015 Гпа и T 0 = 273,1б К. Часто используется такая характеристика абсолютной влажности как точка росы, т. е. температура, при которой данная абсолютная влажность газа становится 100%.Эта характеристика привнесена в гигрометрию метеорологам и, т.к. является наиболее характерной при определении момента выпадения росы и определения ее количества.

Процентное соотношение, равное отношению абсолютной влажности к максимально возможной при данной температуре:

(9.03)

Относительная влажность может характеризоваться так называемым дефицитом парциального давления, равного отношению парциального давления влаги к максимально возможному при данной температуре. Очень редко в гигрометрических измерениях можно встретить дефицит точки росы.

Связь между температурой и максимально возможной абсолютной влажностью дается уравнением упругости насыщенных паров воды. Это уравнение имеет вид:

(9.04)

На практике чаще пользуются таблицей давления насыщенных паров над плоской поверхностью воды или льда при различных температурах. Эти данные приведены в табл. 9.1.

Таблица 9.1

Давление насыщенных паров
над плоской поверхностью воды

t°c Р нк, мбар А нк г/м 3 t°C Р нк, мбар А нк г/м 3
0 6,108 4,582 31 44,927 33,704
1 6,566 4,926 32 47,551 35,672
2 7,055 5,293 33 50,307 37,740
3 7,575 5,683 34 53,200 39,910
4 8,159 6,120 35 56,236 42,188
5 8,719 6,541 36 59,422 44,576
6 9,347 7,012 37 62,762 47,083
7 10,013 7,511 38 66,264 49,710
8 10,722 8,043 39 69,934 52,464
9 11,474 8,608 40 73,777 55,347
10 12,272 9,206 41 77,802 58,366
11 13,119 9,842 42 82,015 61,527
12 14,017 10,515 43 86,423 64,839
13 14,969 11,229 44 91,034 68,293
14 15,977 11,986 45 95,855 71,909
15 17,044 12,786 46 100,89 75,686
16 18,173 13,633 47 106,16 79,640
17 19,367 14,529 48 111,66 83,766
18 20,630 15,476 49 117,40 87,772
19 21,964 16,477 50 123,40 92,573
20 23,373 17,534 51 129,65 97,262
21 24,861 18,650 52 136,17 102,153
22 26,430 19,827 53 142,98 107,268
23 28,086 21,070 54 150,07 112,581
24 29,831 22,379 55 157,46 118,125
25 31,671 23,759 56 165,16 123,900
26 33,608 25,212 57 173,18 129,917
27 35,649 26,743 58 181,53 136,009
28 37,796 28,354 59 190,22 142,700
29 40,055 30,048 60 199,26 149,482
30 42,430 31,830

На стандартных справочных данных, приведенных в табл. 9.1, основаны практически все пересчеты характеристик влажности. На их основе можно, например, по известной абсолютной влажности и температуре найти относительную влажность, точку росы и т. д., выразить практически любую характеристику влажности газов.

Среди приборов для измерения влажности наиболее массовыми являются приборы для определения содержания воды в газах - гигрометры. Для измерения влажности твердых и сыпучих тел чаще всего используются те же гигрометры, только процесс подготовки пробы к анализу включает в себя перевод влаги в газовую фазу, которая затем и анализируется. Существуют в принципе методы непосредственного измерения содержания влаги в жидкостях и в твердых телах, например, методом ядерного магнитного резонанса. Приборы, построенные на таком принципе, достаточно сложны, дороги и требуют высокой квалификации оператора.

Гигрометры как самостоятельные приборы являются одними из самых востребованных измерительных приборов, поскольку с давних времен в них нуждались метеорологи. По изменению влажности, также как по изменению давления и температуры, можно предсказывать погоду, можно контролировать комфортность жизнеобеспечения в помещениях, контролировать различного рода технологические процессы. Например, контроль влажности на электростанциях, на телефонных станциях, на полиграфическом производстве и т.д. и т.п. является определяющим в обеспечении нормального режима функционирования.

Востребованность гигрометров породила разработки и изготовление большого количества различных типов приборов. Большинство измерителей влажности представляют собой датчики влажности с индикатором либо аналогового сигнала, либо сигнала в цифровой форме. Поскольку индикаторами являются в большинстве своем либо механические устройства, либо электроизмерительные приборы, рассмотренные в предыдущих разделах, остановимся на датчиках влажности, определяющих почти все функциональные возможности гигрометров.

Датчики гигрометров можно классифицировать по принципу действия на следующие типы:

    волосяные датчики, в которых используется свойство волоса изменять длину при изменении влажности;

    емкостные датчики, в которых при изменении влажности изменяется электрическая емкость конденсатора с гигроскопичным диэлектриком;

    резистивные датчики, в которых изменяется сопротивление проводника, на поверхность которого нанесен гигроскопический слой;

    пьезосорбционные датчики, в которых влага, поглощенная гигроскопическим покрытием, изменяет собственную частоту колебаний пьезокристалла, на поверхность которого нанесен гигроскопичный слой;

    датчик температуры точки росы, в котором фиксируется температура, соответствующая переходу зеркального отражения металлической поверхностью в диффузное;

    оптический абсорбционный датчик, в котором регистрируется доля поглощенной энергии света в полосах поглощения парами воды электромагнитного излучения.

Наиболее древний, наиболее простой и наиболее дешевый датчик влажности представляет собой обычный волос, натянутый между двумя пружинами. Для измерения влажности используется свойство волоса изменять длину при изменении влажности. Несмотря на кажущуюся примитивность такого датчика и на то, что процесс, лежащий в основе измерения, не определяется законами физики и поэтому не поддается расчету, гигрометры с волосяными датчиками изготавливаются в большом количестве.

Емкостные датчики влажности в настоящее время по массовости использования конкурируют и даже превосходят волосяные, поскольку по простоте и дешевизне они не уступают волосяным. Измеряемой физической величиной является емкость конденсатора, а это означает, что в качестве индикатора или выходного устройства может использоваться любой измеритель емкости. Схема емкостного датчика в одном из возможных вариантов дана на рис. 9.2
. На подложку из кварца наносится тонкий слой алюминия, являющийся одной из обкладок конденсатора.

На поверхности алюминиевого покрытия образуется тонкая пленка окиси Al 2 O 3 . На окисленную поверхность наносится напылением второй электрод из металла, свободно пропускающего пары воды. Такими материалами могут быть тонкие пленки палладия, родия или платины. Внешний пористый электрод является второй обкладкой конденсатора.

Резистивные датчики изготавливаются в виде структуры, схема которой дана на рис. 9.3
.

Конструкция резистивного датчика влажности представляет собой меандр из двух не соприкасающихся электродов, на поверхность которого нанесен тонкий слой гигроскопического диэлектрика. Последний, сорбируя влагу из окружающей среды, изменяет сопротивление промежутков между электродами меандра. О влажности судят по изменению сопротивления или проводимости такого элемента.

В последнее время появились гигрометры, в основу работы которых положен фундаментальный физический закон поглощения электромагнитного излучения - закон Ламберта-Бугера-Бера. Согласно этому закону через слои поглощающего или рассеивающего вещества проходит электромагнитное излучение интенсивностью I λ , равное:

где I λ - интенсивность излучения, падающего на поглощающий столб; N - концентрация поглощающих атомов (число молекул в единице объема); l - длина поглощающего столба, δ λ - молекулярная константа, равная площади «тени», создаваемой одним атомом и выраженной в соответствующих единицах.

Пары воды имеют интенсивные полосы поглощения в инфракрасной области спектра и в области длин волн от 185 нм до 110 нм - в так называемой вакуумной ультрафиолетовой области. Имеются отдельные разработки по созданию инфракрасных и ультрафиолетовых оптических влагомеров, и все они имеют одно общее положительное качество - это влагомеры мгновенного действия. Под этим понимается рекордно быстрое установление аналитического сигнала для пробы, помещенной между источником света и фотоприемником. Другие особенности оптических датчиков определяются тем, что в инфракрасной области поглощение молекулами воды соответствует вращательно-колебательным степеням свободы. Это означает, что вероятности переходов, и, соответственно, сечения поглощения в законе Ламберта-Бугера-Бера зависят от температуры объекта. В вакуумной ультрафиолетовой области сечение поглощения от температуры не зависит. По этой причине ультрафиолетовые датчики влажности являются более предпочтительными, но инфракрасная техника, которая используется в ИК датчиках влажности, намного долговечнее и проще в эксплуатации, чем ВУФ техника.

У оптических датчиков имеется и один общий недостаток - влияние на показание мешающих компонентов. В инфракрасной области это различные молекулярные газы, например окиси углерода, серы, азота, углеводороды и т. д. В вакуумном ультрафиолете основным мешающим компонентом является кислород. Тем не менее можно выбрать длины волн в ВУФ, где поглощение кислорода минимально, а поглощение паров воды максимально. Например, удобной областью является излучение резонансной линии водорода с длиной волны А, = 121,6 нм. На этой длине волны у кислорода наблюдается «окно» прозрачности в то время, как пары воды заметно поглощают. Другой возможностью является использование излучения ртути с длиной волны 184,9 нм. В этой области кислород излучения не поглощает и весь сигнал поглощения определяется парами воды.

Одна из возможных конструкций оптического датчика влажности дана на рис. 9.4
. Резонансная водородная лампа с окном из фтористого магния располагается на расстоянии в несколько миллиметров от фотоэлемента с катодом из никеля. Никелевый фотоэлемент имеет длинноволновую границу чувствительности -190 нм. Окна из фтористого магния имеют коротковолновую границу прозрачности 110 нм. В этом диапазоне длин волн (от 190 до 110 нм) в спектре водородной лампы присутствует только резонансное излучение 121,6 нм, которое и используется для измерения абсолютной влажности без какой-либо монохроматизации.

У оптического датчика, схема которого изображена на рис. 9.4 есть еще одна особенность - возможность изменять чувствительность изменением расстояния от лампы до фотоприемника. В самом деле, с увеличением расстояния наклон характеристики dU/dN выходного сигнала от концентрации прямо пропорционален величине зазора между лампой и фотодиодом.

Важным качеством оптического датчика является следствие из закона Ламберта-Бугера-Бера, состоящее в том, что такой датчик нужно калибровать только в одной точке. Если, например, определить сигнал с прибора при какой-либо одной определенной концентрации паров воды, то отградуировать шкалу прибора можно расчетным путем на том основании, что изменение логарифма сигналов при различных концентрациях равно:

(9.06)

где N - концентрация (число) молекул в единице объема; δ λ - сечение поглощения, I - длина поглощающего промежутка.

Для определения относительной и абсолютной влажности на практике часто используются приборы, получившие название психрометров. Психрометры представляют собой два одинаковых термометра, один из которых обернут фитилем и смачивается водой. Мокрый термометр показывает температуру ниже, чем сухой термометр в том случае, если относительная влажность не равна 100%. Чем ниже относительная влажность, тем больше разность показаний сухого и мокрого термометров. Для психрометров различных конструкций составляются так называемые психрометрические таблицы, по которым находятся характеристики влажности. Схема психрометра дана на рис. 9.5.

Психрометр не очень удобен в эксплуатации, поскольку его показания не просто автоматизировать, и требуется постоянное увлажнение фитиля. Тем не менее именно психрометр является самым простым и вместе с тем достаточно точным и надежным средством измерения влажности. Именно по психрометру чаще всего градуируются гигрометры с волосяными, емкостными или резистивными датчиками.

В заключение кратко остановимся на методах измерения влажности жидкостей и твердых материалов. Наиболее распространенным является метод высушивания или выпаривания влаги из вещества с последующим взвешиванием. Обычно пробу высушивают до тех пор, пока не перестанет изменяться ее вес. При этом, естественно, делается два допущения. Первое - что вся сортированная и химически связанная влага при выбранном режиме выпаривания улетучивается. И второе - что вместе с влагой не испарится никакой другой компонент. Очевидно, что во многих случаях гарантировать корректность выполнения процедур выпаривания очень сложно.

Другим универсальным методом измерения влажности жидких и твердых тел является метод, когда влага из них переходит в газовую фазу в каком-либо замкнутом объеме. В этом случае стандартизуют методику подготовки пробы, а измерения ведут одним из упомянутых типов гигрометров, предназначенных для измерений влаги в газовой фазе. С целью получения надежных результатов такие устройства калибруют по стандартным образцам влажности.

ВВЕДЕНИЕ

Несмотря на то, что методы обычного химического анализа позволяют устанавливать состав самых сложных соединений, в некоторых случаях они все же оказываются недостаточными. Обусловлено это тем, что для установления состава путем химического анализа необходимо прежде всего выделить изучаемое вещество в индивидуальном состоянии. Если такое выделение почему-либо невозможно, то неприменимыми становятся и методы химического анализа.

Большую помощь могут в подобных случаях оказать физические методы исследования. Тщательно изучая ход изменения физических свойств той или иной системы по мере изменения ее состава или внешних условий, часто удается не только обнаруживать само наличие в ней химических превращений, но и следить за протеканием последних и получать определенные указания относительно их характера и состава образующихся продуктов. Обнаружение и изучение происходящих в системе химических изменений путем исследования ее физических свойств и составляет предмет физико-химического анализа. Обобщенная трактовка физико-химического анализа как самостоятельной научной дисциплины была дана Н. С. Курнаковым (1913 г.).

ОБЩИЕ СВЕДЕНИЯ

Особенности измерения состава веществ и материалов

Основной отличительной особенностью физико-химических измерений является важная роль процесса подготовки пробы к анализу. При хранении пробы, при ее транспортировке от места забора к аналитическому прибору и в самом процессе анализа возможны самые разнообразные трансформации состава. К таким трансформациям могут привести изменения температурного режима, изменения влажности, давления. Важным моментом является так называемое влияние третьей компоненты на результат анализа. В химии хорошо известен каталитический эффект - то есть влияние на скорость химических реакций веществ, не участвующих в химических превращениях, но изменяющих скорость их протекания, а в ряде случаев определяющих конечный результат химической реакции.

В ряде случаев необходимая информация о составе вещества может быть получена только с использованием измерения нескольких свойств, например, массы и теплопроводности или массы и показателя преломления.

Возможность определять состав веществ и материалов по различным свойствам отражается на методах оценки систематических погрешностей. В самом деле, использование различных уравнений измерения для определения одной и той же величины, например концентрации какого-либо компонента в смеси газов, жидкостей или твердых тел позволяет с большей степенью достоверности определять состав вещества.

Еще одной отличительной особенностью физико-химических измерений является разнообразие методов и приборов для определения микроконцентраций и макроконцентраций одного и того же компонента в определенной среде. Под этим термином здесь подразумевается, что в зависимости от относительного содержания компонента в смеси нужно использовать в ряде случаев совершенно разные подходы.

Классификация методов аналитической химии

Принцип определения химического состава вещества любым методом сводится к тому, что состав вещества определяется по его свойствам.

Любое свойство вещества, которое можно использовать для установления качественного или количественного состава объекта, называется аналитическим сигналом. Все методы аналитической химии основаны на получении и измерении аналитического сигнала.

В зависимости от принципа получения аналитического сигнала все методы аналитической химии делятся на 3 основные группы:

1. Химические методы анализа.

2. Физические методы анализа.

3. Биологические методы анализа.

Кроме того, различают ещё 3 группы комбинированных (переходных) методов анализа:

1. Физико-химические методы анализа основаны на измерении физических свойств веществ, которые появляются или изменяются в результате химических реакций. При этом сначала проводят реакцию, а затем измеряют физическое свойство продукта реакции или используют измерение физического свойства в ходе реакции для установления конечной точки титрования.

2. Биофизические методы анализа.

3. Биохимические методы.

По физическим свойствам анализируемой среды физико-химические измерения делятся на: анализ состава газов, анализ состава жидкостей и анализ состава твердых тел.

Применяются также физико-химические способы анализа: колориметрия (изменение интенсивности окраски цветного соединения, получаемого по аналитической реакции), турбудиметрия, нефелометрия (изменение интенсивности света, проходящего через суспензию осадка, полученного в результате аналитической реакции, или рассеянного им), полярографические и адсорбционные методы.

Химические методы анализа иначе называют классическими, а физические и физико-химические методы анализа - инструментальными, так как проведение анализа с привлечением этих методов невозможно без использования измерительной аппаратуры.

Наибольшее значение имеют следующие группы инструментальных методов анализа:

Спектральные и другие оптические методы анализа, основанные на измерении оптических свойств и различных эффектов, наблюдаемых при взаимодействии вещества с электромагнитным излучением.

Электрохимические методы анализа, основанные на измерении электрических параметров.

Хроматографические методы анализа, основанные на использовании сорбции в динамических условиях, применяются для разделения и анализа однородных многокомпонентных смесей.