Иоанн 2 добрый король франции. Иоанн ii добрый. Встреча у Пуатье

Сегодня мы продолжаем наш рассказ о нобелевских лауреатах. Второй выпуск нашей рубрики «Как получить Нобелевку» посвящен первому в истории лауреату в области физики, человеку, давшему свое имя не только единице дозы облучения, но и целому диапазону электромагнитного излучения. Итак, встречайте - настоящий Х-man, Вильгельм Конрад Рентген.

Родился 27 марта 1845 года в Леннепе, Королевство Пруссия, умер 10 февраля 1923 года в Мюнхене.

Лауреат Нобелевской премии по физике 1901 года. Формулировка Нобелевского комитета: «В знак признания исключительных услуг, которые он оказал науке открытием замечательных лучей, названных впоследствии в его честь» (In recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him) .

Учителем Рентгена можно назвать блестящего экспериментатора Августа Кундта, который работал профессором физики в знаменитой ETH Zurich (Швейцарская высшая техническая школа Цюриха). Именно туда Вильгельм поступил в 1865 году, поскольку хотел стать инженером-механиком. Однако Кундт (кстати, бывший учителем и открывшего давление света Петра Лебедева), увидев незаурядные способности 20-летнего юноши, настоятельно советовал ему заняться физикой, и в 1869 году Рентген стал ассистентом Кундта. Затем вместе с учителем он переехал в Вюрцбург, потом в Страсбург. Постепенно сам Рентген уже обретал славу тончайшего экспериментатора. С 1874 года (Рентгену - 29) он сам стал преподавателем Страсбургского университета. Затем следует Гиссен и снова Вюрцбург, где в 1894 году он становится ректором университета. Казалось бы, 49 лет, важная, почетная и денежная должность, чего еще надо? Но Рентген взялся за исследования в области, в которой, казалось, все уже сделано: электрический разряд в вакуумной трубке. Например, в трубке Крукса.

Уильям Крукс с лучевой трубкой

Wikimedia Commons

Это стеклянный сосуд с двумя электродами в противоположных концах, из которого выкачан почти весь воздух. Уильям Крукс, создатель этого прибора, обнаружил, что при достаточном разрежении воздуха стекло на противоположном катоду конце трубки начинает флуоресцировать желто-зеленым светом, видимо, под действием некоего излучения, которое было названо катодными лучами.

Несколько слов нужно, конечно, сказать о самом Уильяме Круксе. Известнейший ученый, открывший таллий и получивший в лабораторных условиях гелий, был заядлым спиритистом. В 1874 году он, будучи 42 лет от роду, в самом расцвете научных сил, опубликовал статью, в которой заявлял, что спиритизм - это научно, и явления духов происходят на самом деле. Скандал был такой, что Круксу пришлось на много лет «залечь на дно» - дождаться того, что его научный авторитет станет незыблем, как и позиции в Королевском научном обществе, дождаться рыцарского титула (1897) и в 1898 году совершить каминг-аут в духе тех лет, заявив, что он убежденный спиритуалист. Им Крукс и оставался до самой смерти в 1919 году. Так что с 1913 по 1915 год Лондонское королевское общество возглавлял, по-нашему, лжеученый (но только в этом).

Но вернемся к Рентгену и катодным трубкам. К 1895 году казалось, что все в этих трубках уже известно. И мало кто мог догадаться, что пройдет всего два года, и при помощи трубки Крукса будет совершено два важнейших открытия, принесших две Нобелевских премии по физике. О втором мы еще поговорим, когда начнем разговор о лауреате 1906 года, первооткрывателе электрона, «Джей-Джей» Томсоне.

А мы продолжим рассказ о Рентгене. 8 ноября, пятничным вечером, Рентген по традиции остался допоздна в лаборатории. Ассистенты ушли домой, было сравнительно темно. В лаборатории стояла катодная трубка, закрытая черным картоном. Он включил ток в ней и увидел, что лежавшая рядом бумага, покрытая кристаллом комплексного соединения бария и платины, засветилась зеленым светом. Так ученый, которому уже пошел шестой десяток, сделал одно из самых великих открытий в истории физики - рентгеновское излучение или Х-лучи. На тщательную проверку всего (он был очень скрупулезен) Рентген потратил две недели.

28 декабря 1895 года в Annalen der Physik вышла первая статья Рентгена «О новом виде лучей». Вся суть была уже в первом абзаце: «Если пропускать разряд большой катушки Румкорфа через трубку Гитторфа, Крукса, Ленарда или любой другой прибор, то наблюдается следующее явление. Кусок бумаги, покрытой платиносинеродистым барием (Ba∙4H 2 O ), при приближении к трубке, закрытой достаточно плотно прилегающим к ней чехлом из тонкого черного картона, при каждом разряде вспыхивает ярким светом: начинает флуоресцировать. Флуоресценция видна при достаточном затемнении и не зависит от того, подносить ли бумагу стороной покрытой или не покрытой платиносинеродистым барием. Флуоресценция заметна еще на расстоянии двух метров от трубки. Легко убедиться, что причины флуоресценции исходят именно от разрядной трубки, а не от какого-нибудь места в проводке».

Очень заметна тщательность Рентгена в экспериментах. На первых страницах той же статьи перечислены предметы и вещества, которые Рентген испытал на проницаемость: бумага, книга в 1000 страниц, двойная колода карт, лист станиоля, еловые доски разной толщины, алюминиевая пластинка, диски из эбонита, стекло со свинцом и стекло без свинца, вода, сероуглерод и другие жидкости в слюдяных сосудах, собственная рука... «Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях самой руки». Очень скоро был сделан и знаменитый снимок руки в рентгеновских лучах.

Слева рука жены Рентгена, справа - Келликера

Wikimedia Commons

На этой фотографии левой руки хорошо видно обручальное кольцо - это снимок руки жены Рентгена, Анны Берты Людвиг Рентген. Но очень часто публикуют другой снимок, под этим же названием, и тоже с кольцом на пальце. Но этот снимок - портрет кисти (простите за каламбур) немецкого анатома и гистолога Альберта фон Келликера, друга Рентгена. Этот снимок был сделан 23 января 1896 года.

Так было найдено первое медицинское применение новому открытию. Уже в 1896 году Джон Фрэнсис Холл-Эдвардс из Бирмингенма применил Х-лучи в медицине: сначала, 11 января, он сделал рентгеновский снимок кисти руки с введенной в нее стерильной иглой. А уже 14 февраля того же года им была выполнена первая операция, во время которой он, как хирург, руководствовался рентгеновским снимком. Чуть позже (1899) он стал первым официальным радиологом в мировой медицине. Ему же принадлежит честь использования рентгеновских лучей в военной медицине: в 1900 году в Южной Африке подразделение Холла-Эдвардса применяло рентген в военно-полевом госпитале во время англо-бурской войны. О количестве раненых, спасенных благодаря рентгеновским аппаратам в Первую мировую, можно не говорить, ведь оно исчисляется сотнями тысяч. Очень важно: Рентген отказался от патента на сами лучи и на способ получения рентгеновского изображения, считая, что это должно принадлежать человечеству.

Естественно, что слава, свалившаяся на Рентгена, оказалась оглушительной (он ненавидел свою известность). И естественно, что первый «Нобель» по физике достался именно ему.

Номинаций на самую первую Нобелевскую премию оказалось не очень много: 11 человек были номинированы 29 раз. И абсолютное большинство было за Рентгеном - 16 номинаций! Чуть ли не единственный случай такого превосходства. Среди прочих кандидатов можно отметить получивших «Нобеля» по физике Йоханнеса Ван-дер-Ваальса, Питера Зеемана, Гульермо Маркони, Филиппа фон Ленарда и Анри Беккереля, будущего нобелиата по химии Сванте Аррениуса (этот уникальный человек был номинирован и по химии, и по физике, и по медицине), а также не получившего премию Уильяма Томсона, более известного нам как лорд Кельвин.

Интересно другое: как и Аррениус, Рентген уже в 1906 году мог стать первым в истории дважды нобелевским лауреатом: начиная с 1906 года его абсолютно заслуженно пять раз номинировали на Нобелевскую премию по физиологии и медицине. Еще один интересный факт из «нобелевской» истории Рентгена: сам он шесть раз номинировал коллег на премию. В 1901 и 1903 году - уже упомянутого Уильяма Томсона, в 1905 - другого Томсона, «Джей-Джей» (говорят, только после того, как самолично удостоверился в существовании электрона, до тех пор он запрещал произносить это слово в лаборатории). И, удивительное дело, несмотря на то, что сам Рентген держался подальше от «новой физики», тем не менее в 1917 году он номинировал на «Нобеля» Макса Планка, а в 1922 году - Нильса Бора. На получение премии Рентген не поехал.

Сам первооткрыватель же продолжил свои штудии. Как писал работавший с ним Абрам Иоффе, в первый год после открытия Рентгена об Х-лучах вышло более 1000 статей и более сотни научных работ. «Но в течение 12 лет ни одна работа не добавила ничего существенного к тому, что сумел сделать Рентген».

А уж о тех возможностях, которые открыли рентгеновские лучи науке, можно не говорить. Вот только несколько примеров.

Менее чем через 20 лет после открытия лучей отец и сын, Уильям Генри и Уильям Лоуренс Брэгги, поняли, что, используя рентгеновское излучение, а точнее, дифракцию рентгеновских лучей на кристалле вещества, можно узнать структуру кристаллической решетки. Так появился рентгеноструктурный анализ, а «семейный подряд» получил Нобелевскую премию по физике 1915 года (Брэгг-младший так и вовсе стал самым молодым естественнонаучным лауреатом премии за все времена: награда досталась ему в 25 лет!). Но мало кто знает, что попытку установить строение кристаллов при помощи Х-лучей предпринял сам Рентген.

Позже оказалось, что таким образом можно определять и структуру белков, главное - вырастить из них кристаллы. Этот процесс - настоящее искусство, и впервые его удалось осуществить британскому химику Дороти Кроуфут-Ходжкин, которая в 1964 году удостоилась за свои работы Нобелевской премии по химии (всего женщины получали высшую научную награду в этой категории четыре раза). Кстати, четвертая женщина, Ада Йонат, получившая премию в 2009 году за изучение строения рибосомы, пользовалась тем же рентгеноструктурным анализом.

Вильгельм Конрад Рентген относился к ученым «старой школы», где незаурядные успехи в науке очень часто сочетались с личной скромностью и незаурядными личностными качествами. В 1917 году Германия уже проигрывала войну. Продукты распределялись по продовольственным карточкам. Многие друзья и ученые присылали Рентгену посылки с маслом и сахаром, однако Рентген сдавал все свои посылки для распределения среди горожан. С огромным трудом власти заставили Рентгена, потерявшего 24 килограмма, перейти на улучшенный паек. По первому призыву государства ученый отдал и все свои капиталы, размещенные в голландских ценных бумагах.

В 1919 году умерла его любимая жена. В 1920 году Рентген ушел со всех постов и остался почти без средств. Для того чтобы успеть перед смертью посетить любимые с женой места в Швейцарии, Рентген целый год отказывался от кофе и других излишеств. Тем не менее он успел в своей жизни все.

Рентгеновское излучение, с точки зрения физики, это электромагнитное излучение, длина волн которого варьируется в диапазоне от 0,001 до 50 нанометров. Было открыто в 1895 немецким физиком В.К.Рентгеном.

По природе эти лучи являются родственными солнечному ультрафиолету. В спектре самыми длинными являются радиоволны. За ними идет инфракрасный свет, который наши глаза не воспринимают, но мы ощущаем его как тепло. Далее идут лучи от красного до фиолетового. Затем - ультрафиолет (А, В и С). А сразу за ним рентгеновские лучи и гамма-излучение.

Рентгеновское может быть получено двумя способами: при торможении в веществе проходящих сквозь него заряженных частиц и при переходе электронов с высших слоев на внутренние при высвобождении энергии.

В отличие от видимого света эти лучи имеют очень большую длину, поэтому способны проникать через непрозрачные материалы, не отражаясь, не преломляясь и не накапливаясь в них.

Тормозное излучение получить проще. Заряженные частицы при торможении испускают электромагнитное излучение. Чем больше ускорение этих частиц и, следовательно, резче торможение, тем больше образуется рентгеновского излучения, а длина его волн становится меньше. В большинстве случаев на практике прибегают к выработке лучей в процессе торможения электронов в твердых веществах. Это позволяет управлять источником этого излучения, избегая опасности радиационного облучения, потому что при отключении источника рентгеновское излучение полностью исчезает.

Самый распространенный источник такого излучения - Испускаемое ей излучение неоднородно. В нем присутствует и мягкое (длинноволновое), и жесткое (коротковолновое) излучения. Мягкое характеризуется тем, что полностью поглощается человеческим телом, поэтому такое рентгеновское излучение вред приносит в два раза больше, чем жесткое. При чрезмерном электромагнитном облучении в тканях организма человека ионизация может привести к повреждению клеток и ДНК.

Трубка - это с двумя электродами - отрицательным катодом и положительным анодом. При разогревании катода из него испаряются электроны, затем они ускоряются в электрическом поле. Сталкиваясь с твердым веществом анодов, они начинают торможение, которое сопровождается испусканием электромагнитного излучения.

Рентгеновское излучение, свойства которого широко используются в медицине, базируется на получении теневого изображения исследуемого объекта на чувствительном экране. Если диагностируемый орган просвечивать пучком параллельных друг другу лучей, то проекция теней от этого органа будет передаваться без искажений (пропорционально). На практике источник излучения более похож на точечный, поэтому его располагают на расстоянии от человека и от экрана.

Чтобы получить человек помещается между рентгеновской трубкой и экраном или пленкой, выступающими в роли приемников излучения. В результате облучения на снимке костная и другие плотные ткани проявляются в виде явных теней, выглядят более контрастно на фоне менее выразительных участков, которые передают ткани с меньшим поглощением. На рентгеновских снимках человек становится «полупрозрачным».

Распространяясь, рентгеновское излучение может рассеиваться и поглощаться. До поглощения лучи могут проходить сотни метров в воздухе. В плотном веществе они поглощаются гораздо быстрее. Биологические ткани человека неоднородны, поэтому поглощение ими лучей зависит от плотности ткани органов. поглощает лучи быстрее, чем мягкие ткани, потому что содержит вещества, имеющие большие атомные номера. Фотоны (отдельные частицы лучей) поглощаются разными тканями организма человека по-разному, что и позволяет получать контрастное изображение с помощью рентгеновских лучей.

Рентген Вильгельм Конрад Вильгельм Конрад Рентген родился 17 марта 1845 г. в пограничной с Голландией области Германии, в г. Ленепе. Он получил техническое образование в Цюрихе в той самой Высшей технической школе (политехникуме), в которой позже учился Эйяштейн. Увлечение физикой заставило его после окончания школы в 1866 г. продолжить физическое образование.

Защитив в 1868 г. диссертацию на степень доктора философии, он работает ассистентом на кафедре физики сначала в Цюрихе, потом в Гисене, а затем в Страсбурге (1874-79) у Кундта. Здесь Рентген прошел хорошую экспериментальную школу и стал первоклассным экспериментатором. Он производил точные измерения отношения Ср/Су для газов, вязкости и диэлектрической проницаемости ряда жидкостей, исследовал упругие свойства кристаллов, их пьезоэлектрические и пироэлектрические свойства, измерял магнитное поле движущихся зарядов (ток Рентгена). Часть важных исследований Рентген выполнил со своим учеником, одним из основателей советской физики А. Ф. Иоффе.

Научные исследования относятся к электромагнетизму, физике кристаллов, оптике, молекулярной физике.

В 1895 открыл излучение с длиной волны, более короткой, нежели длина волны ультрафиолетовых лучей (X-лучи), названное в дальнейшем рентгеновскими лучами, и исследовал их свойства: способность отражаться, поглощаться, ионизировать воздух и т. д. Предложил правильную конструкцию трубки для получения Х-лучей — наклонный платиновый антикатод и вогнутый катод: первый сделал фотоснимки при помощи рентгеновских лучей. Открыл в 1885 магнитное поле диэлектрика, движущегося в электрическом поле (так называемый “рентгенов ток”). Его опыт наглядно показал, что магнитное поле создается подвижными зарядами, и имел важное значение для создания X. Лоренцем электронной теории. Значительное число работ Рентгена посвящено исследованию свойств жидкостей, газов, кристаллов, электромагнитных явлений, открыл взаимосвязь электрических и оптических явлений в кристаллах. За открытие лучей, носящих его имя, Рентгену в 1901 первому среди физиков была присуждена Нобелевская премия.

С 1900 г. и до последних дней жизни (умер он 10 февраля 1923 г.) он работал в Мюнхенском университете.

Открытие Рентгена

Конец XIX в. ознаменовался повышенным интересом к явлениям прохождения электричества через газы. Еще Фарадей серьезно занимался этими явлениями, описал разнообразные формы разряда, открыл темное пространство в светящемся столбе разреженного газа. Фарадеево темное пространство отделяет синеватое, катодное свечение от розоватого, анодного.

Дальнейшее увеличение разрежения газа существенно изменяет характер свечения. Математик Плюкер (1801—1868) обнаружил в 1859г., при достаточно сильном разрежении слабо голубоватый пучок лучей, исходящий из катода, доходящий до анода и заставляющий светиться стекло трубки. Ученик Плюкера Гитторф (1824—1914) в 1869 г. продолжил исследования учителя и показал, что на флюоресцирующей поверхности трубки появляется отчетливая тень, если между катодом и этой поверхностью поместить твердое тело.

Гольдштейн (1850—1931), изучая свойства лучей, назвал их катодными лучами (1876 г.). Через три года Вильям К рук с (1832—1919) доказал материальную.природу катодных лучей и назвал их “лучистой материей”—веществом, находящимся в особом четвертом состоянии. Его доказательства были убедительны и наглядны. Опыты с “трубкой Крукса” демонстрировались позже во всех физических кабинетах. Отклонение катодного пучка магнитным полем в трубке Крукса стало классической школьной демонстрацией.

Однако опыты по электрическому отклонению катодных лучей не были столь убедительными. Герц не обнаружил такого отклонения и пришел к выводу, что катодный луч — это колебательный процесс в эфире. Ученик Герца Ф. Ленард, экспериментируя с катодными лучами, в 1893 г. показал, что они проходят через окошечко, закрытое алюминиевой фольгой, и вызывают свечение в пространстве за окошечком. Явлению прохождения катодных лучей через тонкие металлические тела Герц посвятил свою последнюю статью, опубликованную в 1892 г. Она начиналась словами:

“Катодные лучи отличаются от света существенным образом в отношении способности проникать через твердые тела”. Описывая результаты опытов по прохождению катодных лучей через золотые, серебряные, платиновые, алюминиевые и т.д. листочки, Герц отмечает, что он не наблюдал особых отличий в явлениях. Лучи проходят через листочки не прямолинейно, а дифракционно рассеиваются. Природа катодных лучей все еще оставалась неясной.

Вот с такими трубками Крукса, Ленарда и других и экспериментировал Вюрцбургский профессор Вильгельм Конрад Рентген в конце 1895 г. Однажды по окончании опыта, закрыв трубку чехлом из черного картона, выключив свет, но не выключив еще индуктор, питающий трубку, он заметил свечение экрана из синеродистого бария, находящегося вблизи трубки. Пораженный этим обстоятельством, Рентген начал экспериментировать с экраном. В своем первом сообщении “О новом роде лучей”, датированном 28 декабря 1895 г., он писал об этих первых опытах: “Кусок бумаги, покрытой платиносинеродистым барием, при приближении к трубке, закрытой достаточно плотно прилегающим к ней чехлом из тонкого черного картона, при каждом разряде вспыхивает ярким светом: начинает флюоресцировать. Флюоресценция видна при достаточном затемнении и не зависит от того, подносим ли бумагу стороной, покрытой синеродистым барием или не покрытой синеродистым барием. Флюоресценция заметна еще на расстоянии двух метров от трубки”.

Тщательное исследование показало Рентгену, “что черный картон, не прозрачный ни для видимых и ультрафиолетовых лучей солнца, ни для лучей электрической дуги, пронизывается каким-то агентом, вызывающим флюоресценцию”. Рентген исследовал проникающую способность этого “агента”, который он для краткости назвал “Х-лучи”, для различных веществ. Он обнаружил, что лучи свободно проходят через бумагу, дерево, эбонит, тонкие слои металла, но сильно задерживаются свинцом.

Затем он описывает сенсационный опыт:

“Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки”. Это было первое рентгеноскопическое исследование человеческого тела. Рентген получил и первые рентгеновские снимки, приложив их к своей руке.

Эти снимки произвели огромное впечатление; открытие еще не было завершено, а уже начала свой путь рентгенодиагностика. “Моя лаборатория была наводнена врачами, приводившими пациентов, подозревавших, что они имеют иголки в разных частях тела”,— писал английский физик Шустер.

Уже после первых опытов Рентген твердо установил, что Х-лучи отличаются от катодных, они не несут заряда и не отклоняются магнитным полем, однако возбуждаются катодными лучами. “...Х-лучи не идентичны с катодными лучами, но возбуждаются ими в стеклянных стенках разрядной трубки”,— писал Рентген.

Он установил также, что они возбуждаются не только в стекле, но и в металлах.

Упомянув о гипотезе Герца — Ленарда, что катодные лучи “есть явление, происходящее в эфире”, Рентген указывает, что “нечто подобное мы можем сказать и о наших лучах”. Однако ему не удалось обнаружить волновые свойства лучей, они “ведут себя иначе, чем известные до сих пор ультрафиолетовые, видимые, инфракрасные лучи”. По своим химическим и люминесцентным действиям они, по мнению Рентгена, сходны с ультрафиолетовыми лучами. В первом сообщении он высказал оставленное потом предположение, что они могут быть продольными волнами в эфире.

Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П. Н. Лебедев. В Петербурге изобретатель радио А. С. Попов экспериментировал с X-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д. Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электричества через газы. Его исследования привели к открытию электрона.

ИОАНН II ДОБРЫЙ

Король Франции из рода валуа, правивший в 1350—1364 гг. Сын Филиппа VI и Жанны Вургундской Ж.; г 1332 г., Джудит, дочь короля Богеии Иоанна Люксембургского (род. 1315 г., Умер 1349 г.); 2) с 1350 г. Жанна, дочь графа Овернцкого Вильгельме XIII (род. 1326 г., Умер 1360 г.). Род. 1319) г Умер К апр. 1364 г.

Всю свою юность Иоанн провел в беспрерывных сражениях и, как все первые Валуа, мог считаться образцовым рыцарем. Он был человеком храбрым и великодушным, но вспыльчивым, упрямым и капризным. Он легко впадал в гнев и не знал никакой меры ни в ненависти, ни в дружеских привя-заностях. Сан коннетабля он передал своему любимцу Карлу Испанскому, внуку инфанта Фердинанда де-ла Сарды, красивому, изящному и очень храброму рыцарю, которого он женил на дочери Карла де Блуа. Чрезмерные почести, выпавшие на долю фаворита, а также то обстоятельство, что высшая государственная должность была пожалована иноземцу, возмутили французских вельмож. Во г лаве недовольных встал зять Иоанна король наваррский Карл Злой. В январе 1354 г. он, вместе со своим братом Филиппом, тремя графами Гаркур и некоторыми другими вельможами, напал на ненавистного фаворита и умертвил его прямо в постели. Гнев и огорчение Иоанна, когда он узнал об этом преступлении, были очень велики, но, опасаясь, как бы Карл не соединился с англичанами, он согласился простить преступников. Король пошел на это с большой досадой, так что прочного мира между ними быть не могло.

Между тем в 1355 г. закончилось перемирие с Англией, заключенное отцом Иоанна Филиппом VI. Война возобновилась. Эдуард Черный Принц, сын Эдуарда III, совершил в этом году удачный поход в Лангедок. Хотя англичане не смогли взять Шербур, они дошли до Пиренеев. Нарбона и Каркассона открыли перед ним ворота. Пятьсот городов и местечек были разрушены и сожжены. Разорение богатейшей провинции южной Франции заставило короля обратиться за денежной помощью к сословиям. К этому же побуждало его отчаянное финансовое положение государства.

Казна была пуста, король должен был отсрочить выплату своих долгов. Оставалась единственная надежда — на помощь Генеральных Штатов. Их заседания начались 2 декабря 1355 г. Король лично приехал приветствовать представителей сословий, надеясь, что они утвердят новые чрезвычайные налоги. Но собравшиеся приняли самые решительные и неожиданные меры против самого Иоанна. Рассудок и патриотизм не позволяли депутатам отказать королю в назначении необходимых средств, но они решили предупредить злоупотребление ими. Сословия выбрали из своей среды комиссию для надзора за взиманием установленных ими чрезвычайных налогов и за тем, чтобы эти суммы употреблялись единственно для предназначенной цели. Эта комиссия была облечена значительными правами и даже отчасти ущемляла королевскую власть. Иоанн был вынужден согласиться на все требуемые уступки.

Новые налоги были очень тяжелыми и повсеместно вызвали волнения. В то же время вспыхнула новая феодальная распря. В феврале 1356 г. дофин Карл, носивший титул герцога Нормандского, приехал в свое герцогство, чтобы принять присягу от вассалов. Некоторые бароны открыто демонстрировали ему свою неприязнь. На съезде в Водреле граф Жанн Гаркур произнес несколько высокомерных слов, оскорбительных для дофина и его отца. Во всем этом было заметно влияние наваррского короля. Дело кончилось трагической развязкой: в Руане дофин пригласил к себе на обед Карла Наваррского, графа Гаркура и самых знатных нормандских вельмож. Во время застолья король Иоанн, который, как все предполагали, находился в Париже, внезапно вошел в зал и приказал арестовать нескольких г остей дофина. Графу Гаркуру и еще трем вельможам без долгих разговоров отрубили г оловы, а тела их повесили на всеобщее обозрение. Карл Наваррский был отправлен в Пикардию, в замок Арле, и заключен там под стражу. Такое неслыханное насилие было большой ошибкой со стороны короля. Родственники пострадавших, Филипп Наваррский и Годефруа Гаркур, взялись за оружие и призвали Эдуарда III во Францию. К войне с Англией прибавилась новая война с Наваррой.

Спустя несколько месяцев Черный Принц вознамерился пройти из Бордо через все французское королевство, чтобы соединиться в Нормандии с английскими и на-варрскими войсками. Иоанн поспешно выступил навстречу неприятелю. Французов было в пять раз больше, чем англичан. При известии об их приближении Черный Принц повернул обратно в Бордо, но был задержан на три дня под Ро-морантеном. Эта остановка дала Иоанну возможность нагнать англичан и отрезать их от Бордо. 19 сентября у Мопертюи, в двух милях от Пуатье, произошло решительное сражение. Местность была перерезана кустарником, виноградниками, изгородями, так что не допускала действия многочисленной конницы. Единственная открытая дорога была так узка, что по ней могли проехать рядом только четыре всадника. Поэтому большинство французских рыцарей сошло с лошадей и сражалось пешими. Черный Принц поставил своих стрелков за изгородями и перед выходом дороги на равнину. Справа на холме был спрятан отряд всадников. Битва началась атакой французских рыцарей, наступавших двумя колонами. Английские стрелки из-за изгородей осыпали их тучей стрел. Колоны наступавших были вскоре совершенно рассеяны, узкий проход загроможден людьми и лошадьми. Внезапная атака английской конницы довершила разгром — французы начали беспорядочное отступление. Третья колонна, которой командовал сам король, некоторое время сдерживала натиск врага, но потом была разбита и она. Иоанн и младший сын его Филипп попали в плен; англичане г нались за бегущими до самых ворот Пуатье. Это поражение оказалось еще более внушительным, чем в битве при Креси. Цвет французской аристократии погиб или оказался в плену. В добычу было взято столько золота, серебра, дорогих уборов, одежды, драгоценного оружия, что массы богатства превысили все ожидания англичан. Иоанна отвели в лагерь принца. Здесь он был окружен подчеркнутым вниманием. В Бордо, где французский король провел зиму, в честь него устраивалось много праздников. Весной 1357 г. Иоанна переправили в Англию. Он был с почетом принят английским королем и в дальнейшем жил в Виндзоре как г ость. В марте 1359 г. он заключил с Эдуардом предварительный мирный договор, очень тяжелый для Франции. По его условиям Эдуард получал в полное владение французские провинции: Нормандию, Сентонж, Биггор, Перигор, Лимузен, Керси, Пуату, Анжу, Мэн, Турень, Понтье, Ги-ень и Булонь, а также сюзеренитет над Бретанью. За свое освобождение Иоанн должен был внести выкуп в размере 4 миллионов золо тых экю. Этот договор был представлен на рассмотрение Генеральным Штатам, но они признали его «негодным к исполнению». После этого Иоанна заключили в Тауэр, и война возобновилась. В мае 1360 г. в селении Бретиньи дофин Карл подписал с англичанами новый договор, который был утвержден Иоанном в октябре. Он был более приемлем, чем предыдущий. Английский король отказался от притязаний на Нормандию, Перигор, Анжу, Мэн, Турень и Булонь. Размер выкупа был уменьшен до трех миллионов.

По возвращении из плена Иоанн был озабочен только уплатой огромного выкупа за свое освобождение. Взыскание всех налогов было приостановлено для того, чтобы оно не мешало феодальным владетелям оказывать королю денежную помощь. У городов делались займы. Иоанн стал даже торговать членами своего семейства: он согласился выдать свою дочь за миланского герцога Гелаццо Висконти с условием получения за это наличных денег. Но всего этого было недостаточно для уплаты выкупа. Кроме того, один из г лавных заложников, сын короля Иоанна герцог Анжуйский, получивший от англичан позволение жить в Кале, нарушил данное слово и бежал. Иоанн немедленно отправился в Англию, чтобы заменить его. Английский король был очень удивлен его благородством и писал, что еще никогда не видел такого честного человека, как французский король.

Он окружил своего пленного врага знаками самого искреннего внимания. Тем не менее весной 1364 г. Иоанн занемог и умер. Со времени последних Каролингов Франция никогда не подвергалась таким бедствиям, как в годы его правления. Но народ, любивший Иоанна за прямодушие и доброту, сохранил о нем хорошие воспоминания и даже дал Иоанну прозвание Доброго.

Монархи. 2012