Неинерциальная система отсчета: определение, примеры. Инерциальные системы отсчета. Принцип относительности

Древние философы пытались понять суть движения, выявить воздействие звезд и Солнца на человека. Кроме того, люди всегда пытались выявить те силы, которые действуют на материальную точку в процессе ее движения, а также в момент покоя.

Аристотель считал, что при отсутствии движения на тело не оказывают воздействия какие-либо силы. Попробуем выяснить, какие системы отсчета называются инерциальными, приведем их примеры.

Состояние покоя

В повседневной жизни трудно выявить подобное состояние. Практически во всех видах механического движения предполагается присутствие посторонних сил. Причиной является сила трения, не дающая многим предметам покидать свое первоначальное положение, выходить из состояния покоя.

Рассматривая примеры инерциальной системы отсчета, отметим, что все они отвечают 1 закону Ньютона. Только после его открытия удалось объяснить состояние покоя, указывать силы, действующие в этом состоянии на тело.

Формулировка 1 закона Ньютона

В современной интерпретации он объясняет существование систем координат, относительно которых можно рассматривать отсутствие воздействия на материальную точку внешних сил. С точки зрения Ньютона, инерциальными называются системы отсчета, которые позволяют рассматривать сохранение скорости тела на протяжении длительного времени.

Определения

Какие системы отсчета являются инерциальными? Примеры их изучаются в школьном курсе физики. Инерциальными считают такие системы отсчета, относительно которых материальная точка передвигается с постоянной скоростью. Ньютон уточнял, что любое тело может находиться в подобном состоянии до тех пор, пока нет необходимости прикладывать к нему силы, способные изменять подобное состояние.

В реальности закон инерции выполняется не во всех случаях. Анализируя примеры инерциальных и неинерциальных систем отсчета, рассмотрим человека, держащегося за поручни в передвигающемся транспорте. При резком торможении машины человек автоматически передвигается относительно транспорта, несмотря на отсутствие внешней силы.

Получается, что не все примеры инерциальной системы отсчета соответствуют формулировке 1 закона Ньютона. Для уточнения закона инерции было введено уточненное отсчета, в которых он безукоризненно выполняется.

Виды систем отсчета

Какие системы отсчета называются инерциальными? Скоро это станет понятно. «Приведите примеры инерциальных систем отсчета, в которых выполняется 1 закон Ньютона» - подобное задание предлагают школьникам, выбравшим физику в качестве экзамена в девятом классе. Для того чтобы справиться с поставленной задачей, необходимо иметь представление об инерциальных и неинерциальных системах отсчета.

Инерция предполагает сохранение покоя или равномерного прямолинейного движения тела до тех пор, пока тело находится в изоляции. «Изолированными» считают тела, которые не связаны, не взаимодействуют, удалены друг от друга.

Рассмотрим некоторые примеры инерциальной системы отсчета. Если считать системой отсчета звезду в Галактике, а не движущийся автобус, выполнение закона инерции для пассажиров, которые держатся за поручни, будет безупречным.

Во время торможения данное транспортное средство будет продолжать равномерное прямолинейное движение до тех пор, пока на него не будут воздействовать иные тела.

Какие примеры инерциальной системы отсчета можно привести? Они не должны иметь связи с анализируемым телом, влиять на его инертность.

Именно для таких систем выполняется 1 закон Ньютона. В реальной жизни трудно рассматривать передвижение тела относительно инерциальных систем отсчета. Невозможно попасть на далекую звезду, чтобы с нее проводить земные эксперименты.

В качестве условных систем отсчета принимают Землю, несмотря на то что она связана с предметами, размещенными на ней.

Рассчитать ускорение в инерциальной системе отсчета можно, если считать в качестве системы отсчета поверхность Земли. В физике нет математической записи 1 закона Ньютона, но именно он является основой для выведения многих физических определений и терминов.

Примеры инерциальных систем отсчета

Школьникам иногда сложно понять физические явления. Девятиклассникам предлагается задание следующего содержания: «Какие системы отсчета называются инерциальными? Приведите примеры подобных систем». Допустим, что тележка с шаром первоначально движется по ровной поверхности, имея постоянную скорость. Далее она передвигается по песку, в результате шар приводится в ускоренное движение, несмотря на то что на него не действуют иные силы (их суммарное воздействие равно нулю).

Суть происходящего можно пояснить тем, что во время движения по песчаной поврехности система перестает быть инерциальной, она обладает постоянной скоростью. Примеры инерциальных и неинерциальных систем отсчета свидетельствуют о том, что в определенный промежуток времени происходит их переход.

При разгоне тела его ускорение имеет положительную величину, а при торможении этот показатель становится отрицательным.

Криволинейное движение

Относительно звезд и Солнца движение Земли осуществляется по криволинейной траектории, что имеет форму эллипса. Та система отсчета, в которой центр совмещается с Солнцем, а оси направлены на определенные звезды, будет считаться инерциальной.

Отметим, что всякая система отсчета, которая будет прямолинейно и равномерно передвигаться относительно гелиоцентрической системы, является инерциальной. Криволинейное движение осуществляется с некоторым ускорением.

Учитывая тот факт, что Земля совершает движение вокруг своей оси, система отсчета, которая связана с ее поверхностью, относительно гелиоцентрической движется с некоторым ускорением. В подобной ситуации можно сделать вывод, что система отсчета, которая связана с поверхностью Земли, передвигается с ускорением относительно гелиоцентрической, поэтому ее нельзя считать инерциальной. Но значение ускорения подобной системы настолько мало, что во многих случаях существенно влияет на специфику механических явлений, рассматриваемых относительно нее.

Чтобы решать практические задачи технического характера, принято считать инерциальной ту систему отсчета, которая жестко связана с поверхностью Земли.

Относительность Галилея

Все инерциальные системы отсчета имеют важное свойство, которое описывается принципом относительности. Суть его заключается в том, что любое механическое явление при одинаковых начальных условиях осуществляется одинаково независимо от выбираемой системы отсчета.

Равноправие ИСО по принципу относительности выражается в следующих положениях:

  • В таких системах одинаковы, поэтому любое уравнение, которое описывается ними, выражается через координаты и время, остается неизменным.
  • Результаты проводимых механических опытов позволяют устанавливать, будет ли система отсчета покоиться, или она совершает прямолинейное равномерное движение. Любая система условно может быть признана неподвижной, если другая при этом совершает относительно нее движение с некоторой скоростью.
  • Уравнения механики остаются неизменными по отношению к преобразованиям координат в случае перехода от одной системы ко второй. Можно описать одно и то же явление в различных системах, но их физическая природа при этом меняться не будет.

Решение задач

Первый пример.

Определите, является ли инерциальной системой отсчета: а) искусственный спутник Земли; б) детский аттракцион.

Ответ. В первом случае не идет речи об инерциальной системе отсчета, поскольку спутник передвигается по орбите под воздействием силы земного притяжения, следовательно, движение происходит с некоторым ускорением.

Второй пример.

Система отчета прочно связана с лифтом. В каких ситуациях ее можно называть инерциальной? Если лифт: а) падает вниз; б) передвигается равномерно вверх; в) ускоренно поднимается; г) равномерно направляется вниз.

Ответ. а) При свободном падении появляется ускорение, поэтому система отсчета, что связана с лифтом, не будет являться инерциальной.

б) При равномерном передвижении лифта система является инерциальной.

в) При движении с некоторым ускорением систему отсчета считают инерциальной.

г) Лифт передвигается замедленно, имеет отрицательное ускорение, поэтому нельзя назвать систему отсчета инерциальной.

Заключение

На протяжении всего времени своего существования человечество пытается понять явления, происходящие в природе. Попытки объяснить относительность движения были предприняты еще Галилео Галилеем. Исааку Ньютону удалось вывести закон инерции, который стали использовать в качестве основного постулата при проведении вычислений в механике.

В настоящее время в систему определения положения тела включают тело, прибор для определения времени, а также систему координат. В зависимости от того, подвижным или неподвижным является тело, можно дать характеристику положения определенного объекта в нужный промежуток времени.

1. Можно ли считать космонавта материальной точкой в следующих случаях: а) космонавт перемещается в космическом корабле ____ ;

б ) космонавт в космическом корабле обращается вокруг Земли ___?

2. Скоростью равномерного прямолинейного движения называется_________________величина, равная _______________ __________________________ к промежутку времени _____________________________________________________ .

3. Определите координату пешехода, взяв за тело отсчета:

а ) дерево:
x = ____________ ,
б ) дорожный указатель:
x = _____________ .

4. Определите проекции векторов s 1 и s 2 на оси координат:

s 1x = ___ , s 2x = ___ ,
s 1y = ___ , s 2y = ____.

5. Если при равномерном прямолинейном движении тело за 5 c перемещается на 25 м, то:

√ за 2 с оно перемещается на _____________ ,
√ за 1 мин оно перемещается на ___________________ .

6. В таблице даны координаты двух движущихся тел для определенных моментов времени.

7. По графикам движения определите:

а ) проекцию скорости каждого тела:
v 1x = ______________,
v 2x = ______________ ;
б ) расстояние l между телами в момент времени t = 4 с:
l = __________________.

8. На рисунке показаны положения двух маленьких шариков в начальный момент времени и их скорости. Запишите уравнения движения этих тел.

x 1 = ___________ ,
x 2 = ___________ ;

9. Пользуясь условием предыдущего вопроса, постройте графики движения шариков и найдите время и место их столкновения.

t = ___________ ,
x = ___________ .

10. В неподвижной воде пловец плывет со скоростью 2 м/с. Когда он плывет по реке против течения, его скорость относительно берега равна 0,5 м/с вниз по течению. Чему равна скорость течения?

v = ____________ .

Два тела равномерно движутся вдоль горизонтальной оси ОХ (см. рисунок). Относительно неподвижной системы отсчета, связанной с точкой О, модуль скорости пе

рвого тела равен 5 м/с, а модуль скорости второго тела 3 м/с. В системе отсчета, связанной с первым телом, проекция скорости второго тела на ось OX равна 1) 2 м/с 2) 8 м/с 3) –2 м/с 4) –8 м/

астронавт движущийся со скоростью V=0,5 с относительно неподвижной системы отсчета наблюдает объект обгоняющий его со скоростью V0=0,5 с относительно

корабля.Чему равна скорость объекта в неподвижной системе отсчета?

А) Спортсмен совершает забег на 1 км. Материальной точкой его можно считать:

1. На старте
2. У финишной ленты
3. При вычислении времени пробега
4. При изучении изменения параметров организма по датчикам, закрепленным на его теле

Б) Когда обычно назначают встречу, используют элементы системы отсчета:
А. Тело отсчета
Б. Система координат
В. Часы
1. А, Б
2. А, В
3. В
4. А, Б, В

В) Скорость тела не меняется, если сумма действующих на него сил равна нулю.
Этот закон справедлив:
1. Всегда
2. Только в инерциальных системах отсчета
3. Только в системах отсчета, неподвижных относительно Земли
4. Только в системах отсчета, неподвижных относительно Солнца

Г) Мужчина везет санки с мальчиком. Масса мальчика 30 кг, санок 1 кг. Веревка от санок натянута под углом 30 градусов к горизонту. Высчитайте, какую среднюю мощность развил мужчина, прокатив ребенка 100 м за 10 секунд. Силами сопротивления пренебречь.
1. 31 Вт
2. 3100 Вт
3. 2865 Вт
4. 28650 Вт

1. Можно ли считать, что значение заряда Q является параметром, характеризующим «вместимость» конденсатора?

А) Да
В) Нет
2. В каком режиме работает источник, если напряжение на его зажимах больше его ЭДС?
А) В режиме приемника
В) В режиме генератора
3. Как зависит индуктивность катушки от числа её витков?
А) L ≡ w
В) L ≡ w2
4. Верно ли утверждение, что конденсатор обладает реактивным сопротивлением?
А) Да
В) Нет
5. Верно ли, что при соединении приемников звездой линейный ток равен фазному току?
А) Да
В) Нет
6. Как изменится ёмкость конденсатора при увеличении напряжения на нём?
А) Увеличится
В) Уменьшится
С) Не изменится
7. Как изменится ток лампы, если напряжение на ней уменьшить от Uном до 0,5Uном.? Уменьшиться в два раза?
А) Да
В) Нет
8. Как изменится взаимная индуктивность при удалении катушек друг от друга?
А) Увеличится.
В) Уменьшится.
С) Не изменится
9. Чему равно емкостное сопротивление конденсатора в цепи постоянного тока?
А)
В)
С)
10. По какой формуле можно определить фазный ток при соединении звездой, когда известны сопротивления фаз приемника ZА; ZВ; ZC и известно линейное напряжение UЛ?
А)
В)

Всякая система отсчёта, движущаяся по отношению к инерциальной системе отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Следовательно, теоретически может существовать любое число инерциальных систем отсчета.

В реальности система отсчёта всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается движение различных объектов. Так как все реальные тела движутся с тем или иным ускорением, любая реальная система отсчёта может рассматриваться как инерциальная система отсчета лишь с определенной степенью приближения. С высокой степенью точности инерциальной можно считать гелиоцентрическую систему, связанную с центром масс Солнечной системы и с осями, направленными на три далёкие звезды. Такая инерциальная система отсчета используется главным образом в задачах небесной механики и космонавтики. Для решения большинства технических задач инерциальной можно считать систему отсчета, жёстко связанную с Землёй.

Принцип относительности Галилея

Инерциальные системы отсчета обладают важным свойством, которое описывает принцип относительности Галилея :

  • всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета.

Равноправие инерциальных систем отсчета, устанавливаемое принципом относительности, выражается в следующем:

  1. законы механики в инерциальных системах отсчета одинаковы. Это значит, что уравнение, описывающее некоторый закон механики, будучи выражено через координаты и время любой другой инерциальной системы отсчета, будет иметь один и тот же вид;
  2. по результатам механических опытов невозможно установить, покоится ли данная система отсчета или движется равномерно и прямолинейно. В силу этого ни одна из них не может быть выделена как преимущественная система, скорости движения которой мог бы быть придан абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости движения систем, так что любую систему можно признать условно неподвижной, а другую – движущейся относительно нее с определенной скоростью;
  3. уравнения механики неизменны по отношению к преобразованиям координат при переходе от одной инерциальной системы отсчета к другой, т.е. одно и тоже явление можно описать в двух разных системах отсчета внешне по-разному, но физическая природа явления остается при этом неизменной.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Система отсчета жестко связана с лифтом. В каких из приведенных ниже случаев систему отсчета можно считать инерциальной? Лифт: а) свободно падает; б) движется равномерно вверх; в) движется ускоренно вверх; г) движется замедленно вверх; д) движется равномерно вниз.
Ответ а) свободное падение – это движение с ускорением , поэтому систему отсчета, связанную с лифтом в данном случае нельзя считать инерциальной;

б) так как лифт движется равномерно, систему отсчета можно считать инерциальной;

Можно опасаться, что большинству читателей уже наскучили теоретические рассуждения и они потребуют привести конкретный пример инерциальной системы в природе. Попробуем выполнить их пожелание, насколько это возможно. Рассмотрим конкретный пример: является лтт инерциальной системой Земля? Каждый школьник на это скажет: «Все примеры, которые учитель физики приводит на уроке, объясняя законы Ньютона, касаются движения тел на Земле. Я понимаю это так, что движения всех тел на Земле происходят по законам Ньютона. Поэтому Земля является инерциальной системой».

И все же такой вывод не точен. Чтобы убедиться в этом, перенесемся мысленно в парижский Пантеон, где в 1851 г. демонстрировал свой знаменитый опыт член Французской Академии наук Леон Фуко.

К куполу Пантеона подвешен 67-метровый трос, к которому прикреплен медный груз весом в 28 кг . Этот гигантский маятник приводят в колебание. Уже после нескольких колебаний обнаруживается удивительное явление: плоскость, в которой качается маятник, начинает медленно вращаться. Почему? Фуко объяснил результат опыта вращением Земли вокруг своей оси. Земля вращается, а плоскость качаний маятника не меняется — это и ведет к вращению плоскости колебаний маятника относительно земной поверхности. Мы полностью согласимся с этим объяснением, только выразим его несколько иначе: Земля не является инерциальной системой. Плоскость колебаний маятника вращается относительно Земли, однако невозможно обнаружить какое-либо тело, которое оказывалось бы источником силы, вызывающей это вращение. В данном случае ускорение (вращение относится к ускоренным движениям) происходит без воздействия реальной силы. В инерциальных системах, где справедливы законы Ньютона, такие явления невозможны.

Землю можно считать инерциальной системой только приближенно; другими словами, Землю мы можем считать инерциальной системой только для описания таких процессов, на которые ее вращение практически не оказывает заметного влияния. Подавляющее число окружающих нас явлений по своему характеру являются именно такими. Поэтому в практической жизни мы можем смело применять законы Ньютона к движениям на Земле.

То, что Земля не является инерциальной системой, подтверждают и другие явления. В 1802 г. в Гамбурге провели опыт, в котором с высоты 76 м на землю падало тяжелое тело. При этом оказалось, что тело падало не точно по направлению действовавшей на него силы тяжести, а отклонялось почти на 1 см к востоку. Объяснить это можно только тем, что Земля — неинерциальная система.

В 1857 г. русский академик Карл Бэр установил известный закон подмывания речного берега: у рек, которые текут вдоль меридиана в северном полушарии, правый берег высокий, а левый — низкий, в южном полушарии наоборот — левый берег высокий, а правый — низкий. Эта закономерность особенно отчетливо проявляется у больших рек. Высокий правый берег имеют Нил, Обь, Иртыш, Лена, Волга, Дунай, Днепр, Дон и др. Левый берег выше правого у таких рек южного полушария, как Парана и Парагвай. Объяснить это можно только тем, что воды рек, текущих вдоль меридианов, в северном полушарии смещаются вправо (в южном полушарии соответственно влево), подмывая правый берег, а левый берег, образующийся из намытого песка, становится отлогим.

Почему же реки, текущие вдоль меридиана, должны отклоняться в сторону? По той же самой причине, по которой вращается плоскость маятника и отклоняется свободно падающее тело. Географ ответит, что все эти явления обусловлены вращением Земли вокруг своей оси. Физик же пояснит, что в этом выражается неинерциальность Земли как тела отсчета. Земля вращается относительно инерциальных систем.

Найти инерциальную систему в принципе несложно: требуется лишь отыскать систему отсчета, в которой законы Ньютона выполняются точно. Практически же это совсем не так просто. Инерциальной системой может быть только система, связанная со свободным телом. В природе же, как уже отмечалось, нет свободных тел; все тела взаимодействуют с другими телами, хотя это взаимодействие и может быть сколь угодно малым. Поэтому нельзя указать в природе конкретной инерциальной системы, однако всегда можно найти систему, которую при изучении данной проблемы с достаточной для практики точностью можно считать инерциальной. Нужную систему всегда следует выбирать так, чтобы обусловленные ее неинерциальностью явления были меньше, чем погрешность используемых измерительных приборов. Как мы уже отмечали, при описании» большинства земных движений нашу планету вполне можно считать инерциальной системой. В опыте Фуко, а также при изучении движения Земли инерциальную систему следует связывать с Солнцем. Движение же Солнца можно описать в инерциальной системе, связанной с окружающими звездами (звезды при этом считаем практически неподвижными), а при изучении вращения Галактики приходится связывать инерциальную систему с центром массы Галактики.

Первый закон механики, или закон инерции (инерция – это свойство тел сохранять свою скорость при отсутствии действия на него других тел), как его часто называют, был установлен еще Галилеем. Но строгую формулировку этого закона дал и включил его в число основных законов механики Ньютон. Закон инерции относится к самому простому случаю движения – движению тела, на которое не оказывают воздействия другие тела. Такие тела называются свободными телами.

Ответить на вопрос, как движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо создать для тела условия, при которых влияние внешних воздействий можно делать все меньшим и меньшим, и наблюдать, к чему это ведет. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к земле уравновешивается действием поверхности, на которую он опирается, и на скорость его движения влияет только трение.) При этом легко обнаружить, что чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, заметно не меняя скорость. Трение можно уменьшить до минимума с помощью воздушной подушки – струй воздуха, поддерживающих тело над твердой поверхностью, вдоль которой происходит движение. Этот принцип используется в водном транспорте (суда на воздушной подушке). На основе подобных наблюдений можно заключить: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу впервые пришел Галилей.

С другой стороны, нетрудно заметить, что, когда скорость тела меняется, всегда обнаруживается воздействие на него других тел. Отсюда можно прийти к выводу, что тело, достаточно удаленное от других тел и по этой причине не взаимодействующее с ними, движется с постоянной скоростью .

Движение относительно, поэтому имеет смысл говорить лишь о движении тела по отношению к системе отсчета, связанной с другим телом. Сразу же возникает вопрос: будет ли свободное тело двигаться с постоянной скоростью по отношению к любому другому телу? Ответ, конечно, отрицательный. Так, если по отношению к Земле свободное тело движется прямолинейно и равномерно, то по отношению к вращающейся карусели тело заведомо так двигаться не будет.

Наблюдения за движениями тел и размышления о характере этих движений приводят нас к заключению о том, что свободные тела движутся с постоянной скоростью, по крайней мере, по отношению к определенным телам и связанным с ними системам отсчета. Например, по отношению к Земле. В этом состоит главное содержание закона инерции.

Поэтому первый закон Ньютона может быть сформулирован так:

существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Инерциальная система отсчета

Первый закон Ньютона утверждает (это с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.

Системы отсчета , в которых выполняется первый закон Ньютона, называют инерциальными .

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

Инерциальных систем существует бесконечное множество. Система от-счета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т.е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

Инерциальными являются системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета .

Галилей установил, что никакими механическими опытами, поставлен-ными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно . Это утверждение носит название принципа относительности Галилея или механического принципа относительности .

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).

Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальным и .

К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1). Рис. 2

Литература

  1. Открытая физика 2.5 (http://college.ru/physics/)
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.