Даны 2 коробки имеющие. Правильная четырехугольная призма. Элементы правильной четырехугольной призмы

Тип задания: 8
Тема: Призма

Условие

В правильной треугольной призме ABCA_1B_1C_1 стороны основания равны 4 , а боковые рёбра равны 10 . Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1.

Показать решение

Решение

Рассмотрим следующий рисунок.

Отрезок MN является средней линией треугольника A_1B_1C_1, поэтому MN = \frac12 B_1C_1=2. Аналогично, KL=\frac12BC=2. Кроме того, MK = NL = 10. Отсюда следует, что четырёхугольник MNLK является параллелограммом. Так как MK\parallel AA_1, то MK\perp ABC и MK\perp KL. Следовательно, четырёхугольник MNLK является прямоугольником. S_{MNLK} = MK\cdot KL = 10\cdot 2 = 20.

Ответ

Тип задания: 8
Тема: Призма

Условие

Объём правильной четырёхугольной призмы ABCDA_1B_1C_1D_1 равен 24 . Точка K — середина ребра CC_1 . Найдите объём пирамиды KBCD .

Показать решение

Решение

Согласно условию, KC является высотой пирамиды KBCD . CC_1 является высотой призмы ABCDA_1B_1C_1D_1 .

Так как K является серединой CC_1 , то KC=\frac12CC_1. Пусть CC_1=H , тогдаKC=\frac12H . Заметим также, что S_{BCD}=\frac12S_{ABCD}. Тогда, V_{KBCD}= \frac13S_{BCD}\cdot\frac{H}{2}= \frac13\cdot\frac12S_{ABCD}\cdot\frac{H}{2}= \frac{1}{12}\cdot S_{ABCD}\cdot H= \frac{1}{12}V_{ABCDA_1B_1C_1D_1}. Следовательно, V_{KBCD}=\frac{1}{12}\cdot24=2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6 , а высота — 8 .

Показать решение

Решение

Площадь боковой поверхности призмы находим по формуле S бок. = P осн. · h = 6a\cdot h, где P осн. и h — соответственно периметр основания и высота призмы, равная 8 , и a — сторона правильного шестиугольника, равная 6 . Следовательно, S бок. = 6\cdot 6\cdot 8 = 288.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2 a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2 . Найдите расстояние между точками A и E_1 .

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left (-\frac12 \right).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 4\sqrt5 и 8 , и боковым ребром, равным 5 .

Показать решение

Решение

Площадь боковой поверхности прямой призмы находим по формуле S бок. = P осн. · h = 4a\cdot h, где P осн. и h соответственно периметр основания и высота призмы, равная 5 , и a — сторона ромба. Найдём сторону ромба, пользуясь тем, что диагонали ромба ABCD взаимно перпендикулярны и точкой пересечения делятся пополам.

В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.

Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня

Вариант 13МБ1

Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.

Алгоритм выполнения:
  1. Записать формулу объема цилиндра.
  2. Подставить значения для цилиндра с жидкостью в первом и во втором случае.
  3. Полученное уравнение решить относительно второй высоты h 2 .
  4. Подставить данные и вычислить искомую величину.
Решение:

Запишем формулу объема цилиндра.

Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π r 2 .

Следовательно, объем цилиндра равен π r 2 h

Подставим значения для цилиндра с жидкостью в первом и во втором случае.

V 1 = π r 1 2 h 1

V 2 = π r 2 2 h 2

Объем жидкости не изменялся, следовательно, можно приравнять объемы.

Левые части равны, значит можно приравнять и правые.

π r 1 2 h 1 = π r 2 2 h 2

Полученное уравнение решим относительно второй высоты h 2 .

h 2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

h 2 =(π r 1 2 h 1)/ π r 2 2

По условию площадь основания стала в 4 раза больше, то есть r 2 = 4 r 1 .

Подставим r 2 = 4 r 1 в выражение для h 1.

Получим: h 2 =(π r 1 2 h 1)/ π (4 r 1) 2

Полученную дробь сократим на π, получим h 2 =(r 1 2 h 1)/ 16 r 1 2

Полученную дробь сократим на r 1 , получим h 2 = h 1 / 16.

Подставим известные данные: h 2 = 80/ 16 = 5 см.

Вариант 13МБ2

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

Алгоритм выполнения:
  1. Найти отношение объемов.
  2. Сократить получившуюся дробь.
Решение:

V 1 = a 1 · b 1 · c 1

V 2 = a 2 · b 2 · c 2

Найдем отношение объемов.

По условию c 1 = 4,5 c 2 (первая коробка в четыре с половиной раза выше второй),

b 2 = 3 b 1 (вторая коробка втрое шире первой).

V 1 / V 2 = (a 1 · b 1 · c 1)/ (a 2 · b 2 · c 2) = (a 1 · b 1 · 4,5c 2)/ (3a 1 · 3b 1 · c 2) = (a 1 · b 1 · 4,5c 2)/ (9a 1 · b 1 · c 2)

V 1 / V 2 = (a 1 · b 1 · 4,5c 2)/ (9a 1 · b 1 · c 2) = 4,5/9 = ½.

Объем первой коробочки в 2 раза меньше объема второй.

Вариант 13МБ3

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

Алгоритм выполнения:
  1. Записать формулу, для вычисления объема правильной четырехугольной призмы.
  2. Записать в общем виде формулу для нахождения объема в первом и втором случае.
  3. Найти отношение объемов.
  4. Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
  5. Сократить получившуюся дробь.
Решение:

Запишем формулу, для вычисления объема правильной четырехугольной призмы.

Запишем в общем виде формулу для нахождения объема в первом и втором случае.

V 1 = a 1 · b 1 · c 1

V 2 = a 2 · b 2 · c 2

Найдем отношение объемов.

V 1 / V 2 = (a 1 · b 1 · c 1)/ (a 2 · b 2 · c 2)

Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы.

По условию c 1 = 1,5 c 2 (первая коробка в полтора раза выше второй), b 2 = 3 b 1 (вторая коробка втрое шире первой).

Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a 2 = 3 a 1

Подставим эти выражения в формулу отношения объемов:

V 1 / V 2 = (a 1 · b 1 · c 1)/ (a 2 · b 2 · c 2) = (a 1 · b 1 · 1,5c 2)/ (3a 1 · 3b 1 · c 2) = (a 1 · b 1 · 1,5c 2)/ (9a 1 · b 1 · c 2)

Сократим получившуюся дробь на a 1 · b 1 · c 2 . Получим:

V 1 / V 2 = (a 1 · b 1 · 1,5c 2)/ (9a 1 · b 1 · c 2) = 1,5/9 = 15/(10 · 9) = 3/(2 · 9) = 1/ (2 · 3) = 1/6.

Объем первой коробочки в 6 раза меньше объема второй.

Ответ:6.

Вариант 13МБ4

От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?

Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 + 8 = 14 граней.

Если бы нас спросили, а сколько вершин у нового «куба». Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 3 = 24

Вариант 13МБ5

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго – 6 и 4. Во сколько раз объем второго цилиндра больше объема первого?

Алгоритм выполнения
  1. Записываем ф-лу для вычисления объема цилиндра.
  2. Вводим обозначения для радиуса основания и высоты 1-го цилиндра. Выражаем подобным образом аналогичные параметры 2-го цилиндра.
  3. Формируем формулы для объема 1-го и 2-го цилиндров.
  4. Вычисляем отношение объемов.
Решение:

Объем цилиндра равен: V=πR 2 H . Обозначим радиус основания 1-го цилиндра через R 1 , а его высоту – через Н 1 . Соответственно, радиус основания 2-го цилиндра обозначим через R 2 , а высоту – через Н 2 .

Отсюда получим: V 1 =πR 1 2 H 1 , V 2 =πR 2 2 H 2 .

Запишем искомое отношение объемов:

.

Подставляем в полученное отношение числовые данные:

.

Вывод: объем 2-го цилиндра больше объема 1-го в 6 раз.

Вариант 13МБ6

В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объем детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.

Алгоритм выполнения
  1. Вводим обозначения для объема до погружения детали и после. Пусть это будет соответственно V 1 и V 2 .
  2. Фиксируем значение для V 1 . Выражаем V 2 через V 1 . Находим значение V 2 .
  3. Переводим результат, полученный в литрах, в куб.см.
Решение:

Объем бака до погружения V 1 =5 (л). Т.к. после погружения детали объем стал равным V 2 . Согласно условию, увеличение составило 1,4 раза, поэтому V 2 =1,4V 1 .

Отсюда получаем: V 2 =1,4·5=7 (л).

Т.о., разница объемов, которая и составляет объем детали, равна:

V 2 –V 1 =7–5=2 (л).

2 л=2·1000=2000 (куб.см).

Вариант 13МБ7

Вода в сосуде цилиндрической формы находится на уровне h=80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.

Алгоритм выполнения
  1. Записываем ф-лу для расчета объема цилиндра.
  2. На основании этой формулы записываем 2 уравнения – для вычисления объема воды в 1-м и 2-м сосудах. Для этого используем в формуле соответствующие индексы 1 и 2.
  3. Поскольку воду просто переливают их одного сосуда в другой, то ее объем не изменяется. Поэтому приравниваем полученные уравнения. Из полученного единственного уравнения находим уровень воды во 2-м сосуде, выраженный высотой h 2 .
Решение:

Объем цилиндра равен: V=S осн h=πR 2 h .

Объем воды в 1-м сосуде: V 1 =πR 1 2 h 1 .

Объем во 2-м сосуде: V 2 =πR 2 2 h 2 .

Приравниваем V 1 и V 2 : πR 1 2 h 1 =πR 2 2 h 2 .

Сокращаем на π, выражаем h 2 :

.

По условию R 2 =2R 1 . Отсюда:

Вариант 13МБ8

От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?

Алгоритм выполнения
  1. Определяем количество вершин у треугольной призмы.
  2. Анализируем изменения, которые произойдут при отпиливании всех вершин. Подсчитываем кол-во вершин у нового многогранника.
Решение:

Вершины призмы формируют вершины оснований (верхнего и нижнего). Поскольку основаниями правильной треугольной призмы являются правильные треугольники, то вершин у такой призмы 3·2=6 штук.

Спилив вершины призмы, получим вместо них небольшие (по сравнению с размерами самой призмы) треугольники. Это отображено и на рисунке. То есть вместо каждой вершины образуется 3 новых. Следовательно, их кол-во станет равным: 6·3=18.

Вариант 13МБ9

Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?

Алгоритм выполнения
  1. Вводим обозначения для линейных параметров коробок и их объемов.
  2. Определяем зависимость линейных параметров согласно условию.
  3. Записываем формулу для вычисления объема призмы.
  4. Адаптируем эту формулу для объемов коробок.
  5. Находим отношение объемов.
Решение:

Т.к. форма коробок – правильная призма, то в их основании лежат квадраты. Поэтому можем обозначить длину и ширину каждой коробки одинаково. Пусть для первой коробки это а 1 , а для второй а 2 . Высоты коробок обозначим соответственно h 1 и h 2 . Объемы – V 1 и V 2 .

Согласно условию, h 2 =4,5h 1 , а 1 =3а 2 .

Объем призмы равен: V =S осн h . Т.к. в основании коробок лежит квадрат, то S осн =а 2 . Отсюда: V=a 2 h .

Для 1-й коробки имеем: V 1 =a 1 2 h 1 . Для 2-й коробки: V 2 =a 2 2 h 2 .

Тогда получаем отношение:

Вариант 13МБ10

В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.

Алгоритм выполнения
  1. Доказываем, что данные в условии конусы подобны.
  2. Определяем коэффициент подобия.
  3. Используя свойство для объемов подобных тел, находим объем жидкости.
Решение:

Если рассматривать сечение конуса по двум его противоположно расположенным образующим (осевое сечение), то видим, что полученные таким способом треугольники большого конуса и малого (образованного жидкостью) подобны. Это следует из равенства их углов. Т.е. имеем: у конусов подобны высоты и радиусы основания. Отсюда делаем вывод: т.к. линейные параметры конусов подобны, то и конусы подобны.

По условию высота малого конуса (жидкости) составляет ½ высоты конуса. Значит, коэффициент подобия малого и большого конусов равен ½.

Применяем св-во подобия тел, которое заключается в том, их объемы относятся как коэффициет подобия в кубе. Обозначим объем большого конуса V 1 , малого – V 2 . Получим:

.

Поскольку по условию V 1 =1600 мл, то V 2 =1600/8=200 мл.

Вариант 13МБ11

Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?

Алгоритм выполнения
  1. Записываем формулу для вычисления объема шара.
  2. Адаптируем формулу для каждого из шаров. Для этого используем индексы 1 и 2.
  3. Записываем отношение объемов, вычисляем его, подставив числовые данные из условия.
Решение:

Объем шара вычисляется по ф-ле: .

Отсюда объем 1-го (большего) шара равен , 2-го (меньшего) шара – .

Составим отношение объемов:

Подставляем в полученную формулу числовые данные из условия:

Вывод: объем большего шара в 64 раза больше.

Вариант 13МБ12

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

Алгоритм выполнения
  1. Записываем формулу для определения площади бок.поверхности цилиндра.
  2. Переписываем ее дважды с использованием соответствующих индексов – для 1-го (большего) и 2-го (меньшего) цилиндров.
  3. Находим отношение площадей. Вычисляем отношения, используя числовые данные из условия.
Решение:

Площадь бок.поверхности цилиндра вычисляется так: S=2πRH .

Для 1-го цилиндра имеем: S 1 =2 πR 1 H 1 . Для 2-го цилиндра: S 2 =2 πR 2 H 2 .

Составим отношение этих площадей:

Найдем числовое значение полученного отношения:

Вывод: площадь боковой поверхности 1-го цилиндра больше в 12 раз.

Вариант 13МБ13

Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?

Алгоритм выполнения
  1. Записываем формулу для определения массы большего шаров через плотность и объем.
  2. Объем в этой формуле расписываем через ф-лу объема шара (через его радиус).
  3. Записываем ф-лу для массы меньшего шара, расписываем объем через радиус (по аналогии с пп.1 и 2).
  4. Поскольку оба шара изготовлены из одного и того же материала, то найденное значение для плотности можем использовать в ф-ле для массы меньшего шара. Вычисляем искомую массу.
Решение:

Масса большего (1-го) шара равна: m 1 = ρV 1 . Объем этого шара составляет V 1 = В бак, имеющий форму правильной четырехугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объем детали сложной формы, ее полностью погружают в эту жидкость. Найдите объем детали, если после ее погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.

Алгоритм выполнения
  1. Определяем часть призмы, соответствующую объему погруженной детали.
  2. Вычисляем объем детали на основании формулы для определения объема прямой призмы с квадратом в основании.
Решение:

Погруженная в жидкость деталь занимает объем, соответствующий столбу жидкости, высота которого равна 10 см, т.е. разнице, возникшей между начальной высотой жидкости и конечной (после погружения). Это означает, что деталь имеет объем, равный части жидкости, занимающей объем 40х40х10 (см).

Найдем этот объем.

Задание:

В правильной четырёхугольной призме ABCDA 1 B 1 C 1 D 1 на ребре СС 1 взята точка К так, что СК: КС 1 = 1: 2.

а) Постройте сечение призмы плоскостью, проходящей через точки D и К параллельно диагонали основания АС.

б) Найдите угол между плоскостью сечения и плоскостью основания, если CC 1 = 4,5√ 2, АВ = 3.

Решение:

а) Так как призма ABCDA 1 B 1 C 1 D 1 правильная, то ABCD — квадрат и боковые грани — равные прямоугольники.

Построим сечение призмы плоскостью, проходящей через точки D и K параллельно AC. Линия пересечения плоскости сечения и плоскости AA 1 C 1 проходит через точку K и параллельна AC.

В плоскости ACC 1 через точку K проведём отрезок KF параллельно диагонали AC.

Так как грани A 1 ADD 1 и B 1 BCC 1 призмы параллельны, то по свойству параллельных плоскостей линии пересечения плоскости сечения и этих граней параллельны. Проведём PK || FD. Четырёхугольник FPKD — искомое сечение.

б) Найдём угол между плоскостью сечения и плоскостью основания. Пусть плоскость сечения пересекает плоскость основания по некоторой прямой p, проходящей через точку D. AC || FK, следовательно, AC || p (если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна этой прямой). Так как диагонали квадрата взаимно перпендикулярны, то BD ⊥ AC, а значит,
BD ⊥ p. BD — проекция PD на плоскость ABC, поэтому PD ⊥ p по теореме о трёх перпендикулярах. Следовательно, ∠PDB — линейный угол двугранного угла между плоскостью сечения и плоскостью основания.

FK || p, значит, FK ⊥ PD. В четырёхугольнике FPKD имеем FD || PK и KD || FP, значит, FPKD — параллелограмм, а так как прямоугольные треугольники FAD и KCD равны по двум катетам (AD = DC как стороны квадрата, FA = KC как расстояния между параллельными прямыми AC и F K), то FPKD — ромб. Отсюда PD = 2OD.

По условию CK: KC 1 = 1: 2, тогда KC = 1/3*CC 1 = 4,5√2 / 3 = 1,5√2.

В ΔDKC по теореме Пифагора KD 2 = DC 2 + KC 2 , KD = =
√13,5.

AC = 3√2 как диагональ квадрата, OK = EC = 1/2*AC, OK = 1,5√2.

В ΔKOD по теореме Пифагора OD 2 = KD 2 − OK 2 ,

OD = = 3. PD = 2OD = 6.

В прямоугольном треугольнике PDB cos ∠PDB = BD / PD = 3√2 / 6 = √2 / 2 , следовательно, ∠PDB = 45◦ .

Ответ: 45◦ .

Как выглядит правильная четырехугольная призма? и получил лучший ответ

Ответ от Edit Piaf[гуру]
Призма – это многогранник, две грани которой (основания призмы) – равные многоугольники с соответственно параллельными сторонами, а остальные грани - параллелограммы, плоскости которых параллельны прямой. Параллелограммы AabB, BbcC и т. д. называются боковыми гранями; рёбра Aa, Bb, Cc и т. д. называются боковыми рёбрами. Высота призмы – это любой перпендикуляр, опущенный из любой точки основания на плоскость другого основания. В зависимости от формы многоугольника, лежащего в основании, призма может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Если боковые рёбра призмы перпендикулярны к плоскости основания, то такая призма называется прямой; в противном случае – это наклонная призма. Если в основании прямой призмы лежит правильный многоугольник, то такая призма также называется правильной.
Правильной призмой называется прямая призма, основанием которой является правильный многоугольник, то есть в данном случае - квадрат.
Я нарисовала прямую призму, но она может быть и наклонной

Ответ от Happy End [гуру]
кубик



Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как выглядит правильная четырехугольная призма?

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .