Основные динамические теории. Теория динамических систем. Динамические и статистические теории

История развития науки показывает, как первоначально возникшие динамические теории сменяются статистическими, описывающими тот же круг явлений в макроскопических системах, в которых не рассматривают поведение отдельных элементов этой системы (например, единичной молекулы в газе) и изменения их характеристик, а оперируют величинами, характеризующими систему в целом, т.е. макропараметрами (например, давление в газе, плотность газа и т.д.). таким образом, можно сказать, что динамические теории строятся на основании усреднения законов поведения громадного числа частиц в равновесных (или слаборавновесных) условиях, и не учитывают вариации, полученных на основании этих теорий, результатов, которые бы изменялись под влиянием на систему окружающей ее среды. В реальных процессах всегда происходят неизбежные отклонения – флуктуации .Флуктуации – это случайные отклонения параметров системы (или всей системы) от средних значений параметров (или среднего, т.е. наиболее вероятного состояния системы).

Когда флуктуации значительны, в сложных системах с большим числом элементов, которые к тому же зависят от постоянно меняющихся внешних условий, статистические законы глубже и точнее описывают исследуемые процессы.

Главное отличие статистических законов от динамических – в учете случайного (флуктуаций).

В современном естествознании законы динамического типа сочетаются с законами статистического типа. Законы динамического типа используются для систем и процессов, в которых допустимо пренебречь влиянием реально существующих случайных факторов. Если же этого сделать нельзя, то применяют статистические теории, которые дают более глубокое, детальное и точное описание реальности.

Резюмируем все вышесказанное.

Состояние системы в естественных науках может задаваться :

Значениями измеряемых величин, характеризующих эту систему, на данный момент времени

Вероятностями, с которыми та или иная величина, характеризующая систему, принимает заданные значения.

Динамические научные теории :

Описывают состояние системы значениями измеряемых величин, характеризующих систему

Не учитывают и не позволяют описывать флуктуации – случайные отклонения системы от наивероятнейшего состояния

Не используют аппарат теории вероятности.

Статистические научные теории :

Позволяют рассчитывать и предсказывать лишь вероятность того, что величина, характеризующая систему, примет то или иное значение

Описывают состояние системы на языке вероятностей, с которыми та или иная величина, характеризующая систему, принимает заданные значения

Учитывают случайные отклонения от нормы

Описывают вероятное поведение систем, состоящих из огромного числа элементов.

Соответствие между динамическими и статистическими законами :

Динамической теории соответствует более точный статистический аналог, который полнее и глубже описывает реальность

Статистическая теория всегда описывает более широкий класс явлений, чем ее динамический аналог

Статистические законы более полно и глубоко отражают объективные связи в природе, т.к они учитывают реально существующую в мире случайность

Классическая механика Ньютона (динамическая теория) является приближением квантовой механики (статистической теории) при описании движения макрообъектов

Все фундаментальные статистические теории содержат в качестве своего приближения соответствующие динамические теории при условии, что можно пренебречь случайностью.

Динамическими теориями являются :

Механика

Электродинамика

Термодинамика

Теория относительности

Статистическими теориями являются :

Молекулярно-кинетическая теория газов

Квантовая механика, другие квантовые теории

Эволюционная теория Дарвина

Основные понятия статистических теорий :

Случайность (непредсказуемость)

Вероятность (числовая мера случайности)

Среднее значение величины

Флуктуация – случайное отклонение системы от среднего (наиболее вероятного состояния).

Динамическая система - множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. [ ] Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.

Состояние динамической системы в любой момент времени описывается множеством вещественных чисел (или векторов), соответствующим определённой точке в пространстве состояний . Эволюция динамической системы определяется детерминированной функцией, то есть через заданный интервал времени система примет конкретное состояние, зависящее от текущего.

Введение

Динамическая система представляет собой такую математическую модель некоего объекта, процесса или явления, в которой пренебрегают «флуктуациями и всеми другими статистическими явлениями».

Динамическая система также может быть представлена как система, обладающая состоянием . При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы - совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояния в другое.

Различают системы с дискретным временем и системы с непрерывным временем.

В системах с дискретным временем, которые традиционно называются каскадами , поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками , состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.

Динамическая система (как с дискретным, так и с непрерывным временем) часто описывается автономной системой дифференциальных уравнений , заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые - его периодическим решениям.

Основное содержание теории динамических систем - это исследование кривых, определяемых дифференциальными уравнениями . Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы ) и отталкивающих (репеллеры ) множеств (многообразий). Важнейшие понятия теории динамических систем - устойчивость состояний равновесия (т.е. способность системы при малых изменениях начальных условий сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (т.е. сохранение свойств при малых изменениях самой математической модели; «грубая система - это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров»).

Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой .

Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.

Методы теории динамических систем востребованы в других разделах естествознания, таких как неравновесная термодинамика , теория динамического хаоса , синергетика .

Определение

Пусть X {\displaystyle X} - произвольное гладкое многообразие .

Динамической системой , заданной на гладком многообразии X {\displaystyle X} , называется отображение g: R × X → X {\displaystyle g\colon R\times X\to X} , записываемое в параметрическом виде g t (x) {\displaystyle g^{t}(x)} , где t ∈ R , x ∈ X {\displaystyle t\in R,x\in X} , которое является дифференцируемым отображением, причём g 0 {\displaystyle g^{0}} - тождественное отображение пространства X {\displaystyle X} . В случае стационарных обратимых систем однопараметрическое семейство { g t: t ∈ R } {\displaystyle \{g^{t}:t\in R\}} образует группу преобразований топологического пространства X {\displaystyle X} , а значит, в частности, для любых t 1 , t 2 ∈ R {\displaystyle t_{1},t_{2}\in R} выполняется тождество g t 1 ∘ g t 2 = g t 1 + t 2 {\displaystyle g^{t_{1}}\circ g^{t_{2}}=g^{t_{1}+t_{2}}} .

Из дифференцируемости отображения g {\displaystyle g} следует, что функция g t (x 0) {\displaystyle g^{t}(x_{0})} является дифференцируемой функцией времени, её график расположен в расширенном фазовом пространстве R × X {\displaystyle R\times X} и называется интегральной траекторией (кривой) динамической системы. Его проекция на пространство X {\displaystyle X} , которое носит название фазового пространства , называется фазовой траекторией (кривой) динамической системы.

Задание стационарной динамической системы эквивалентно разбиению фазового пространства на фазовые траектории. Задание динамической системы в общем случае эквивалентно разбиению расширенного фазового пространства на интегральные траектории.

Способы задания динамических систем

Для задания динамической системы необходимо описать её фазовое пространство X {\displaystyle X} , множество моментов времени T {\displaystyle T} и некоторое правило , описывающее движение точек фазового пространства со временем. Множество моментов времени T {\displaystyle T} может быть как интервалом вещественной прямой (тогда говорят, что время непрерывно ), так и множеством целых или натуральных чисел (дискретное время). Во втором случае «движение» точки фазового пространства больше напоминает мгновенные «скачки» из одной точки в другую: траектория такой системы является не гладкой кривой, а просто множеством точек, и называется обычно орбитой. Тем не менее, несмотря на внешнее различие, между системами с непрерывным и дискретным временем имеется тесная связь: многие свойства являются общими для этих классов систем или легко переносятся с одного на другой.

Фазовые потоки

Пусть фазовое пространство X {\displaystyle X} представляет собой многомерное пространство или область в нем, а время непрерывно. Допустим, что нам известно, с какой скоростью движется каждая точка x {\displaystyle x} фазового пространства. Иными словами, известна вектор-функция скорости v (x) {\displaystyle v(x)} . Тогда траектория точки будет решением автономного дифференциального уравнения d x d t = v (x) {\displaystyle {\frac {dx}{dt}}=v(x)} с начальным условием x (0) = x 0 {\displaystyle x(0)=x_{0}} . Заданная таким образом динамическая система называется фазовым потоком для автономного дифференциального уравнения.

Каскады

Пусть X {\displaystyle X} - произвольное множество, и f: X → X {\displaystyle f\colon X\to X} - некоторое отображение множества X {\displaystyle X} на себя. Рассмотрим итерации этого отображения, то есть результаты его многократного применения к точкам фазового пространства. Они задают динамическую систему с фазовым пространством X {\displaystyle X} и множеством моментов времени T = N {\displaystyle T=\mathbb {N} } . Действительно, будем считать, что произвольная точка x 0 ∈ X {\displaystyle x_{0}\in X} за время 1 {\displaystyle 1} переходит в точку x 1 = f (x 0) ∈ X {\displaystyle x_{1}=f(x_{0})\in X} . Тогда за время 2 {\displaystyle 2} эта точка перейдет в точку x 2 = f (x 1) = f (f (x 0)) {\displaystyle x_{2}=f(x_{1})=f(f(x_{0}))} и т. д.

Если отображение f {\displaystyle f} обратимо, можно определить и обратные итерации : x − 1 = f − 1 (x 0) {\displaystyle x_{-1}=f^{-1}(x_{0})} , x − 2 = f − 1 (f − 1 (x 0)) {\displaystyle x_{-2}=f^{-1}(f^{-1}(x_{0}))} и т. д. Тем самым получаем систему с множеством моментов времени T = Z {\displaystyle T=\mathbb {Z} } .

Примеры

{ d x d t = v d v d t = − k x {\displaystyle {\begin{cases}{\frac {dx}{dt}}=v\\{\frac {dv}{dt}}=-kx\end{cases}}}

задает динамическую систему с непрерывным временем, называемую «гармоническим осциллятором». Её фазовым пространством является плоскость (x , v) {\displaystyle (x,v)} , где v {\displaystyle v} - скорость точки x {\displaystyle x} . Гармонический осциллятор моделирует разнообразные колебательные процессы - например, поведение груза на пружине. Его фазовыми кривыми являются эллипсы с центром в нуле.

Вопросы теории динамических систем

Имея какое-то задание динамической системы, далеко не всегда можно найти и описать её траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:

  1. Есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в начальное состояние в ходе эволюции?
  2. Как устроены инвариантные многообразия системы (частным случаем которых являются замкнутые траектории)?
  3. Как устроен аттрактор системы, то есть множество в фазовом пространстве, к которому стремится «большинство» траекторий?
  4. Как ведут себя траектории, выпущенные из близких точек - остаются ли они близкими или уходят со временем на значительное расстояние?
  5. Ссылки

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т.п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей - существенных, повторяющихся связей между предметами и явлениями - задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна "Д. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая- то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х *Д = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон - закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения - статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория X. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

На многообразиях и их подмножествах. Тесно связан с теорией дифференциальных уравнений , поскольку обыкновенное дифференциальное уравнение задает однопараметрическую группу диффеоморфизмов своего фазового пространства .

Эту область изучения часто называют просто «Динамические системы», «Теория систем», или длиннее как «Теория математических динамических систем».

Шаблон:Системы


Wikimedia Foundation . 2010 .

  • Теория групп Ли
  • Теория дифференциальных уравнений

Смотреть что такое "Теория динамических систем" в других словарях:

    МЕТРИЧЕСКАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - то же, что эргодическая теория … Математическая энциклопедия

    ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть {Tt} динамич. система (обычно измеримый поток или каскад)с фазовым пространством Wи инвариантной мерой Пусть … Математическая энциклопедия

    Кафедра нелинейных динамических систем и процессов управления ВМК МГУ - Кафедра Нелинейных Динамических Систем и Процессов Управления факультета Вычислительной математики и кибернетики МГУ им М. В. Ломоносова (НДСиПУ ВМК МГУ). Заведующий кафедрой (с 1989 года) – лауреат Ленинской, Государственных (СССР и РФ),… … Википедия

    Теория катастроф (математика) - Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    Теория бифуркаций - динамических систем это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров). Содержание 1 Обзор 2 Бифуркация равновесий … Википедия

    Теория линейных стационарных систем - раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела.… … Википедия

    Теория случайных матриц - Теория случайных матриц раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… … Википедия

    Теория узлов - Теория узлов изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу. В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вообще вложения многообразий. Содержание 1… … Википедия

    Теория Колмогорова - Теория Колмогорова Арнольда Мозера, или теория КАМ названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти… … Википедия

    Теория катастроф (значения) - Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

Книги

  • Синхронизация динамических систем , . В настоящей книге делается попытка систематического изложения фактов и результатов, относящихся к быстро развивающейся области науки и техники- синхронизации динамических систем. Книга… Купить за 735 руб
  • Теория динамических систем , Г. А. Степаньянц. Настоящая книга посвящена изложению основ общей теории динамических систем, созданной трудами ряда выдающихся отечественных и зарубежных математиков. Знакомствос этой теорией позволяет…

Понятия системы, основные характеристики системы.

Система – это совокупность элементов, находящихся во взаимодействии и связаны определенной структурой.

Базовый блок любой системы – составляющие ее элементы, каждый элемент характеризуется набором состояний, в которой он может находиться.

Схема функционирования элемента системы:

Для многих систем характерен принцип обратной связи – выходной сигнал может использоваться для коррекции управления.

S(t) – состояние элемента в момент t.

U(t) – управление элементом в момент t.

a(t) – внешняя среда элемента в момент t.

E(t) – случайные воздействия элемента в момент t.

Y(t) – выходной сигнал элемента в момент t.

В общем случае описание функционирования элемента системы производится при помощи системы дифференциальных или разностных уравнений следующего вида:

Y(t) =f(S(t), S(t-1), …,U(t),U(t-1),…,a(t),a(t-1),…,E(t),E(t-1),…)

(Y(t) = g (S(t), a(t), E(t)) (1)

Примеры структуры системы:

    линейная (последовательная):

    иерархическая (древовидная):

    радиальная (звездообразная):

    сотовая или матричная:

    многосвязная – с произвольной структурой.

При анализе динамических систем рассмотрим решение следующих задач:

    Задача наблюдения – состоит в определении состояния системы в момент времени S(t) по данным выходных величин (о их поведении) в будущем.

Найти S(t) , зная,
для системы с дискретным временем.

для систем с непрерывным временем.

    Задача идентификации – в определении текущего состояния S(t) по данным о поведении выходных величин в прошлом.

3. Задачи прогнозирования – определение будущих состояний по данным ткущих и

прошлых значений.

Найти S (t+1), S (t+2),… зная

    Задача поиска управления – найти управляющую последовательность U(t), U(t+1),…, U(S), S > t, которая приводит систему из состояния S(t) = X в состояние S(S) = Y.

    Задача синтеза максимального управления – состоит в определенной оптимальной последовательности управляющих воздействий U*(t) решающий задачу 4 и максимальную целевую функцию или функциональную:

F(S(t)), t = 0,1,2,…

Типы систем:

    По наличию случайных факторов:

Детерминированные

Стохастические – влиянием случайных факторов нельзя принебреч.

2. По учету фактора времени:

Системы с непрерывным временем

Системы с дискретным временем

3. По влиянию прошлых периодов:

Марковские системы – для решения 1 и 2 задач нужна информация только за непосредственно предшествующий или последующий период. Для Марковской систем уравнение (1) принимает вид: G(S(t), S(t-1), U(t), U(t-1), a(t), a(t-1), E(t), E(t-1)) = 0

Немарковские.

Некоторые общие свойства систем:

    причинность – возможность предсказывать последствия некоторых последствий в будущем. Част. случай: предопределенность системы означает, что в сущности такие состояния, для которых вся будущая эволюция системы может быть вычислена на базе прошлых наблюдений.

    управляемость – состоит в том, что подходящим выбором входного воздействия U можно добиться любого входного сигнала Y.

    устойчивость – система является устойчивой, если при достаточно малых изменениях условий ее функционирования поведение системы существенно не изменится.

    инерционность – возникновение запаздываний в системе при реакции (запаздывания) на изменение управления и (или) внешней среды.

    адаптивность – способность системы изменять поведения и (или) свою структуру в ответ на изменение внешней среды.

Детерминированные динамические системы с дискретным временем.

Многие приложения в экономике требуют моделирования систем во времени.

Состояние системы в момент времени t описывается мерным вектором X(t).

X(t) = ….. , X (t) R n (R – множество всех вещественных чисел)

t

Эволюция системы со временем описывается функцией

G (X 0 , t, ) , где

X 0 – начальное состояние системы;

t – время;

- вектор параметров.

Функция g(*) называют также переходной функцией

Функция g(*) – это правило, описывающее текущее состояние как функцию от времени, начальных условий и параметров.

Например: X t = X 0 (1+) t = g (X 0 , t, )

Функция g(*) как правило не известна. Обычно она задана неявно как решение системы разностных уравнений.

Разностное уравнение или система уравнений – это уравнения в следующей форме: F (t, X t , X t +1 , …, X t + m , ) = 0 (1), где

X t – состояние системы в момент времени t.

Решение уравнения (1) – это последовательность векторов

X t = X 0 , X 1 ,…,

Обычно предполагается, что уравнение (1) можно решить аналитически относительно X t + m и переписать в форме так называемых уравнений – состояний:

X t+m = f (t, X t , X t+1 , …,X t+m-1 , )(2)

Например:

X t +2 = X t + X t +1 /2 + t

Любую систему представляют в форме (2) всегда можно?

Разностное уравнение (2) называется линейным, если F(*) является линейной фуекцией переменных состояний (не обязательно линейно относительно )

В уравнениях (1) и (2) величина m называется порядком системы не является серьезным ограничением, так как системы более высокого порядка путем введения дополнительных переменных и уравнений.

Пример: X t = f (X t -1 , Y t -1) – система 2-го порядка

Введем Y t = X t -1

X t = f(X t -1 , Y t -1)

Таким образом, мы будем рассматривать только системы 1-го порядка следующего вида:

X t -1 = f(t, X t , ) (3)

Уравнение (3) называется автономным, если t не входит в него отдельным аргументом.

Пример:

Рассмотрим динамику основных фондов на предприятии

K t – стоимость основных фондов предприятия в период t.

- норма амортизации, то есть % основных фондов, которые изъяли на предприятии за год.

I t = инвестиции в основные фонды.

K t +1 = (1 - )K t + I t – уравнение 1-го порядка, линейное, если I t = I, тогда

K t +1 = (1 - )K t + I – уравнение автономное

Если I t = I(t) – неавтономное (зависит от t)

Решение уравнения (3) – это последовательность векторов состояния {X t }, удовлетворяющих уравнению (3) для всех возможных состояний. Эта последовательность называется траекторией системы. Уравнение (3) показывает, как состояние системы изменяется от периода к периоду, а траектория системы дает ее эволюцию как функцию начальных условий и состояния внешней среды .

Если известно начальное состояние X 0 , легко получить последовательность решений путем итеративного применения отношения (3), получим переходную функцию следующим образом:

X t +1 = f (t, X t , )

X 1 = f (0, X 0 , ) = g (0, X 0 , )

X 2 = f (1, X, ) = f (1; f (0, X 0 , );) = g (1, X 0 , )

X t+1 = f (t, X t , ) = f (t, g, (t – 1, X 0 , ),) = g (t, X 0 , )

Если f (*) однозначная, всюду определенна функция, то существует уникальное решение уравнения (3) для любого X 0 .

Если функция имеет вид f (t, X t , ) = / X t – не всюду опрделенная.

Если f (*) непрерывная дифференциальная функция, то решение также будет гладким относительно и X 0

Полученное решение зависит от начального состояния X 0 .

Задача с граничным условием состоит из уравнения (3) и граничного условия, задаваемого в формуле:

X s = X s (4)

Если в уравнении (4) – S = 0 , то оно называется начальным состоянием.

Уравнение (3) имеет много решений, а уравнение (3) + (4) – система – единственное решение, поэтому различают общее и частное решение разностного уравнению (3):

X t g = X(t, c, ) = {X t (X t +1 = f (t, X t , ))} , где параметр е индексирует частное решение.

X t – размер вклада в момент t

Z - % я ставка

X t +1 = X t (1+ z) ; X 0 = …

X 1 = X 0 (1 + z)

X 2 = X 1 (1 + z) = X 0 (1 + z) 2 = g (X 0 , t, z) , где t = 2

Если можно найти общее решение системы (3) . у нас будет полная информация о поведении системы со временем, будет легко определить, как система реагирует на изменение параметров.

К сожалению, общее решение существует только для определенных классов l – го порядка (в частности для линейных систем)

Автономные системы

Поведение автономных систем задается разностным уравнением

X t +1 = f (X t , ) (1)

Автономные системы моделируют ситуации, где структура системы остается неизменной со временем. Это дает возможность использовать для анализа графический метод.

X t =1 = f (t, X t , )

X t = X t +1 – X t = f (t, X t , ) - X t = d (t, X t , ) (2)

Функция d (*) показывает на сколько изменится состояние системы от периода к периоду. В каждой точке X t можно сопоставить вектор X t в соответствующем уравнении (2) Функция d (*) в этом контексте называется векторным полем

X 0 /t = 0

Для автономных систем
и

В автономных системах все системы, попавшие когда-либо в т. Х 0 в последствии следуют одной и той же траекторией. В неавтономных системах поведение зависит также и от того, когда система попала в т. Х 0.

При начальном условии Х 0 для автономных систем применим уравнение (1):

дважды последовательно примененная.

В выше приведенной системе f t означает результат t-кратного итеративного применения функции f () к своему аргументу. Функция f t показывает, куда перейдет система за t периодов из начального состояния.

X t – куда перейдет система из т. Х 0 за t периодов времени.

Функция f t иногда называется потоком системы.

Устойчивые состояния. Периодические равновесия. Стабильность .

С течением времени система переходит к устойчивому состоянию. Поэтому нас будет интересовать асимптотическое поведение системы при t → ∞.

Рассмотрим систему

Следовательно, если
существует, то
.

Точка Х, удовлетворяющая уравнению
называется неподвижной точкой отображения
.

Точка называется в контексте динамических систем устойчивым состоянием или стационарным состоянием.

Неподвижные точки широко используются для изучения долговременного поведения динамических систем.

если
, то 1 в противном случае 0

Теория устойчивости Ляпунова

Точка называется стабильной по Ляпунову, если для любого числа
существует такое число,
, что из условия
для всех
.

–длина вектора на плоскости.

–равновесное состояние.

–норма вектора Х.

Точка будет стабильной по Ляпунову в том случае, когда система один раз попав в окрестность точкии в дальнейшем останется в окрестности.

Точка называется асимптотически устойчивой по Ляпунову если:


Для асимптотически устойчивых систем с течением времени система подходит все ближе и ближе к своему равновесному состоянию.

Система ведет себя так:

–поток системы

–куда перейдет система через к шагов

Периодическим решением динамической системы
называется решение в форме
, где р – период системы или период траектории.

Таким образом, периодическое решение является неподвижной точкой отображения
.

Неподвижная точка

Проверим, есть ли неподвижная точка
:

любая точка является неподвижной.

Скалярные линейные системы

Скалярные линейные системы имеют форму:
(1)

–уравнение, подданное в момент t.

Если в уравнении (1)
, то
, то оно называется однородным.

Однородные линейные системы

Для скалярных систем удобно анализировать поведение системы при помощи фазовой диаграммы. Фазовая диаграмма – это график зависимости

Случай 1. 0

Является аналитически стабильной

–линейная, если а=1, под 45 0 – угол наклона.

Для 0

Случай 2. -1

Затухающие колебания

Случай 3. а>1

Случай 4. а<-1

Случай 5. а = 1

Случай 6. а = 0

Случай 7. а = -1 x t+1 = -x t

Если
, то

, то

Общее решение однородных линейных систем имеет вид:

При
,
,

Неоднородные линейные системы первого порядка

(1)

–управление

При анализе неоднородных систем важную роль играет принцип «суперпозиции».

Он заключается в том, что общее решение уравнения (1) может быть записано в форме уравнения:

(2)

где – общее решение однородного уравнения (1):
и называется комплементарной функцией.

–любое частное решение неоднородного уравнения (1).

Автономное уравнение (1)

1.

2.

Доказательство:

Если – решение уравнения (1), то
.

Если – другое решение уравнения (1), то

Рассмотрим функцию
и проверим, является лирешением уравнения (1).

2. [Необходимость] Мы показали, что если мы начнем с какого-либо решения и добавим к нему
, то мы получим решение уравнения (1). Возникает вопрос, получим ли мы подобным образом все решения уравнения (1). Докажем, что это действительно так:

Пусть у нас есть два решения (1), и:

Обозначим

- однородное,
z t =ca t

-=ca t
=+ca t

Автономные линейные системы

Х t +1 =ax t +U (3)

=+ (2)

= ca t

= a + U
=

=+ ca t

Если


Если


В случае, когда
с течением времени система достигает состояния и соответствующим подбором уравнения U мы сможем достигнуть любого состояния. Система (3) называется в таком случае управляемой.

Если
, то с течением времени система примет неограниченные значения вне зависимости от уравнения и, следовательно, будет неуправляемой.

Общее решение (3) имеет вид:

(4)

Рассмотрим граничное условие x s =x s:

(5)

Неавтономные линейные системы

X t +1 =ax t +U t

X t+1 =ax t +U t =a(ax t-1 +U t-1)+U t =a 2 x t-1 +a U t-1 + U t = a 2 (ax t-2 +U t-2)+ aU t-1 + U t = a 3 x t-2 +a U t-2 + aU t-1 + U t)=

Если
, то

Если
, то

Предположим, последовательность U t является ограниченной, т.е. U t ≤для любогоt.

Тогда - пограничное значение.

ЭКОНОМИЧЕСКИЕ ПРИЛОЖЕНИЯ ТЕОРИИ ЛИНЕЙНЫХ СИСТЕМ

    Паутинообразная модель рыночного равновесия.

Основные предположения модели:

    линейный характер кривой спроса

    линейный характер кривой предложения

    равенство кривой спроса и предложения

где d 0 , d 1 >0

Предложение:

, где S 1 >0, S 0 ≤0 (так как при цене 0 никто ничего не выпускает).

Равновесие:

d 0 -d 1 P t =S 0 +S 1 P t-1

d 1 P t =d 0 -S 0 –S 1 P t-1 │:d 1

P t =
(*)

Для того чтобы цены с течением времени сходились к равновесной цене, необходимо, чтобы отношение илиS 1 d 1
в системе будут расходящиеся колебания.

на графике кривая

предложения круче, чем кривая спроса.

d 1 p * =d 0 -S 0 -S 1 p *

Для более рационального поведения производители в своих решениях должны учитывать не6 только текущую, но и будущую конъюнктуру рынка. Таким образом, для нормального функционирования рынка важна способность экономических агентов формировать ожидание будущего (делать прогнозы).

    Динамика цен на финансовых рынках.

S – предложение недвижимости

D – спрос на недвижимость

P t – стоимость акций в момент t.

d t – дисиденті в момент t.

r –процентная ставка по депозитным счетам.

- ожидаемая стоимость акций в момент t+1.

Арбитражем называется ситуация, позволяющая получить инвестору немедленную прибыль без риска за счет покупки актива по низкой цене и его немедленной перепродажи по более высокой цене.

Считается что рынок является эффективным, если на нем отсутствуют возможности для арбитража.

Воспользуемся принципом отсутствия арбитража, чтобы получить балансовое соотношение для стоимости акций.


(1)

На примере Харьковской недвижимости:

P t =30 тыс.дол.

D t =2 тыс.дол. в год – плата за сдачу жилья

-ожидаемая цена на квартиру в следующем периоде.

=33-2=31 тыс. дол.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ОЖИДАНИЙ

1. Модель адаптивных ожиданий

=
, где 0≤≤1

0
=

1
=

- метод экспоненциального сглаживания (2)

(1)

(2)

Предположим, что d t =d=const для любого t

0

Общее решение:
, где Р 0 – первоначальная стоимость акций.

a<1,
a t P 0
0

фундаментальная стоимость акций.

a t P 0 – спекулятивная составляющая

2. Модель рациональных ожиданий

Недостаток – низкая скорость обучения участников рынка. Это открывает возможность для интертепорального арбитража, т.е. спекуляции на прогнозируемых изменениях курса акций в последующих периодах.

Чтобы устранить это логическое противоречие, в 1970-х была предложена модель рациональных ожиданий (Р. Лукас).

Суть модели – в среднем рынок не может систематически ошибаться в оценке курса активов. Применительно к нашей модели это означает следующее: инвесторы не должны систематически ошибаться в оценке стоимости акций.

- несмещенность оценки, т.е.
- является несмещенной оценкойP t +1 ; или
=P t +1 +E t

E t – ошибка оценивания

Рассмотрим экстремальный вариант модели рациональных ожиданий (модель с полным предвидением), в которой ошибка оценивания равна 0.

С модели с полным предвидением предположим, что E t =0, т.е.
=P t +1

Рассмотрим динамику цен на акции в модели с полным предвидением.

Условие арбитража:

(1+r) P t =dt

(1+r) P t =dtP t+1

=P t+1

P t+1 =(1+r) Pt-d (3)

P t является нестабильной, P t →, поскольку (1+r) >, если только не начинаем движение с неподвижной точки:

Если P t = , тоP t + k =

d=0, P t +1 =(1+r) Pt

В модели полного предвидения ожидания инвесторов играют роль самовыражающегося пророчества, цены на активы могут неограниченно расти, т.к. инвесторы считают, что они будут расти. Таким образом, в такой модели спекулятивная компонента стоимости акций доминирует над ее фундаментальным значением.