Биологические компьютеры. Реферат: «Биокомпьютеры. Биокомпьютеры — своеобразный гибрид информационных технологий и биологических систем

Уже давно идут разговоры о скором достижении предела полупроводниковой технологии производства вычислительных устройств. Уменьшение размера компонентов интегральной схемы до 80-120 нм приведет к появлению ряда проблем, связанных с физической природой полупроводниковых наночастиц. Во-первых, концентрацию допирующих полупроводниковый кристалл элементов уже нельзя считать одинаковой во всем объеме. Во-вторых, резко увеличится вероятность туннельной электронной утечки (проще говоря, замыкания) между компонентами интегральной схемы. Следствием этих двух причин станет возросшая доля дефектных чипов и недолговечность их эксплуатации (а, значит, и себестоимость полупроводниковой продукции).

Видя столь незавидные перспективы, многие известные научные институты и компании (а среди них такие монстры, как Массачусетский технологический институт, лаборатории Сандия, IBM, Оксфордский университет) ищут новые принципы, новые физические основы для создания более эффективных, чем полупроводниковые, "счетных машин". Причем нет гарантии, что новые устройства, пришедшие на замену компьютерам, работающим на электрической энергии, будут хотя бы отдаленно напоминать своих предшественников.

Одной из альтернатив современной полупроводниковой технике в будущем могут стать так называемые биологические компьютеры, или биокомпьютеры. Биокомпьютеры представляют собой гибрид информационных технологий и биохимии. Исследователи из различных областей науки (биологии, физики, химии, генетики, информатики) пытаются использовать реальные биологические процессы для создания искусственных вычислительных схем. Существует несколько принципиально различных типов биологических компьютеров, основанных на различных биологических процессах: искусственные нейронные цепи, эволюционное программирование, генные алгоритмы, ДНК-компьютеры и клеточные компьютеры. Первые два стали исследоваться еще в начале 40-х годов, но до сих пор эти исследования ни к чему реально работающему не привели. Последние три, основанные на методах генной инженерии, имеют гораздо большие перспективы, но работа в этих областях началась только пять лет назад (особенно продвинулись в этом вопросе Массачусетский технологический институт, лаборатории Беркли, лаборатории Рокфеллера, а также Техасский университет).

Если сравнивать потенциальные возможности биокомпьютера и обычного компьютера, то первый значительно опережает своего теперешнего собрата. Плотность хранения информации в ДНК составляет 1 бит/нм 2 - в триллион раз меньше, чем у видеопленки. ДНК может параллельно выполнять до 10 20 операций в секунду - сравнимо с современными терафлоповыми суперкомпьютерами. Кроме ДНК (хотя ДНК-компьютер наиболее популярен среди разработчиков), в качестве компьютерной биопамяти могут выступать другие биологически активные молекулы, например, бактериородопсин, обладающий превосходными голографическими свойствами и способный выдерживать высокие температуры. На его основе уже создан вариант трехмерного запоминающего устройства. Молекулы бактериородопсина фиксируются в гидрогелевой матрице и облучаются двумя лазерами (см. рис).

Первый лазер (направленный аксиально на гидрогелевый образец) инициирует фотохимические реакции в молекуле и записывает информацию. Второй же, направленный перпендикулярно, считывает информацию, записанную на молекулах бактероиродопсина, находящегося в объеме гидрогеля.

Принцип устройства компьютерной ДНК-памяти основан на последовательном соединении четырех нуклеотидов (основных кирпичиков ДНК-цепи). Три нуклеотида, соединяясь в любой последовательности, образуют элементарную ячейку памяти - кодон, которые затем формируют цепь ДНК. Основная трудность в разработке ДНК-компьютеров связана с проведением избирательных однокодонных реакций (взаимодействий) внутри цепи ДНК. Однако прогресс есть уже и в этом направлении. Уже есть экспериментальное оборудование, позволяющее работать с одним из 10 20 кодонов или молекул ДНК. Другой проблемой является самосборка ДНК, приводящая к потере информации. Ее преодолевают введением в клетку специальных ингибиторов - веществ, предотвращающих химическую реакцию самосшивки.

Создание биологического ДНК-hardware планируется осуществлять с помощью методов генной инженерии, размерные пределы которой горадо ниже литографических. С помощью биологического "железа" в скором времени будет возможным осуществлять цифровой контроль за процессами, протекающими в человеческом организме, и проделывать простейшие математические операции. Ученым из университета г. Висконсин даже удалось провести вычислительную операцию на молекулах ДНК, химически закрепленных на инертной гладкой поверхности золота. Передача сигналов между молекулами ДНК осуществлялась с помощью тепловой энергии и химических веществ. Тим Гарднер из Бостона на примере бактерии кишечной палочки (E-coli) сконструировал цифровой преобразователь биохимическоих сигналов, длительность работы которого составляет 20 часов. Майкл Еловиц из Рокфеллеровского центра научных исследований собрал генетическую последовательность, способную в определенных условиях воспроизводить с определенной частотой одну и ту же биохимическую реакцию (вариант биологических часов). Группа ведущего специалиста в области ДНК-компьютеров Тома Кнайта из Массачусетского технологического, экспериментируя с ДНК-связанными протеинами, создала биохимический цифровой инвертор , в котором, если в биосистему ввести протеин А (+), то на выходе из системы получится протеин Б (-) и наоборот.

Другим перспективным направлением замены полупроводниковых компьютеров является создание клеточных (бактериальных) компьютеров. Они представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов (очень напоминает пчел, которые организуют упорядоченную иерархическую структуру внутри гнезда). Т.е., грубо говоря, стакан с бактериями и будет компьютером. Эти компьютеры очень дешевы в производстве. Им не нужна настолько стерильная атмосфера как при производстве полупроводников. И однажды запрограммировав клетку, можно быстро вырастить миллион таких же клеток с такой же программой.

С помощью клеточных компьютеров станет возможным непосредственное объединение информационной технологии и биотехнологии. Они будут управлять химическим (биохимическим) заводом, они будут делать для вас сорт пива, запрограммированный вами, регулировать биологические процессы внутри вашего организма (например, производить инсулин). Клеточные биокомпьютеры смогут перевести вычисления на химическую основу.

Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров, - организация всех клеток в единую работающую систему. На сегодняшний день практические достижения в области клеточных компьютеров напоминают достижения 20-х годов в области ламповых и полупроводниковых компьютеров. Сейчас в Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций.

Как уже стало ясно уважаемому читателю, создание биокомпьютеров очень перспективно, но и очень сложно. Пока никто не может ответить, какой конкретно физический принцип заменит полупроводниковые технологии (биокомпьютеры, квантовые компьютеры, оптические компьютеры или какие-нибудь еще). Но исследования в области биокомпьютеров все равно будут продолжаться, поскольку полученные результаты важны не только для создания биокомпьютеров, но и для всей биохимии в целом.

Дмитрий ЩУКИН

Биокомпьютеры

Применение в вычислительной технике биологических материалов позволит со временем уменьшить компьютеры до размеров живой клетки. Пока эта чашка Петри, наполненная спиралями ДНК, или нейроны, взятые у пиявки и подсоединенные к электрическим проводам. По существу, наши собственные клетки - это не что иное, как биомашины молекулярного размера, а примером биокомпьютера, конечно, служит наш мозг.

Ихуд Шапиро (Ehud Shapiro) из Вейцманоского института естественных наук соорудил пластмассовую модель биологического компьютера высотой 30 см. Если бы это устройство состояло из настоящих биологических молекул, его размер был бы равен размеру одного из компонентов клетки - 0,000025 мм. По мнению Шапиро, современные достижения в области сборки молекул позволяют создавать устройства клеточного размера, которое можно применять для биомониторинга.

Более традиционные ДНК-компьютеры в настоящее время используются для расшифровки генома живых существ. Пробы ДНК применяются для определения характеристик другого генетического материала: благодаря правилам спаривания спиралей ДНК, можно определить возможное расположение четырех базовых аминокислот (A, C, T и G).

Чтобы давать полезную информацию, цепочки ДНК должны содержать по одному базовому элементу. Это достигается при помощи луча света и маски. Для получения ответа на тот или иной вопрос, относящийся к геному, может потребоваться до 80 масок, при помощи которых создается специальный чип стоимостью более 12 тыс. дол. Здесь-то и пригодилась микросхема DMD от Texas Instruments: ее микрозеркала, направляя свет, исключают потребность в масках.

Билл Дитто (Bill Ditto) из Технологического института штата Джорджия провел интересный эксперимент, подсоединив микродатчики к нескольким нейронам пиявки. Он обнаружил, что в зависимости от входного сигнала нейроны образуют новые взаимосвязи. Вероятно, биологические компьютеры, состоящие из нейроподобных элементов, в отличие от кремниевых устройств, смогут искать нужные решения посредством самопрограммирования. Дитто намерен использовать результаты своей работы для создания мозга роботов будущего.

Оптические компьютеры

По сравнению с тем, что обещают молекулярные или биологические компьютеры, оптические ПК могут показаться не очень впечатляющими. Однако ввиду того, что оптоволокно стало предпочтительным материалом для широкополосной связи, всем традиционным кремниевым устройствам, чтобы передать информацию на расстояние нескольких миль, приходится каждый раз преобразовывать электрические сигналы в световые и обратно.

Эти операции можно упростить, если заменить электронные компоненты чисто оптическими. Первыми станут оптические повторители и усилители оптоволоконных линий дальней связи, которые позволят сохранять сигнал в световой форме при передаче через все океаны и континенты. Со временем и сами компьютеры перейдут на оптическую основу, хотя первые модели, по-видимому, будут представлять собой гибриды с применением света и электричества. Оптический компьютер может быть меньше электрического, так как оптоволокно значительно тоньше (и быстрее) по сравнению с сопоставимыми по ширине полосы пропускания электрическими проводниками. По существу, применение электронных коммутаторов ограничивает быстродействие сетей примерно 50 Гбит/с. Чтобы достичь терабитных скоростей потребуются оптические коммутаторы (уже есть опытные образцы). Это объясняет, почему в телекоммуникациях побеждает оптоволокно: оно дает тысячекратное увеличение пропускной способности, причем мультиплексирование позволяет повысить ее еще больше. Инженеры пропускают по оптоволокну все больше и больше коротковолновых световых лучей. В последнее время для управления ими применяются чипы типа TI DMD с сотнями тысяч микрозеркал. Если первые трансатлантические медные кабели позволяли передавать всего 2500 Кбит/с, то первое поколение оптоволоконных кабелей - уже 280 Мбит/с. Кабель, проложенный сейчас, имеет теоретический предел пропускной способности в 10 Гбит/с на один световой луч определенной длины волны в одном оптическом волокне.

Недавно компания Quest Communications проложила оптический кабель с 96 волокнами (48 из них она зарезервировала для собственных нужд), причем по каждому волокну может пропускаться до восьми световых лучей с разной длиной волны. Возможно, что при дальнейшем развитии технологии мультиплексирования число лучей увеличится еще больше, что позволит расширять полосу пропускания без замены кабеля.

Целиком оптические компьютеры появятся через десятилетия, но работа в этом направлении идет сразу на нескольких фронтах. Например, ученые из университета Торонто создали молекулы жидких кристаллов, управляющие светом в фотонном кристалле на базе кремния. Они считают возможным создание оптических ключей и проводников, способных выполнять все функции электронных компьютеров.

Однако прежде чем оптические компьютеры станут массовым продуктом, на оптические компоненты, вероятно, перейдет вся система связи - вплоть до «последней мили» на участке до дома или офиса. В ближайшие 15 лет оптические коммутаторы, повторители, усилители и кабели заменят электрические компоненты.

Квантовые компьютеры

Квантовый компьютер будет состоять из компонентов субатомного размера и работать по принципам квантовой механики. Квантовый мир - очень странное место, в котором объекты могут занимать два разных положения одновременно. Но именно эта странность и открывает новые возможности.

Например, один квантовый бит может принимать несколько значений одновременно, то есть находиться сразу в состояниях «включено», «выключено» и в переходном состоянии. 32 таких бита, называемых q-битами, могут образовать свыше 4 млрд комбинаций - вот истинный пример массово-параллельного компьютера. Однако, чтобы q-биты работали в квантовом устройстве, они должны взаимодействовать между собой. Пока ученым удалось связать друг с другом только три электрона.

Уже есть несколько действующих квантовых компонентов - как запоминающих, так и логических. Теоретически квантовые компьютеры могут состоять из атомов, молекул, атомных частиц или «псевдоатомов». Последний представляет собой четыре квантовых ячейки на кремниевой подложке, образующих квадрат, причем в каждой такой ячейке может находиться по электрону. Когда присутствуют два электрона, силы отталкивания заставляют их размещаться по диагонали. Одна диагональ соответствует логической «1», а вторая - «0». Ряд таких ячеек может служить проводником электронов, так как новые электроны будут выталкивать предыдущие в соседние ячейки. Компьютеру, построенному из таких элементов, не потребуется непрерывная подача энергии. Однажды занесенные в него электроны больше не покинут систему.

Теоретики утверждают, что компьютер, построенный на принципах квантовой механики, будет давать точные ответы, исключая возможность ошибки. Так как в основе квантовых вычислений лежат вероятностные законы, каждый q-бит на самом деле представляет собой и «1», и «0» с разной степенью вероятности. В результате действия этих законов менее вероятные (неправильные) значения практически исключаются.

Насколько близко мы подошли к действующему квантовому компьютеру? Прежде всего необходимо создать элементы проводников, памяти и логики. Кроме того, эти простые элементы нужно заставить взаимодействовать друг с другом. Наконец, нужно встроить узлы в полноценные функциональные чипы и научиться тиражировать их. По оценкам ученных, прототипы таких компьютеров могут появиться уже в 2005 году, а в 2010-2020 годах должно начаться их массовое производство.


Содержание Раздел 1 Введение Введение Ограниченность цифровых ЭВМ Ограниченность цифровых ЭВМ Аналоговые ЭВМ Аналоговые ЭВМ Инфузорное программирование Инфузорное программирование Клеточные компьютеры Клеточные компьютеры Раздел 2 Биочипы Биочипы Биодатчики Биодатчики Оптическая память Оптическая память Первый коммерческий биокомпьютер Первый коммерческий биокомпьютер Заключение Заключение


Раздел 1. Введение Первый биологический компьютер был создан в 1994 году. Он использовал ДНК в качестве носителя информации Основные направления в создании биокомпьютеров: Автоволновые на белковой пленке Автоволновые на белковой пленке Нейронные Нейронные Клеточные Клеточные На основе ДНК На основе ДНК Рис.1. Структура билогического компьютера.


Введение Биокомпьютеры стали новым прикладным направлением, находящемся на пересечении традиционных дисциплин - биологии и науки о компьютерах. В исследованиях, связанных с биокомпьютерами, ученые пытаются найти способ сразу создавать системы с заданными свойствами. Вместо того чтобы склеивать отдельные белковые молекулы или расшифровывать генные коды, клетки будут программироваться на уровне генов для выполнения требуемых функций. Рис.1. Структура билогического компьютера.


Введение Миллилитр ДНК содержит больше информации, чем CD-ROM. Столовая ложка "компьютерного бульона" по производительности в миллионы раз превосходит используемые нами персональные компьютеры. Рис. 3. Спираль молекулы ДНК


Ограниченность цифровых ЭВМ Уже давно идут разговоры о скором достижении предела полупроводниковой технологии производства вычислительных устройств. Уменьшение размера компонентов интегральной схемы до нм приведет к появлению ряда проблем, связанных с физической природой полупроводниковых наночастиц. Во-первых, концентрацию дотирующих полупроводниковый кристалл элементов уже нельзя считать одинаковой во всем объеме. Во-вторых, резко увеличится вероятность туннельной электронной утечки (проще говоря, замыкания) между компонентами интегральной схемы. Следствием этих двух причин станет возросшая доля дефектных чипов и недолговечность их эксплуатации (а, значит, и себестоимость полупроводниковой продукции).


Ограниченность цифровых ЭВМ При анализе нелинейных процессов, далеких от состояния равновесия, приходится прибегать к численному решению. Допустим, мы исследуем динамику системы, состоящей из А частиц В видов, распространенных в какой-то среде и взаимодействующих между собой. Пусть это будет какая-то система химических реакций в живой клетке. В результате взаимодействий частиц разных видов постоянно появляются частицы с новыми качествами. Сегодня способ решения таких задач состоит в прямом численном интегрировании уравнений движения частиц в частных производных для каждой взаимодействующей группы частиц. Расчеты становятся невозможными, как только количество частиц А становится больше 10 6 и это даже с учётом перспективы роста быстродействия цифровых ЭВМ. Но потребность в таких расчётах постоянно возникает в науке и технике, скажем, при решении проблемы удержания в ловушках плотной плазмы, при исследованиях образования кристаллических структур, кинетики химических процессов, биологического морфогенеза, эволюции биологических популяций... Один из путей преодоления этих трудностей переход от дискретной процедуры расчёта к аналоговой.


Принцип действия аналоговой ЭВМ Аналоговая ЭВМ основаны на активных биологических плёнках, использующих специальным образом организованные химические реакции, например автоволновые Первую такую реакцию открыл советский ученый Б.Белоусов в 1956 году. В 1970 году А.Жаботинский и А.Заикин создали химически активную среду, где можно было наблюдать автоволновой химический процессор: тонкий слой раствора через определенные промежутки времени менял свою окраску Автоволновые колебания сопровождают нас повсюду. Это и передача информации в живом организме, и сокращение сердечной мышцы, и процессы активации катализаторов, и начальные этапы возникновение новых форм и структур у простейших организмов Рис.2. Автоволновая реакция Белоусова -Жаботинского


Принцип действия аналоговой ЭВМ Автоволны сохраняют постоянными такие свои характеристики, как период, длина волны, амплитуда и фаза Если мы возьмем молекулу белка размером 3050 A, то увидим, что перед нами активный элемент активной среды, который может находиться в нескольких устойчивых состояниях. Пусть по такой среде движется автоволна со скоростью 0.1 мм/с (хотя скорости автоволн могут быть больше). В пересчёте на цифровой вариант быстродействие устройства составит 10 6 операций в секунду. Если белковые молекулы прикрепить к плёнке, то кусочек её размером 1 см 2 может содержать свыше активных молекул. При движении плоской волны по такой плёнке каждую секунду будет происходить переключений. Определяющим оказывается сам процесс распространения автоволн, картина, возникающая при этом процессе, её трансформация, которой можно управлять с помощью различных "возмущающих" воздействий. Достаточно на "вход" подавать определенные возмущающие воздействия вид образующейся картины автоволновой реакции явится искомым решением задачи. То есть перед нами тот же аналоговый процессор.


Инфузорное программирование Исследователи из голландского «Центра природных вычислений» при Лейденском университете полагают, что, освоив некоторые приемы генетических манипуляций, заимствованные у простейших одноклеточных организмов - ресничных инфузорий, человечество сможет воспользоваться гигантским вычислительным потенциалом, скрытым в молекулах ДНК. Уникальность ресничных в том, что их клетка имеет два ядра: одно большое, «на каждый день», где в отдельных нитях хранятся копии индивидуальных генов; одно большое, «на каждый день», где в отдельных нитях хранятся копии индивидуальных генов; и одно маленькое, хранящее в клубке используемую при репродукции единственную длинную нить ДНК со всеми генами сразу. и одно маленькое, хранящее в клубке используемую при репродукции единственную длинную нить ДНК со всеми генами сразу. В ходе размножения «микроядро» используется для построения «макроядра» нового организма. Происходит«нарезание» ДНК микроядра на короткие фрагменты и их перетасовка, гарантирующие то, что в макроядре непременно окажутся нити с копиями всех генов. Учеными установлено, что способ, с помощью которого создаются эти фрагменты, удивительно напоминает технику «связных списков», издавна применяемую в программировании для поиска и фиксации связей между массивами информации. Более глубокое изучение репродуктивной стратегии ресничных инфузорий при сортировке ДНК открывает новые и интересные методы «зацикливания», сворачивания, исключения и инвертирования последовательностей. Рис. 3. Ресничная инфузория


Клеточные компьютеры Эксперименты исследователей British Telecom показали, что их система, имитирующая поведение колонии водорослей в строматолитах, способна поддерживать работу сети из нескольких тысяч устройств, автоматически управляя большими популяциями отдельных элементов. Строматолиты - карбонатные мелководные постройки в области смешения пресных и морских вод, образованные сине-зелеными и другими водорослями, жившими в протерозое, венде, кембрии и ордовике Основой самоорганизации стало присвоение различных приоритетов рассылаемым по сети пакетам данных. Например, высший приоритет получили «информационные» пакеты, поэтому ими занимаются устройства, имеющие в данный момент наилучшие связи с максимальным числом элементов сети. В British Telecom полагают, что воплощение экспериментальной концепции в реальных продуктах можно ожидать уже через пять- шесть лет. Рис. 4. Сеть строматолитов


Нейронная микросхема Группе учёных из мюнхенского Института биохимии имени Макса Планка удалось создать первый в мире нейрочип. Такая микросхема сочетает в себе электронные элементы и нервные клетки. Взяв нейроны улитки, ученые закрепили их на кремниевом чипе при помощи микроскопических пластмассовых держателей. В итоге каждая клетка оказалась соединена как с соседними клетками, так и с чипом. Подавая через чип на определённую клетку электрические импульсы, можно управлять всей системой Нейрочипы позволят создать более совершенные, способные к обучению компьютеры, а также протезы для замены повреждённых участков мозга и высокочувствительные биосенсоры. Рис.5. Нейрочип Перейти к тестированию


Тест к разделу 1 В каком году был создан первый биокомпьютер?




Сколько переключений в секунду будет происходить при движении автоволны по белковой плёнке




Раздел 2. Биочипы Биочип - анализирующая матрица размером несколько сантиметров из фрагментов ДНК, нанесенных на подложку. Биочипы по природе нанесенного на подложку материала: «олигонуклеотидные», когда наносятся короткие фрагменты ДНК, обычно принадлежащие к одному и тому же гену «олигонуклеотидные», когда наносятся короткие фрагменты ДНК, обычно принадлежащие к одному и тому же гену биочипы на основе кДНК, когда робот наносит длинные фрагменты генов (длиной до 1000 нуклеотидов). биочипы на основе кДНК, когда робот наносит длинные фрагменты генов (длиной до 1000 нуклеотидов).


Биочипы Наиболее популярны в настоящее время биочипы на основе кДНК, ставшие по- настоящему революционной технологией в биомедицине. Определяющей технологической идеей стало применение стеклянной подложки для нанесения генетического материала, что сделало возможным помещать на нее ничтожно малые его количества и очень точно определять местоположение конкретного вида тестируемой ДНК. Для приготовления биочипов стали использоваться роботы, применяемые прежде в микроэлектронике для создания микросхем. Рис. 6. Робот для приготовления биочипов


Биочипы. Технология Молекулы ДНК каждого типа создаются в достаточном количестве копий с помощью процесса, называемого амплификацией; этот процесс также может быть автоматизирован, для чего используется специальный робот - умножитель. После этого полученный генетический материал наносится в заданную точку на стекле и химически к стеклу прикрепляется (иммобилизация). Для иммобилизации генетического материала необходима первичная обработка стекла, а также обработка напечатанного биочипа ультрафиолетом, стимулирующим образование химических связей между стеклом и молекулами ДНК. Рис. 7. Технология биочипов


Постановка эксперимента с биочипом Из клетки выделяется смесь продуктов работы генов, т. е. РНК различных типов, производимых в определенных условиях. Результатом эксперимента и является знание того, продукты каких именно генов появляются в клетке в условиях, интересующих исследователя. Молекулы каждого типа РНК связываются с единственным типом молекул из иммобилизованных на биочипе. Те молекулы, которые не связались, смывают. Для определения того, к каким из иммобилизованных на чипе молекул нашлись «партнеры» в исследуемой клетке, экспериментальная и контрольная РНК метится флуоресцирующими красителями. Рис. 8. Флуоресцентное свечение связанных исследуемой и контрольной РНК (ДНК)


Биопреобразователи Биологические устройства способны преобразовывать энергию самых различных видов химическую, механическую, световую, электрическую, причем в ряде случаев возможно обратное её преобразование, что позволяет использовать одни и те же биопреобразователи для разных измерений. В биологической ЭВМ сверхчувствительные датчики- преобразователи являются источником входной информации


Биопреобразователи Коэффициент полезного действия их чрезвычайно высок и иногда близок к 100% Биодатчики могут реагировать на самые разные вещества, демонстрируя необычайную чувствительность, улавливая в окружающей среде буквально отдельные молекулы. Такой средой могут быть воздух, вода, растворы, прочие жидкости. К тому же они "живучи", то есть обладают повышенной устойчивостью к физико-химическим воздействиям. При окислительных реакциях с участием ферментов (тоже белков) некоторые белки начинают светиться. Явление это называют биолюминесценцией. Изучено оно еще недостаточно, но многое уже известно. Можно, например, использовать в качестве рабочего тела датчика фермент люциферазу, которая реагирует с самыми различными белковыми соединениями. В зависимости от концентрации белка интенсивность свечения меняется, её можно регистрировать.


Белковый биодатчик Допустим, что на "вход" ЭВМ, следящей за ходом какого-нибудь технологического процесса, поступают определенные химические вещества, подлежащие обнаружению и анализу. Датчик должен зарегистрировать их концентрацию и выдать определенный сигнал. При этом молекулы иммобилизованного, присоединенного к подложке белка, улавливая молекулы или атомы других веществ, меняют свои размеры расширяются или сжимаются, что легко фиксируется. Затем датчик "отмывается", сбрасывает присоединенное вещество и возвращается в исходное положение. Рис. 9. Схема работы белкового хемомеханического биопреобразователя: 1 - молекула белка; 2 - ковалентные сшивки; 3 - молекула "постороннего"вещества, на появление которой реагирует датчик, изменяя свои размеры.


Бактериородопсин и машинная память В Институте биологической физики АН СССР более 10 лет назад было выяснено, что белок бактериородопсин может обратимо действовать в растворе и в тонкой пленке как влажной, так и полностью обезвоженной, не утрачивает нужных свойств при нагревании почти до 100°С, устойчив к действию многих химических веществ, электротока и электромагнитных полей. Обезвоженный бактериородопсин может "останавливаться" на определенной стадии фотохимического цикла, сохраняя записанное на нём изображение, а значит, есть возможность использовать его как фотоноситель. По светочувствительности и разрешающей способности молекулы этого белка удачные кандидаты на роль фоторегистрирующего материала. Они легко кристаллизуются, образуя плёнку с шагом решётки около 40 A, а каждая молекула при воздействии на неё лучом лазера меняет свой цвет. Плёнки эти можно использовать многократно, записывая и стирая изображения. В 1978 году удалось получить первую такую пленку. К 1982 году она была усовершенствована.


Запись информации на биоматериал Стало ясно, что на основе материалов с такой высокой разрешающей способностью (ведь цвет меняет единичная молекула!) в сочетании с лазерной техникой, которая способна обеспечить быструю запись и стирание информации, можно создать уникальные запоминающие устройства. Предельная ёмкость памяти таких устройств бит/см 3. Колоссальная цифра! Это значит, что на диске из подобного фотоносителя размером с долгоиграющую пластинку можно записать текст нескольких десятков тысяч книг! Рис. 10. Схема записи информации на биологический фоторегистрирующий материал, созданный на основе белка бактериородопсина.


Первый коммерческий биокомпьютер В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая – обрабатывает информацию и анализирует полученные результаты. Рис. 11. ДНК-компьютер фирмы Olympus Optical Пройти тест


Заключение Сегодня микротехника, создаваемая на базе биологических материалов, делает свои первые шаги. Но, судя по всему, лет через 1015 она будет играть заметную роль в науке и технике. Биокомпьютеры начнут управлять роботами, машинами, они станут неотъемлемыми участниками самых разных производственных процессов в химическом и сельскохозяйственном производстве, медицинской и пищевой промышленности. Без них будет трудно обойтись в научных исследованиях, при решении вопросов охраны окружающей среды. Короче говоря, будущее у этих замечательных устройств самое перспективное!






Для определения связанных друг сдругом молекул ДНК и РНК используют: Меченые электроны Меченые электроны Флуоресцентные красители Флуоресцентные красители Радиоактивное излучение Радиоактивное излучение Лазер Лазер


Что изменяет биодатчик при внешнем воздействии? Величину магнитного поля Величину магнитного поля Размеры или цвет Размеры или цвет Величину магнитного поля или цвет Величину магнитного поля или цвет Размеры и величину электрического поля Размеры и величину электрического поля Емкость памяти на бактериодопсине составляет: бит/см бит/см бит/см бит/см бит/см бит/см бит/см бит/см



В настоящее время, когда каждый новый шаг в совершенствовании полупроводниковых технологий дается со все большим трудом, ученые ищут альтернативные возможности развития вычислительных систем. Естественный интерес ряда исследовательских групп (среди них Оксфордский и Техасский университеты, Массачусетский технологический институт, лаборатории Беркли, Сандия и Рокфеллера) вызвали природные способы хранения и обработки информации в биологических системах. Итогом их изысканий явился (или, точнее, еще только должен явиться) гибрид информационных и молекулярных технологий и биохимии - биокомпьютер. Идут разработки нескольких типов биокомпьютеров, которые базируются на разных биологических процессах. Это, в первую очередь, находящиеся в стадии разработки ДНК- и клеточные биокомпьютеры.

ДНК-компьютеры

Как известно, в живых клетках генетическая информация закодирована в молекуле ДНК (дезоксирибонуклеиновой кислоты). ДНК - это полимер, состоящий из субъединиц, называемых нуклеотидами. Нуклеотид представляет собой комбинацию сахара (дезоксирибозы), фосфата и одного из четырех входящих в состав ДНК азотистых оснований: аденина (А), тимина (Т), гуанина (G) и цитозина (C). Молекула ДНК образует спираль, состоящую из двух цепей, объединенных водородными связями. При этом основание А одной цепи может соединяться водородными связями только с основанием Т другой цепи, а основание G - только с основанием С. То есть, имея одну из цепей ДНК, всегда можно восстановить строение второй. Благодаря этому фундаментальному свойству ДНК, получившему название комплементарности, генетическая информация может точно копироваться и передаваться от материнских клеток к дочерним. Репликация молекулы ДНК происходит за счет работы специального фермента ДНК-полимеразы. Этот фермент скользит вдоль ДНК и синтезирует на ее основе новую молекулу, в которой все основания заменены на соответствующие парные. Причем фермент начинает работать только если к ДНК прикрепился коротенький кусочек-затравка (праймер). В клетках существует также родственная молекуле ДНК молекула матричной рибонуклеиновой кислоты (РНК). Она синтезируется специальным ферментом, использующим в качестве образца одну из цепей ДНК, и комплементарна ей. Именно на молекуле РНК в клетке, как на матрице, с помощью специальных ферментов и вспомогательных факторов происходит синтез белков. Молекула РНК химически устойчивее, чем ДНК, поэтому экспериментаторам с ней работать удобнее. Последовательность нуклеотидов в цепи ДНК/РНК определяет генетический код. Единицей генетического кода - кодоном - является последовательность из трех нуклеотидов.

Ученые решили попытаться по примеру природы использовать молекулы ДНК для хранения и обработки данных в биокомпьютерах.

Первым из них был Леонард Эдлмен из Университета Южной Калифорнии (см.: “Molecular Computation of Solutions to Combinatorial Problems. Science, 1994, № 266, р. 1021), сумевший решить задачу гамильтонова пути. Суть ее в том, чтобы найти маршрут движения с заданными точками старта и финиша между несколькими городами (в данном случае семью), в каждом из которых разрешается побывать только один раз. “Дорожная сеть” представляет собой однонаправленный граф. Эта задача решается прямым перебором, однако при увеличении числа городов сложность ее возрастает экспоненциально. Каждый город Эдлмен идентифицировал уникальной последовательностью из 20 нуклеотидов. Тогда путь между любыми двумя городами будет состоять из второй половины кодирующей последовательности для точки старта и первой половины кодирующей последовательности для точки финиша (молекула ДНК, как и вектор, имеет направление). Синтезировать такие последовательности современная молекулярная аппаратура позволяет очень быстро. В итоге последовательность ДНК с решением составит 140 нуклеотидов (7x20).

Остается только синтезировать и выделить такую молекулу ДНК. Для этого в пробирку помещается около 100 триллионов молекул ДНК, содержащих все возможные 20-нуклеотидные последовательности, кодирующие города и пути между ними. Далее за счет взаимного притяжения нуклеотидов А-Т и G-C отдельные цепочки ДНК сцепляются друг с другом случайным образом, а специальный фермент лигаза сшивает образующиеся короткие молекулы в более крупные образования. При этом синтезируются молекулы ДНК, воспроизводящие все возможные маршруты между городами. Нужно лишь выделить из них те, что соответствуют искомому решению.

Эдлмен решил эту задачу биохимическими методами, последовательно удалив сначала цепочки, которые не начинались с первого города - точки старта - и не заканчивались местом финиша, затем те, что содержали более семи городов или не содержали хотя бы один. Легко понять, что любая из оставшихся после такого отбора молекула ДНК представляет собой решение задачи. (Подробнее см.: Боркус В. “ДНК - основа вычислительных машин”. PC Week/RE, № 29-30/99, с. 29).

Вслед за работой Эдлмена последовали другие. Ллойд Смит из Университета Висконсин решил с помощью ДНК задачу доставки четырех сортов пиццы по четырем адресам, которая подразумевала 16 вариантов ответа. Ученые из Принстонского университета решили комбинаторную шахматную задачу: при помощи РНК нашли правильный ход шахматного коня на доске из девяти клеток (всего их 512 вариантов).

Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Эдлмена. Липтон предложил также способ взлома шифра DES (американский криптографический), трактуемого как своеобразное логическое выражение (www.wisdom.weizmann.ac.il/users/udi/public_html/index.html). Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу “молекулярной машины” в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.

А в 2001 г. Шапиро удалось реализовать модель в реальном биокомпьютере (см. Programmable andautonomous computing machine made of biomoleciles, Nature, 2001, № 44, р. 430), который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК - программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей. В результате скорость вычислений могла достигать миллиарда операций в секунду, а точность - 99,8%.

Пока биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответов: “истина” или “ложь”. В проведенных экспериментах за один цикл все молекулы ДНК параллельно решали единственную задачу. Однако потенциально они могут трудиться одновременно над разными задачами, в то время как традиционные ПК являются, по сути, однозадачными.

В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма.

Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая - обрабатывает информацию и анализирует полученные результаты.

Анализ генов обычно выполняется вручную и требует много времени: при этом формируются многочисленные фрагменты ДНК и контролируется ход химических реакций. “Когда ДНК-компьютинг будет использоваться для генетического анализа, задачи, которые ранее выполнялись в течение трех дней, можно будет решать за шесть часов”, - сказал сотрудник Olympus Optical Сатоши Икута.

В компании надеются поставить технологию генетического анализа на основе ДНК-компьютера на коммерческую основу. Она найдет применение в медицине и фармации. Ученые планируют внедрять молекулярные наноустройства в тело человека для мониторинга состояния его здоровья и синтеза необходимых лекарств.

Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель - создание мощных вычислительных систем на основе ДНК. Попутно исследователи надеются научиться управлять процессами взаимодействия белков и генов. Для этого планируется создать мощный симулятор Bio-SPICE, способный средствами машинной графики визуализировать биомолекулярные процессы. Bio-SPICE планируется развивать на принципах открытых исходников (open source). Программа рассчитана на пять лет.

Клеточные компьютеры

Еще одним интересным направлением является создание клеточных компьютеров. Для этой цели идеально подошли бы бактерии, если бы в их геном удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников. И единожды запрограммировав клетку, можно легко и быстро вырастить тысячи клеток с такой же программой.

В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ.

Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути - входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Потенциал биокомпьютеров очень велик. По сравнению с обычными вычислительными устройствами они имеют ряд уникальных особенностей. Во-первых, они используют не бинарный, а тернарный код (так как информация в них кодируется тройками нуклеотидов). Во-вторых, поскольку вычисления производятся путем одновременного вступления в реакцию триллионов молекул ДНК, они могут выполнять до 1014 операций в секунду (правда, извлечение результатов вычислений предусматривает несколько этапов очень тщательного биохимического анализа и осуществляется гораздо медленнее). В-третьих, вычислительные устройства на основе ДНК хранят данные с плотностью, в триллионы раз превышающей показатели оптических дисков. И наконец, ДНК-компьютеры имеют исключительно низкое энергопотребление.

Однако в разработке биокомпьютеров ученые столкнулись с целым рядом серьезных проблем. Первая связана со считыванием результата - современные способы секвенирования (определения кодирующей последовательности) не совершенны: нельзя за один раз секвенировать цепочки длиной хотя бы в несколько тысяч оснований. Кроме того, это весьма дорогостоящая, сложная и трудоемкая операция.

Вторая проблема - ошибки в вычислениях. Для биологов точность в 1% при синтезе и секвенировании оснований считается очень хорошей. Для ИТ она неприемлема: решения задачи могут потеряться, когда молекулы просто прилипают к стенкам сосудов; нет гарантий, что не возникнут точечные мутации в ДНК, и т. п. И еще - ДНК с течением времени распадаются, и результаты вычислений исчезают на глазах! А клеточные компьютеры работают медленно, и их легко “сбить с толку”. Со всеми этими проблемами ученые активно борются. Насколько успешно - покажет время.

Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученыенадеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК-наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.

Наконец, с помощью клеточных компьютеров станет возможным объединение информационных и биотехнологий. Например, они смогут управлять химическим заводом, регулировать биологические процессы внутри человеческого организма, производить гормоны и лекарственные вещества и доставлять к определенному органу необходимую дозу лекарств.

На протяжении многих лет ученые пытаются превратить живые клетки в компьютеры. Эта цель вполне логична: клетки умеют хранить информацию, данный механизм чем-то напоминает всем известную память. Поведение клеток строго соответствует внутренней программе, которая определяет, каким должен быть ответ на различные стимулы. Кроме того, клетки с поразительной скоростью могут выполнять определенные операции.

Каждая клетка - это достаточно сложная в физическом смысле структура, которая теоретически способна самостоятельно выполнять роль достаточно мощного вычислительного блока. В то же время клетки очень малы, в самые крошечные физические пространства их можно "упаковывать" миллионами. На практике программировать поведение клетки ничуть не сложнее, чем программировать поведение цифрового компьютера.

Ученые из Массачусетского технологического института (MIT) вплотную занялись изучением возможностей, которые таят в себе так называемые "биологические" компьютеры, созданные на основе живых клеток. Следует отметить, что исследований на данную тему было проведено в MIT уже достаточно. В 2013 году эта же группа ученых приступила к исследованиям, которые явились основой для разработки биологической "машины состояний".

Конечный автомат (или машина состояний) является наиболее понятной (хотя и не обязательно простой) формой компьютера или компьютерной модели. Такая машина управляет потоком каких-либо команд. Список команд конечного состояния машины строго определен, переход между состояниями может осуществляться с помощью ввода переменных. Классический пример конечного автомата - это всем известные торговые автоматы.

В своей работе ученые их Массачусетского технологического института используют штамм e.coli. Его немного изменили, чтобы он мог подстраиваться под специальные "последовательности-мишени" по всему геному. Ученые используют определенную комбинацию химических сигналов, старых и добрых методов генной инженерии, применяемых для того, чтобы заставить клетку выпустить конкретную "рекомбиназу" - тип фермента, который может инвертировать ориентацию запрограммированного участка ДНК или полностью его удалить. Рекомбинаторное действие ферментов и их взаимодействие с короткими последовательностями-мишенями как раз и составляет основу "вычислительной" способности биологических клеток.

В качестве переменной служит, вероятно, определенный химический агент. В ответ на ввод этого агента рекомбиназа будет или удалять его, или инвертировать связанную с ним часть генома. А самое главное состоит в том, что часть генома сама содержит цели, которые далее диктуют варианты рекомбинаторных связей. Таким образом, действие любой рекомбиназы меняет окружающие условия, благодаря которым следующая рекомбиназа будет активирована и тоже, в свою очередь, внесет свои изменения при взаимодействии с геномом.

Цепь ответов на введение каждой новой переменной должна быть сохранена в бактериальной последовательности ДНК. Извлечь ее можно себе с помощью секвенирования генома. В своей исследовательской работе ученые используют специально окрашенный флуоресцентный белок. Он наглядно показывает последовательность состояний клетки режиме реального времени. При этом никаких разночтений быть уже не может. В экспериментальной биологической машине состояний задействованы только три флуоресцентных цвета - красный, зеленый и синий. Они легко различимы и позволяют легко дифференцировать состояние клетки.

Клетки изначально поддаются программированию, поэтому в геноме и хранится столь обширная биологическая информация. Создать компьютер на основе клеток позволяют глубокие знания давно использующихся методов исследования внутриклеточных биологических механизмов. Но здесь возникает один вопрос. Что можно делать с программируемой клеткой или, в идеале, с взаимосвязанной группой клеток? Иными словами: у нас уже есть компьютеры. Почему стоит снова "изобретать колесо", но на основе живой клетки?

Экспрессия гена происходит очень быстро, но современные компьютерные процессоры функционируют быстрее. И даже с применением флуоресцентных маркеров процесс считывания информации с клетки никогда не будет столь же эффективным, как передача электрических импульсов проводным способом.


Но в наш век одним из главных преимуществ различных форм жизни над современной техникой является энергоэффективность. На то, чтобы обеспечить функционирование алгоритмов искусственного интеллекта каждый год требуется много гигаватт-часов электроэнергии. Гораздо легче и доступнее решить проблему энергопотребления, если использовать достижения биотехнологии. Возможно, скорость вычислений e.coli будет равна только одной тысячной от того, на что способен дата-центр компании Google. Но электроснабжение каждого суперкомпьютера в этом дата-центре обходится в миллионы долларов каждый год, в то время как биокомпьютер работает всего лишь за счет дешевого естественного процесса метаболизма.

Нужно учитывать, что биологические клетки отличаются от компьютеров. Пока в принципе не известно, что можно сделать на программном уровне с целой сетью миллионов или даже миллиардов простых биологических машин. Даже если каждый компьютер в этой сети будет относительно медленным или ограниченным, технология все равно может предложить эффективные способы их применения. Например, они могут использоваться для маршрутизации миллионов пакетов данных или для надежного шифрования этих данных, которое станет защитным барьером в информационной сети какой-либо державы.

На данный момент никто не знает, будут ли простые биологические машины развиваться дальше, смогут ли они произвести на современные полупроводниковые системы исторически важное воздействие. Возможно, особого технологического переворота не получится, но потенциал на будущее у биологических компьютеров, конечно же, есть.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш