Измерение количества тепла. Количество теплоты. Единицы количества теплоты. Соотношение единиц измерения

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

В данном уроке рассматривается понятие количества теплоты.

Если до этого момента мы рассматривали общие свойства и явления, связанные с теплом, энергией или их передачей, то теперь пришло время познакомиться с количественными характеристиками этих понятий. А точнее, ввести понятие количества теплоты. На этом понятии будут основаны все дальнейшие расчеты, связанные с преобразованиями энергии и теплотой.

Определение

Количество теплоты - это энергия, которая передается с помощью теплопередачи.

Рассмотрим вопрос: какой величиной мы будем выражать это количество теплоты?

Количество теплоты связано с внутренней энергией тела, поэтому, когда тело получает энергию, его внутренняя энергия увеличивается, а когда отдает - уменьшается (рис. 1).

Рис. 1. Взаимосвязь количества теплоты и внутренней энергии

Аналогичные выводы можно сделать и о температуре тела (рис. 2).

Рис. 2. Взаимосвязь количества теплоты и температуры

Внутренняя энергия выражается в джоулях (Дж). Значит, количество теплоты также измеряется в джоулях (в СИ):

Стандартное обозначение количества теплоты.

Чтобы выяснить: от чего зависит , проведем 3 эксперимента.

Эксперимент № 1

Возьмем два одинаковых тела, но разной массы. Например, возьмем две одинаковые кастрюли и нальем в них разное количество воды (одинаковой температуры).

Очевидно, что для того, чтобы вскипятить ту кастрюлю, в которой воды больше, потребуется больше времени. То есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от массы (прямо пропорционально - чем больше масса, тем больше количество теплоты).

Рис. 3. Эксперимент № 1

Эксперимент № 2

Во втором эксперименте мы будем нагревать тела одинаковой массы до разной температуры. То есть возьмем две кастрюли с водой одинаковой массы и нагреем одну из них на , а вторую, к примеру, на .

Очевидно, что, для того чтобы нагреть кастрюлю до большей температуры, понадобится больше времени, то есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от разности температур (прямо пропорционально - чем больше разность температур, тем больше количество теплоты).

Рис. 4. Эксперимент № 2

Эксперимент № 3

В третьем эксперименте рассмотрим зависимость количества теплоты от характеристик вещества. Для этого возьмем две кастрюли и нальем в одну из них воду, а в другую - подсолнечное масло. При этом температуры и массы воды и масла должны быть одинаковы. Будем нагревать обе кастрюли до одинаковой температуры.

Для того чтобы нагреть кастрюлю с водой, потребуется больше времени, то есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от рода вещества (подробнее о том, как именно, мы поговорим на следующем уроке).

Рис. 5. Эксперимент № 3

После проведенных экспериментов можно сделать вывод, что зависит:

  • от массы тела;
  • изменения его температуры;
  • рода вещества.

Отметим, что во всех рассмотренных нами случаях речь не идет о фазовых переходах (то есть изменениях агрегатного состояния вещества).

Вместе с тем численное значение количества теплоты может зависеть и от его единиц измерения. Кроме джоуля, который является единицей СИ, используется еще одна единица измерения количества теплоты - калория (переводится как «жар», «тепло»).

Это достаточно маленькое значение, поэтому чаще используется понятие килокалории: . Эта величина соответствует количеству теплоты, которое необходимо передать воды, чтобы нагреть его на .

На следующем уроке мы рассмотрим понятие удельной теплоемкости, которая связывает вещество и количество теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «festival.1september.ru» ()
  2. Интернет-портал «class-fizika.narod.ru» ()
  3. Интернет-портал «school.xvatit.com» ()

Домашнее задание

  1. Стр. 20, параграф 7, вопросы № 1-6. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  2. Почему вода в озере остывает за ночь гораздо меньше, чем песок на пляже?
  3. Почему климат, для которого характерны резкие перепады температуры между днем и ночью, называют резко континентальным?

§ 1 Количество теплоты

Включим в холодном помещении электрообогреватель, и температура воздуха начинает повышаться. Или после зимней прогулки возвращаемся в теплый дом и ощущаем тепло. Названные примеры относят к теплообмену.

Теплообмен - это явление передачи внутренней энергии от одного тела к другому телу без совершения механической работы. В процессе теплообмена энергия или, как говорят, теплота поступает (нагревание комнаты электрообогревателем) или выделяется в окружающую среду (остывание горячей воды в чаше).

К примеру, чтобы согреть помещение или охладить устройство, защитить механизм от перегрева, необходимо выполнить расчеты, а значит, ввести параметр, с помощью которого удастся быстро и эффективно сосчитать количество поступающей или выделяющейся теплоты.

Количество теплоты- это энергия, передающаяся от одного тела к другому при теплообмене.

Вы видите калориметр - прибор для измерения количества теплоты. Простейший калориметр состоит из двух стаканов: внутреннего алюминиевого и внешнего пластмассового, которые разделены воздушным промежутком.

Как его применяют на практике? Во внутренний стакан нальём 200 г воды. Измерим её температуру: 20 °С. Погрузим в воду горячее тело - металлический цилиндрик.

Внутри калориметра начнётся теплообмен, и некоторое количество теплоты перейдёт от цилиндрика к воде, в результате чего её температура повысится и станет равной 60 °С. Можно вычислить изменение температуры, тем самым узнаем, на сколько градусов повысилась температура воды в калориметре:

Известно, что масса воды 200 г, инженер-теплотехник объяснит, что вода получила 200 г · 40 °С = 4000 калорий теплоты, но в физике количество теплоты измеряют джоулями. Формула выглядит следующим образом:

количество теплоты равно произведению удельной теплоемкости вещества на массу взятого вещества и на его изменение температуры, где

В этой формуле появилась физическая величина - удельная теплоемкость.

Удельная теплоёмкость вещества - физическая скалярная величина, показывающая, какое количество теплоты необходимо для изменения температуры 1(одного) кг этого вещества на 1 °С.

Эта величина является табличной.

Удельные теплоёмкости всех веществ измерены и занесены в специальные таблицы. Например, для воды в жидком состоянии с = 4200 Дж/(кг°С). Физический смысл показывает, что для нагревания 1 кг воды на 1 °С потребуется 4200 Дж теплоты. Иначе: каждый килограмм воды остывает на 1 °С, отдавая окружающим телам 4200 Дж тепловой энергии. Возвращаясь к нашему примеру, так как внутри калориметра находится вода, то воспользуемся данными таблицы и запишем ее значение: с = 4200 Дж/(кг°С)

Воспользуемся выше указанной формулой и сосчитаем количество теплоты, которое получила вода в джоулях:

§ 2 Единицы измерения количества теплоты

Для удобства и специфики работы используют внесистемные единицы количества теплоты - калории.

Калория - это количество тепла, необходимое для нагрева 1 г воды на 1 °С (от 19,5 до 20,5 °С).

Или используют:

1кДж = 1000Дж

1МДж = 1000000Дж

Данную формулу применяют не только в том случае, когда вещество нагревается, но и когда отдает тепло при охлаждении.

Калориметрические измерения показывают, что теплообмен всегда протекает так, что убывание внутренней энергии одних тел всегда сопровождается таким же поступлением внутренней энергии других тел, участвующих в теплообмене. Это одно из проявлений закона сохранения и превращения энергии.

Для расчета количества теплоты применяют формулу, связывающую удельную теплоемкость вещества, массу тела и изменение температуры, которую используют для расчета при нагревании и при охлаждении вещества. Единица измерения количества теплоты в системе СИ - джоуль. Также выяснили табличную величину для разных веществ - удельная теплоемкость

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9 Учебник И.В. Кривченко.
  3. Физика Справочник. О.Ф. Кабардин. – М.: АСТ-ПРЕСС, 2010.

Использованные изображения:

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Измерять количество теплоты учёные стали задолго до того, как в физике появилось понятие энергии. Тогда была установлена особая единица для измерения количества теплоты - калория (кал).

Калория - это количество теплоты, которое необходимо для нагревания \(1\) г воды на \(1\)°С.

\(1\) кал \(= 4,19\) Дж \(≈ 4,2\) Дж.

Термин «калория» (от латинского «calor» - тепло) ввёл в научный оборот французский химик Николя Клеман-Дезорм (\(1779-1842\)).

Николя Клеман-Дезорм

Его определение калории как единицы измерения тепла было впервые опубликовано в \(1824\) году в журнале «Le Producteur», а во французских словарях оно появилось в \(1842\) году.

Однако задолго до появления этого термина были сконструированы первые калориметры - приборы для измерения теплоты .

Первый калориметр изобрёл английский химик Джозеф Блэк и в \(1759-1763\) годах с его помощью определил теплоёмкости разных веществ, скрытую теплоту плавления льда и испарения воды.

Джозеф Блэк

Изобретением Д. Блэка воспользовались знаменитые французские учёные Антуан Лоран Лавуазье (\(1743-1794\)) и Пьер Симон Лаплас (\(1749-1827\)).

Антуан Лоран Лавуазье

Пьер Симон Лаплас

В \(1780\) году они начали серию калориметрических экспериментов, которые позволили измерить тепловую энергию.

Это понятие встречается ещё в \(XVIII\) веке в трудах шведского физика Иоганна Карла Вильке (\(1732-1796\)), который занимался исследованием электрических, магнитных и тепловых явлений и задумывался об эквивалентах, в которых можно измерять тепловую энергию.

Иоганн Карл Вильке

Устройство, которое впоследствии начали называть калориметром, Лавуазье и Лаплас использовали, чтобы измерять количество теплоты, выделяющееся в различных физических, химических и биологических процессах. Тогда ещё не было точных термометров, поэтому для измерения теплоты приходилось идти на ухищрения.

Первый калориметр был ледяным. Внутренняя полая камера, куда помещали объект, излучающий тепло (например, мышку), была окружена рубашкой, заполненной льдом или снегом. А ледяная рубашка, в свою очередь, была окружена воздушной, чтобы лёд не плавился под действием внешнего нагрева. Тепло от объекта внутри калориметра нагревало и плавило лёд. Взвешивая талую воду, стекавшую из рубашки в специальный сосуд, исследователи определяли теплоту, выделенную объектом.

Всякие тепловые изменения, которые испытывает какая-нибудь материальная система, переменяя своё состояние, происходят в обратном порядке, когда система вновь возвращается в своё первоначальное состояние.

Иными словами, чтобы разложить воду на водород и кислород, надо затратить столько же энергии, сколько выделяется при реакции водорода с кислородом с образованием воды.

В том же \(1780\) году Лавуазье поместил в калориметр морскую свинку. Тепло от её дыхания растапливало снег в рубашке. Потом последовали и другие эксперименты, которые имели огромное значение для физиологии.

Тогда-то Лавуазье высказал мысль, что дыхание животного подобно горению свечи, за счёт которого в организме поддерживается необходимый запас тепла. Он также впервые связал три важнейшие функции живого организма: дыхание, питание и транспирацию (испарение воды). Видимо, с тех пор и заговорили о том, что пища сгорает в нашем организме.

В \(XIX\) веке благодаря стараниям знаменитого французского химика Марселена Бертло (\(1827-1907\)), который опубликовал более 200 работ по термохимии, точность калориметрических методов сильно повысилась и появились более совершенные приборы - водяной калориметр и герметичная калориметрическая бомба.

Марселен Бертло

Последний прибор нам особенно интересен, потому что в нём можно измерять теплоту, выделяемую при очень быстрых реакциях - горении и взрыве.

Навеску сухого исследуемого вещества насыпают в тигель, помещают внутри бомбы и герметично закрывают этот сосуд. Затем вещество поджигают электрической искрой. Оно сгорает, отдавая тепло воде в окружающей его водяной рубашке. Термометры позволяют точно фиксировать изменение температуры воды.

В похожем калориметре в тридцатых годах \(XIX\) века проводил первые опыты с пищей знаменитый немецкий химик Юстус фон Либих (\(1803-1873\)), который разделял идеи Лавуазье о том, что пища - это топливо для организма, как дрова для печки.

Юстус фон Либих