Классификационные признаки химических реакций. I. По числу и составу реагирующих веществ. Классификация реакций по числу фаз

Классификация химических реакций.

Химические реакции классифицируют по изменению числа и состава исходных веществ и продуктов реакции на следующие виды:

реакции соединения - несколько веществ соединяются в один продукт;

реакции разложения - из одного исходного вещества образуется несколько продуктов;

реакции замещения - простое вещество замещает часть атомов сложного вещества;

реакции обмена - сложные вещества обмениваются своими составными частями.

По тепловому эффекту химические реакции можно подразделить на экзотермические - протекающие с выделением теплоты и эндотермические - протекающие с поглощением теплоты.

С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и некаталитические - без применения катализаторов.

По изменению степени окисления реакции делятся на окислительно-восстановительные – в них происходит изменение степеней окисления атомов, и на реакции без изменения степеней окисления атомов.

По признаку наличия поверхности раздела фаз реакции делятся на гомогенные и гетерогенные . Гомогенные протекают в одной фазе, гетерогенные – на поверхности раздела фаз.

По признаку обратимости реакции делят на обратимые и необратимые. Необратимые реакции протекают до конца, пока вещества не прореагируют полностью; обратимые – до достижения химического равновесия, которое характеризуется равными скоростями протекания прямой и обратной реакций и наличием в реакционной смеси одновременно и исходных веществ, и продуктов реакции.

Химическое равновесие является динамическим, и его можно сместить в ту или иную сторону изменяя условия реакции (концентрации веществ, температуру, давление). Предсказать направление смещения равновесия можно с помощью принципа Ле Шателье: если на систему, находящуюся в равновесии, оказывают воздействие внешние факторы, то равновесие в системе смещается в сторону той реакции, которая ослабляет это воздействие.

Химические реакции протекают с определенными скоростями. Раздел химии, который изучает влияние различных факторов на скорость химической реакции, а также механизмы химических превращений, называется химическая кинетика.

Факторы, влияющие на скорость протекания химической реакции: температура, давление, концентрация веществ, присутствие катализатора.

Влияние температуры на скорость реакций определяется правилом Вант-Гоффа: в интервале температур от 0 о С до 100 о С при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза.

Катализ - избирательное ускорение одного из направлений химической реакции под действием катализатора. Катализаторы принимают участие в промежуточных процессах, но восстанавливаются в конце реакции. Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций - это каталитические.

Существует отрицательный катализ или ингибирование.Ингибиторы – вещества, замедляющие протекание химической реакции (например, ингибиторы коррозии).

Особую группу образуют автокаталитические реакции. В них один из продуктов реакции служит катализатором превращения исходных веществ.

Природные катализаторы называются ферментами, ферменты ускоряют биохимические процессы внутри организма. Исходными веществами для синтеза ферментов являются коферменты. Ряд коферментов организм не может синтезировать из пищи и должен получать их в готовом виде. Это, например, витамины.

Все вещества можно разделить на простые (состоящие из атомов одного химического элемента) и сложные (состоящие из атомов разных химических элементов). Простые вещества делятся на металлы и неметаллы .

Металлы обладают характерным “металлическим” блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы, кроме ртути, находятся в твердом состоянии.

Неметаллы не обладают блеском, хрупки, плохо проводят теплоту и электричество. При комнатной температуре некоторые неметаллы находятся в газообразном состоянии.

Сложные вещества делят на органические и неорганические.

Органическими соединениями принято называть соединения углерода. Органические соединения входят в состав биологических тканей и являются основой жизни на Земле.

Все остальные соединения называются неорганическими (реже минеральными). Простые соединения углерода (СО, СО 2 и ряд других) принято относить к неорганическим соединениям, их обычно рассматривают в курсе неорганической химии.

Классификация неорганических соединений

Неорганические вещества делят на классы либо по составу (бинарные и многоэлементные; кислородосодержащие, азотсодержащие и т.п.), либо по функциональным признакам.

К важнейшим классам неорганических соединений, выделяемых по функциональным признакам, относятся соли, кислоты, основания и оксиды.

Соли – это соединения, которые в растворе диссоциируют на катионы металла и кислотные остатки. Примерами солей могут служить, например, сульфат бария BaSO 4 и хлорид цинка ZnCl 2 .

Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода. Примерами неорганических кислот могут служить соляная (НCl), серная (H 2 SO 4), азотная (HNO 3), фосфорная (H 3 PO 4) кислоты. Наиболее характерное химическое свойство кислот – их способность реагировать с основаниями с образованием солей. По степени диссоциации в разбавленных растворах кислоты подразделяются на сильные кислоты, кислоты средней силы и слабые кислоты. По окислительно–восстановительной способности различают кислоты–окислители (HNO 3) и кислоты–восстановители (HI, H 2 S). Кислоты реагируют с основаниями, амфотерными оксидами и гидроксидами с образованием солей.



Основания – вещества, диссоциирующие в растворах с образованием только гидроксид-анионов (OH 1-). Растворимые в воде основания называют щелочами (КОН, NaOH). Характерное свойство оснований – взаимодействие с кислотами с образованием соли и воды.

Оксиды – это соединения двух элементов, один из которых кислород. Различают оксиды основные, кислотные и амфотерные. Основные оксиды образованы только металлами (CaO, K 2 O), им соответствуют основания (Ca(OH) 2 , KOH). Кислотные оксиды образуются неметаллами (SO 3 , P 2 O 5) и металлами, проявляющими высокую степень окисления (Mn 2 O 7), им соответствуют кислоты (H 2 SO 4 , H 3 PO 4 , HMnO 4). Амфотерные оксиды в зависимости от условий проявляют кислотные и основные свойства, взаимодействуют с кислотами и основаниями. К ним относятся Al 2 O 3 , ZnO, Cr 2 O 3 и ряд других. Существуют оксиды, не проявляющие ни основных, ни кислотных свойств. Такие оксиды называются безразличными (N 2 O, CO и др.)

Классификация органических соединений

Углерод в органических соединениях, как правило, образует устойчивые структуры, в основе которых лежат углерод-углеродные связи. В способности образовывать такие структуры углерод не имеет себе равных среди других элементов. Большинство органических молекул состоит из двух частей: фрагмента, который в ходе реакции остаётся без изменения, и группы, подвергающейся при этом превращениям. В связи с этим определяется принадлежность органических веществ к тому или иному классу и ряду соединений.

Неизменный фрагмент молекулы органического соединения принято рассматривать в качестве остова молекулы. Он может иметь углеводородную или гетероциклическую природу. В связи с этим можно условно выделить четыре больших ряда соединений: ароматический, гетероциклический, алициклический и ациклический.

В органической химии также выделяют дополнительные ряды: углеводороды, азотсодержащие соединения, кислородосодержащие соединения, серосодержащие соединения, галогеносодержащие соединения, металлоорганические соединения, кремнийорганические соединения.

В результате комбинации этих основополагающих рядов образуются составные ряды, например: "Ациклические углеводороды", "Ароматические азотсодержащие соединения".

Наличие тех или иных функциональных групп либо атомов элементов определяет принадлежность соединения к соответствующему классу. Среди основных классов органических соединений выделяют алканы, бензолы, нитро- и нитрозосоединения, спирты, фенолы, фураны, эфиры и большое количество других.

Типы химических связей

Химическая связь – это взаимодействие, удерживающее два или несколько атомов, молекул или любую комбинацию из них. По своей природе химическая связь представляет собой электрическую силу притяжения между отрицательно заряженными электронами и положительно заряженными атомными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов.

Способность атома образовывать химические связи характеризуется его валентностью. Электроны, участвующие в образовании химической связи, называются валентными.

Различают несколько типов химических связей: ковалентную, ионную, водородную, металлическую.

При образовании ковалентной связи происходит частичное перекрывание электронных облаков взаимодействующих атомов, образуются электронные пары. Ковалентная связь оказывается тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Различают полярную и неполярную ковалентные связи.

Если двухатомная молекула состоит из одинаковых атомов (H 2 , N 2), то электронное облако распределяется в пространстве симметрично относительно обоих атомов. Такая ковалентная связь называется неполярной (гомеополярной). Если же двухатомная молекула состоит из разных атомов, то электронное облако смещено к атому с большей относительной электроотрицательностью. Такая ковалентная связь называется полярной (гетерополярной). Примерами соединений с такой связью могут служить HCl, HBr, HJ.

В рассмотренных примерах каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара – возникает ковалентная связь. В невозбужденном атоме азота имеется три неспаренных электрона, за счет этих электронов азот может участвовать в образовании трех ковалентных связей (NH 3). Атом углерода может образовать 4 ковалентных связи.

Перекрывание электронных облаков возможно только при их определенной взаимной ориентации, при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Другими словами, ковалентная связь обладает направленностью.

Энергия ковалентных связей находится в пределах 150–400 кДж/моль.

Химическая связь между ионами, осуществляемая электростатическим притяжением, называется ионной связью . Ионную связь можно рассматривать как предел полярной ковалентной связи. В отличие от ковалентной связи ионная связь не обладает направленностью и насыщаемостью.

Важным типом химической связи является связь электронов в металле. Металлы состоят из положительных ионов, которые удерживаются в узлах кристаллической решетки, и свободных электронов. При образовании кристаллической решетки валентные орбитали соседних атомов перекрываются и электроны свободно перемещаются из одной орбитали в другую. Эти электроны уже не принадлежат определенному атому металла, они находятся на гигантских орбиталях, которые простираются по всей кристаллической решетке. Химическая связь, осуществляемая в результате связывания положительных ионов решетки металла свободными электронами, называется металлической.

Между молекулами (атомами) веществ могут осуществляться слабые связи. Одна из самых важных – водородная связь , которая может быть межмолекулярной и внутримолекулярной . Водородная связь возникает между атомом водорода молекулы (он заряжен частично положительно) и сильно электроотрицательным элементом молекулы (фтор, кислород и т.п.).

Энергия водородной связи значительно меньше энергии ковалентной связи и не превышает 10 кДж/моль. Однако этой энергии оказывается достаточно для создания ассоциаций молекул, затрудняющих отрыв молекул друг от друга. Водородные связи играют важную роль в биологических молекулах (белках и нуклеиновых кислотах), во многом определяют свойства воды.

Силы Ван-дер-Ваальса также относятся к слабым связям. Они обусловлены тем, что любые две нейтральных молекулы (атома) на очень близких расстояниях слабо притягиваются из-за электромагнитных взаимодействий электронов и ядер одной молекулы с электронами и ядрами другой.

♦ По числу и составу исходных и полученных веществ химические реакции бывают:

  1. Соединения - из двух или нескольких веществ образуется одно сложное вещество:
    Fe + S = FeS
    (при нагревании порошков железа и серы образуется сульфид железа)
  2. Разложения - из одного сложного вещества образуется два или несколько веществ:
    2H 2 O = 2H 2 + O 2
    (вода разлагается на водород и кислород при пропускании электрического тока)
  3. Замещения - атомы простого вещества замещают один из элементов в сложном веществе:
    Fe + CuCl 2 = Cu↓ + FeCl 2
    (железо вытесняет медь из раствора хлорида меди (II))
  4. Обмена - 2 сложных вещества обмениваются составными частями:
    HCl + NaOH = NaCl + H 2 O
    (реакция нейтрализации - соляная кислота реагирует с гидроксидом натрия с образованием хлорида натрия и воды)

♦ Реакции, протекающие с выделением энергии (тепла), называются экзотермическими . К ним относятся реакции горения, например серы:

S + O 2 = SO 2 + Q
Образуется оксид серы (IV), выделение энергии обозначают + Q

Реакции, требующие затрат энергии, т. е. протекающие с поглощением энергии, называются эндотермическими . Эндотермической является реакция разложения воды под действием электрического тока:

2H 2 O = 2H 2 + O 2 − Q

♦ Реакции, сопровождающиеся изменением степеней окисления элементов, т. е. переходом электронов, называются окислительно-восстановительными :

Fe 0 + S 0 = Fe +2 S −2

Противоположностью являются электронно-статичные реакции, часто их называют просто реакции, протекающие без изменения степени окисления . К ним относятся все реакции обмена:

H +1 Cl −1 + Na +1 O −2 H +1 = Na +1 Cl −1 + H 2 +1 O −2

(Напомним, что степень окисления в веществах, состоящих из двух элементов, численно равна валентности, знак ставится перед цифрой)

2. Опыт. Проведение реакций, подтверждающих качественный состав предложенной соли, например сульфата меди (II)

Качественный состав соли доказывают с помощью реакций, сопровождающихся выпадением осадка или выделением газа с характерным запахом или цветом. Образование осадка происходит в случае получения нерастворимых веществ (определяем по таблице растворимости). Газы выделяются при образовании слабых кислот (для многих требуется нагревание) или гидроксида аммония.

Наличие иона меди можно доказать добавлением гидроксида натрия, выпадает синий осадок гидроксида меди (II):

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Дополнительно можно провести разложение гидроксида меди (II) при нагревании, образуется черный оксид меди (II):

Cu(OH) 2 = CuO + H 2 O

Наличие сульфат-иона доказывается выпадением белого кристаллического осадка, нерастворимого в концентрированной азотной кислоте, при добавлении растворимой соли бария:

CuSO 4 + BaCl 2 = BaSO 4 ↓ + CuCl 2

Разнообразие химических реакций, количество которых не поддается подсчетам, невозможно охватить единой универсальной классификацией, поэтому их разделяют по определенным общим признакам. Под любой из таких признаков могут быть отнесены реакции, как между неорганическими, так и между органическими веществами.

Во-первых, это реакции без изменения состава вещества и реакции с изменением состава.

Реакции, идущие без изменения состава веществ:

AlCl3,t

СН3-СН2-СН2-СН3 > СН3-СН-СН3

Реакции, идущие с изменением состава веществ:

6 СО2 + 6 Н2О = С6Н12О6 + 6 О2

В органической химии к этому типу реакций относятся реакции изомеризации. Так, изомеризацию алканов проводят для получения бензина с большим октановым числом.

Для химических процессов, происходящих между неорганическими реагентами, наиболее часто используются такие классификации:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта

Различные способы классификации часто сочетаются друг с другом (рис.1).

Рисунок 1 - Признак классификации химических реакций

Рассмотрим более подробно каждый из типов химических реакций.

1. Классификация по числу и составу реагентов и конечных веществ (табл.1).

Таблица 1 - Типы химических реакций и их механизмы

1. Реакции соединения. Д.И.Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Итак, при реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава

К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода) на воздухе. Например, углерод горит на воздухе С+О 2 =СО 2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений - являются экзотермическими.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности

СаСО3 + СО2 + Н2О = Са (НСО3)2

так и относиться к числу окислительно-восстановительных

2FеСl2 + Сl2 = 2FеСl3.

2. Реакции разложения. Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ -- большее их число.

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества

А = В + С + D

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. Примером реакции разложение может служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО 3 =СаО+СО 2 . Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы -- эндотермические, т.е. протекают с поглощением теплоты. Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот

CuSO4 5H2O = CuSO4 + 5H2O,

Cu(OH)2 = CuO + H2O,

H2SiO3 = SiO2 + H2O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления

2SO3 = 2SO2 + O2,

4HNO3 = 2H2O + 4NO2O + O2O,

2AgNO3 = 2Ag + 2NO2 + O2,

(NH4) 2Cr2O7 = Cr2O3 + N2 + 4H2O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии, в отличие от реакций разложения в неорганической химии, имеют свою специфику. Их можно рассматривать как процессы, обратные присоединению, поскольку в результате чаще всего образуются кратные связи или циклы.

Реакции разложения в органической химии носят название крекинга

С18H38 = С9H18 + С9H20

или дегидрирования C4H10 = C4H6 + 2H2.

В реакциях двух других типов число реагентов равно числу продуктов.

3. Реакции замещения. Их отличительный признак -- взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии. Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное А + ВС = АВ + С

Например, опустив стальной гвоздь в раствор медного купороса получаем железный купорос (железо вытеснило медь из её соли) Fe+CuSO 4 = FeSO 4 +Cu.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным

2Аl + Fe2O3 = 2Fе + Аl2О3,

Zn + 2НСl = ZnСl2 + Н2,

2КВr + Сl2 = 2КСl + Вr2,

2КСlO3 + l2 = 2KlO3 + Сl2.

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны.

Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды

СаСО3+ SiO2 = СаSiO3 + СО2,

Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5.

Иногда эти реакции рассматривают как реакции обмена

СН4 + Сl2 = СН3Сl + НСl.

4. Реакции обмена (в том числе и нейтрализации). Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями

АВ + СD = АD + СВ

Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью

NaOH+HCl=NaCl+Н 2 О.

Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями

ZnO + Н2SО4 = ZnSО4 + Н2О,

AgNО3 + КВr = АgВr + КNО3,

СrСl3 + ЗNаОН = Сr(ОН)3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации

НСl + КОН = КСl + Н2О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения

NаНСО3 + НСl = NаСl + Н2О + СО2^,

Са(НСО3)2 + Са(ОН)2 = 2СаСО3v + 2Н2О,

СН3СООNа + Н3РО4 = СН3СООН + NаН2РО4.

Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно- восстановительные, например

2KMnO 4 +10NaI+8H2SO4 =2MnSO4 +K2SO4 +5Na2SO4 +5I2 +8H2O .

К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разложения и соединения, в которых участвует хотя бы одно простое вещество. В более обобщенном варианте (уже с учетом и органической химии), все реакции с участием простых веществ. И, наоборот, к реакциям, идущим без изменения степеней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

2. Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции:

2. Реакции в растворах:

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н2О(ж).

3. Реакции между твердыми веществами:

СаО(тв) +SiO2(тв) = СаSiO3(тв).

Химическая реакция, или химическое превращение, это процесс, во время которого из одних веществ образуются другие вещества, отличающиеся по химическому составу и строению.

Химические реакции классифицируются по следующим признакам:

Изменение или отсутствие изменения количества реагентов и продуктов реакции. По этому признаку реакции подразделяются на реакции соединения, разложения, замещения, обмена.

Реакция соединения — это реакция, в ходе которой из двух или нескольких веществ образуется одно новое вещество. Например, Fe + S → FeS.

Реакция разложения — это реакция, при которой из одного вещества образуется два или несколько новых веществ. Например, CaCO3 → CaO + CO2.

Реакция замещения — это реакция между простой и сложной веществами, в процессе которой атомы простого вещества замещают атомы одного из элементов в сложной веществе, в результате чего образуются новая простая и новая сложная вещества. Например, Fe + CuCl2 → Cu + FeCl2.

Реакция обмена — это реакция, в процессе которой две сложные вещества обмениваются своими составными частями. Например, NaOH + HCl → NaCl + H2O.

Вторым признаком классификации химических реакций изменение или отсутствие изменения степеней окисления элементов, входящих в состав веществ, которые реагируют. По этому признаку реакции подразделяются на окислительно-восстановительные и такие, которые происходят без изменения степеней окисления элементов.

Например, Zn + S → ZnS (цинк плюс эс образуется цинк-эс). Это окислительно-восстановительная реакция, во время которой Цинк отдает два электрона и приобретает степень окисления +2: Zn0 — 2 → Zn +2, а Сера принимает 2 электрона и приобретает степень окисления -2: S0 + 2 → S-2.

Процесс отдачи электронов веществами называется окислением, а процесс приема электронов — восстановлением.

Третьим признаком классификации химических реакций выделения или поглощения энергии в процессе реакции. По этому признаку реакции подразделяются на экзотермические (что сопровождается выделением теплоты) и эндотермические (сопровождающиеся поглощением тепла).

Четвертым признаком классификации химических реакций тип одного из реагентов. По этому признаку реакции подразделяются на реакции галогенов (взаимодействие с хлором, бромом), гидрирования (присоединение молекул водорода), гидратации (присоединения молекул воды), гидролиза, нитрования.

Пятым признаком классификации химических реакций является наличие катализатора. По этому признаку реакции подразделяются на каталитические (которые происходят только при наличии катализатора) и некаталитического (происходящих без катализатора).

Еще одним признаком классификации химических реакций протекание реакции до конца. По этому признаку реакции подразделяются на обратимые и необратимые.

Существуют и другие классификации химических реакций. Все зависит от того, какой критерий положен в их основу.