Силикаты примеры. Силикаты природные. Зависимость облика и свойств от структуры

Силикаты и алюмосиликаты объединяют около 800 минералов, многим из которых принадлежит огромное породообразующее значение, ведь представители этого класса составляют до 80 % массы земной коры. Если же к числу силикатов относить и кварц, являющийся типичным силикатом по строению кристаллической решетки (но не по химическому составу), то доля превысит 90 %. Происхождение минералов данного класса разное. Основу кристаллической решетки в минералах составляет кремний-кислородный тетраэдр. В зависимости от сочетаний этих тетраэдров, все силикаты разделяются на большое количество групп.

Островные силикаты сложены изолированными тетраэдрами. Самый распространенный представитель, имеющий огромное породообразующее значение – магматического происхождения оливин (MgFe) 2 .

Цепочечные силикаты объединяют минералы группы пироксенов , в которых тетраэдры соединены в непрерывные цепочки. Наиболее распространен породообразующий алюмосиликат авгит
(Ca, Na) (Mg, Fe 2+ , Al, Fe 3+) [(Si, Al) 2 O 6 ].

Кольцевые силикаты обладают соединенными в замкнутые кольца тетраэдрами. Представитель – берилл Be 3 Al 2 .

Ленточные силикаты содержат соединенные в обособленные ленты тетраэдры. Здесь выделяется группа амфиболов – минералов с непостоянным химическим составом, среди которых наиболее распространен породообразующий минерал роговая обманка .

Листовые (слоевые) силикаты представлены минералами, в которых тетраэдры объединены в ленты, образующие единый непрерывный слой. Наибольшим распространением среди них пользуются такие породообразующие минералы, как слюды : бесцветный мусковит.

KAl 2 (OH) 2 и его мелкочешуйчатая разновидность серицит , черный биотит K(Mg, Fe) 3 (OH, F) 2 . Кроме них часто встречаются метаморфического происхождения серпентин (змеевик) Mg 6 (OH) 8 , тальк Mg 3 (OH) 2 и непостоянного состава хлориты . Эти минералы возникают при воздействии на ультраосновные породы горячих растворов и газов. Другая часть листовых силикатов образуется в результате гипергенеза – выветривания содержащих полевые шпаты и слюды магматических и метаморфических пород. Так возникают глинистые минералы каолин Al 4 (OH) 8 , монтмориллонит (Mg 3 , Al 2) (OH) 2 x nH 2 O, бейделлит Al 2 (OH) 2 x nH 2 O, нонтронит (Fe, Al 2) (OH) 2 x nH 2 O, а также гидрослюды – минералы непостоянного состава. Среди листовых силикатов выделяется также глауконит – водный алюмосиликат K, Fe, Al, образующийся в шельфовой зоне на глубинах 200 – 300 м.

Каркасные силикаты представлены группами полевых шпатов и нефелина. Важнейшей из них является группа полевых шпатов , доля которых в массе земной коре достигает 50 %. Каркас полевых шпатов создан тетраэдрами, сцепленными всеми четырьмя вершинами. Группа подразделяется на калиево -натриевые и кальциево -натриевые полевые шпаты. Первые представлены ортоклазом K. Вторые – разновидностями плагиоклазов , в которых наблюдается последовательное уменьшение содержания SiO 2 . В соответствии с этим плагиоклазы включают ряд минералов: от натриевого (кислого по составу) альбита Na – его сокращенная запись Ab, до кальциевого (основного) анортита Ca – его сокращенная запись An. Промежуточное расположение занимает кальциево-натриевый (средний по составу) лабрадор Ab 50 An 50 – иризирующий плагиоклаз. Помимо полевых шпатов, в числе каркасных силикатов выделяют группу нефелина Na 3 K 4 – породообразующего алюмосиликата магматического и пегматитового происхождения.



15. Минералы, применяемые в строительстве. Их свойства.

В строительстве: кальцит, доломит, гипс

Свойства кальцита: Название кальцит произошло от греческого слова, означающего «известь». Другие названия минерала и его разновидностей: каменный цветок, каменная роза, бумажный шпат, сталактит, сталагмит, небесный камень, папиршпат, антраконит.

Физические свойства :
а) цвет: белый, желтый, розовый, зеленоватый,
б) твердость: 3,
в) плотность: 2,6 - 2,8 г/см3,
г) степень прозрачности: прозрачный (исландский шпат), просвечивающий, непрозрачный,
д) черта - белая, светло-серая,
е) блеск - стеклянный, матовый,
ж) излом - ступенчатый,
з) сингония - тригональная, дитригонально-скаленоэдрический вид симметрии,
и) спайность-совершенная по (1011).

Основные месторождения . Дальнегорское месторождение в Приморье, Эвенкия.

Свойства доломита:

Доломит является природным карбонатом магния и кальция. Своему названию этот минерал обязан французскому минералогу и химику Д. Доломье (1750-1801), которым он и был открыт в 1791 году во время путешествия по Альпам. Доломит образует ромбоэдрические кристаллы имеющие белый, сероватый или блекло-желтый цвет. Грани его часто искривлены. Доломит внешне очень напоминает известняк и чтобы совершенно быть уверенным, что этот минерал именно доломит, нужно подвергнуть его химическому анализу. Это тем более необходимо еще и по той причине, что в природе известняк так же часто встречается как и доломит.

О происхождении доломита у геологов существует несколько версий, но к единственно верному мнению они пока что не пришли. Горную породу доломит широко используют в строительстве. Из доломита изготовляют огнеупорные кирпичи, удобрения. Известные залежи этого минерала находятся в Канаде, США, Испании, Швейцарии и Мексике.

Свойства гипс:

Строительным гипсом называют воздушное вяжущее вещество, представляющее собой продукт, состоящий преимущественно из полуводного гипса. Получают его термической обработкой гипсового камня и помолом до или после этой обработки. Известны и другие продукты, состоящие из полуводного гипса, например формовочный гипс, технический (высокопрочный) и медицинский гипс.

Основным процессом при термической обработке двуводного гипса является его дегидратация.

Для превращения 1 кг двуводного гипса в полуводный теоретически требуется затратить 582 кДж.

При повышении температуры обжига до 2200C гипс постепенно переходит в безводный, образуя растворимый ангидрит, который при вылеживании на воздухе поглощает влагу и превращается в полугидрат. При дальнейшем повышении температуры растворимый ангидрит переходит в нерастворимый. Учитывая необходимость ускорения процесса, обжиг строительного гипса на заводах ведут обычно при температуре 140-1900C Это - температура обжигаемого материала, а не печного пространства; температура печного пространства может быть значительно выше.

Строительный гипс может содержать наряду с полуводным и некоторое количество растворимого ангидрита, а в отдельных случаях также примеси нерастворимого ангидрита и исходного двуводного гипса. Присутствие двуводного гипса ускоряет схватывание из-за того, что он создает центры кристаллизации при затворении строительного гипса водой.

Как строительный, так и высокопрочный гипс маркируются по прочности образцов, изготовленных из раствора пластичной консистенции без песка (1:0). Начало схватывания строительного гипса должно наступать не ранее 4 мин, а конец схватывания - не ранее 6 мин и не позднее 30 мин после начала затворения гипсового теста.

Приведенные данные показывают, что полуводный гипс всех видов быстро твердеет, достигая в сравнительно короткий срок конечной прочности. Тонкость помела рассматриваемых гипсовых вяжущих сравнительно невелика, а сроки схватывания весьма коротки. Учитывая, что затворенные водой вяжущие необходимо использовать до начала схватывания, в полуводный гипс вводят различные замедлители схватывания, как-то: кератиновый (продукт обработки копыт и несортовых рогов щелочным раствором), известково-клеевой замедлитель, сульфитно-спиртовую барду и некоторые другие вещества. Быстрые сроки схватывания необходимы при заводском изготовлении из строительного гипса различных строительных изделий. В этом случае приходится даже добавлять ускорители схватывания в виде двуводного гипса, поваренной соли, сульфата натрия и некоторых других веществ.

Для превращения в процессе твердения полуводного гипса в двугидрат теоретически необходимо только 18,6% воды. Практически же для получения из строительного и формовочного гипса теста нормальной густоты требуется 60-80% воды, а из высокопрочного - 35-45% воды. Избыточное количество воды остается в порах затвердевшего материала и в дальнейшем постепенно испаряется, вызывая характерную для гипсовых изделий пористость.

В высокопрочном гипсе более крупные, чем у обычного гипса, кристаллы неволокнистого строения, поэтому водопотребность его меньше. Уменьшение водопотребности и вызываемое этим повышение прочности гипса имеют значение только для литых изделий, когда же применяют массу жесткой консистенции, как, например, при вибрировании, для получения материала нужной консистенции из обычного и высокопрочного гипса требуется примерно равное количество воды, вследствие чего изделия из гипса обоих видов имеют приблизительно одинаковую прочность.

Строительный гипс применяют главным образом для производства гипсовых строительных деталей (перегородочных плит и панелей, сухой штукатурки, стеновых гипсобетонный камней и ряда других), а также для изготовления известково-гипсовых растворов для штукатурных работ. Гипс можно применять и в чистом виде без заполнителей, так как при его твердении не образуется трещин. В известково-гипсовых растворах известь замедляет схватывание и увеличивает пластичность раствора. Для того чтобы уменьшить расход вяжущего и избежать вызываемого известью растрескивания, к известково-гипсовым растворам добавляют песок или другой заполнитель.

Технический и медицинский гипс отличаются от строительного более тонким помолом, иными сроками схватывания и большей прочностью.


16. Определение горной породы. Какие признаки лежат в основе классификации горных пород?

Горные породы - главный источник получения строительных материалов. Горные породы используют в промышленности строительных материалов как сырье для изготовления керамики, стекла, теплоизоляционных и других изделий, а также для производства неорганических вяжущих веществ - цементов, извести и гипсовых.

Силикаты и алюмосиликаты – наиболее распространенный и разнообразный класс минералов. Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются Si, O, Al, Fe 2+ , Fe 3+ , Mg, Mn, Ca, Na, K, а также Li, B, Be, Zr, Ti, F, H, в виде (OH)− или H 2 O и др.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. Из них сложена основная масса горных пород: полевые шпаты, кварц, слюды, роговые обманки, пироксены, оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц, на долю которого приходится около 12 % от всех минералов.

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом.

Поэтому в основе систематики силикатов – кремнекислородный тетраэдр -4 . В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

В зависимости от структуры, которую они образуют, соединяясь друг с другом, все силикаты делятся на островные, слоевые, ленточные, цепочечные и каркасные.

Схемы расположения кремния и кислорода в силикатах

А-з — островные силикаты: а — силикаты с изолированными кремнекислородными тетраэдрами; б — силикаты со сдвоенными кремнекислородными тетраэдрами; в, г — силикаты кольцевой структуры; д, е — силикаты с непрерывными цепочками из кремнекислородных тетраэдров (цепочечные силикаты); ж — силикаты с непрерывными поясами на кремнекислородных тетраэдрах (поясные силикаты); а — каркас из кремнекислородных тетраэдров (каркасные силикаты). Черный кружок — кремний, светлый кружок — кислород

оливин

топаз

гранаты

берилл

турмалин

Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров:

а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а ). Их радикал 4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы;

б) островные силикаты с добавочными анионами О 2− , ОН − , F − и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б ), остальные связаны с катионами.

г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г ), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 18− . Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот, цоизит, ортит, родонит, берилл, кордиерит, турмалин и др.

Цепочечные силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е ). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители: пироксены ромбические (энстатит, гиперстен) и моноклинные (диопсид, содалит, геденбергит, авгит, эгирин, сподумен, волластонит, силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.

энстатит

гиперстен

диопсид

содалит

геденбергит

авгит

эгирин

сподумен

Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж ). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов.

Цепочечные и ленточные – тетраэдры образуют цепочки одинарные или сдвоенные (ленты).

Цепочечные – имеют общий радикал 4- и включают группу пироксенов .

Пироксены являются исключительно распространенными минералами. Они слагают примерно 4 % массы континентальной земной коры. В океанической коре и мантии их роль значительно больше.

В поверхностных условиях пироксены неустойчивы. При метаморфизме пироксены появляются в эпидот-амфиболитовой фракции. С увеличением температуры они устойчивы вплоть до полного плавления пород. С увеличением давления меняется состав пироксенов, но не убывает их роль в горных породах. Они исчезают лишь на глубинах больше 200 км.

Пироксены встречаются почти во всех типах земных пород. Одно из объяснений этого факта заключается в том, что средний состав земной коры близок к составу авгитового пироксена.

Подавляющее большинство пироксенов не представляет никакого практического интереса. Только сподумен является главным рудным минералом лития, а некоторые редкие разновидности пироксенов применяются в ювелирно-поделочном деле. Наиболее часто для изготовления ювелирных украшений применяется жадеит , и жадеитовые породы. Он был священным камнем у некоторых народов Южной Америки - майя и ольмеков.

Также применяется хромдиопсид - ярко-зеленый диопсид с небольшой примесью хрома. Хромдиопсид типичен для мантийных лерцолитов и кимберлитовые трубки являются важным источником этого минерала. Другой тип месторождений хромдиопсида связан с пегматоидными обособлениями в дунитах.

Серьёзным недостатком хромдиопсида является его относительно низкая твердость. Это значительно ограничивает применение в ювелирном деле этого редкого камня.

Иногда гранятся диопсиды слюдянки, которые имеют большую коллекционную ценность. Кроме того, высоко ценятся редкие звездчатые диопсиды из южной Индии.

Ленточные силикаты с радикалом 6 – объединяют минералы группы амфиболов . Представители: тремолит, актинолит, жадеит, роговая обманка.


Амфиболы
(от др.-греч. ἀμφίβολος - двусмысленный, неясный - из-за сложного переменного состава) - группа породообразующих минералов подкласса ленточных силикатов. Общая формула: R 7 2 (OH) 2 , где R = Ca, Mg, Fe.

Амфиболы имеют вытянутый, вплоть до игольчатого, реже короткостолбчатый облик кристаллов, совершенную призматическую спайность, псевдогексагональную форму поперечного сечения кристаллов. Для многих амфиболов характерны асбестовидные агрегаты. Могут образовывать также плотные массы (например, нефрит).

Амфиболы являются более поздними, чем пироксены, продуктами магматической кристаллизации и более ранними минералами метаморфизма. Роговая обманка, тремолит, актинолит - типичные минералы скарнов. Поздними гидротермальными процессами амфиболы изменяются в биотит, хлорит и серпентин. В поверхностных условиях переходят в монтмориллонит, нонтронит, галлуазит, карбонаты, лимонит, опал.

Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з ). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители: тальк, серпентин, хризотил-асбест, ревдинскит, палыгорскит, слюды (мусковит, флогопит, биотит), гидрослюды (вермикулит, глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит, хризоколла, гарниерит и др.), мурманит.

img class=»alignleft wp-image-17146″ alt=»hromdiopsid» src=»http://сайт/wp-content/uploads/2014/07/hromdiopsid-300×225.jpg» width=»240″ height=»180″ //sub

серпентин

хризотил-асбест

мусковит

биотит

Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и ). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца. На этом основании его относят не к окислам, а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности, что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

В каркасных силикатах тетраэдры соединяются между собой всеми атомами кислорода, образуя каркас с радикалом . В эту группу входят – полевые шпаты и плагиоклазы .



Полевые шпаты
объединяют минералы с катионами Na и K. Это минералы микроклин и ортоклаз.

Полевые шпаты объединяют минералы с катионами Na и K. Это минералы микроклин и ортоклаз. В плагиоклазах в качестве катионов выступают Са и Na, при этом соотношение между этими элементами не постоянно. Поэтому плагиоклазы представляют собой изоморфный ряд минералов: альбит – олигоклаз – андезин – лабрадор – битовнит – анортит. От альбита к анортиту увеличивается содержание Са.

Большинство полевых шпатов - представители твёрдых растворов тройной системы изоморфного ряда К - Na - Са, конечные члены которой соответственно - ортоклаз (Or), альбит (Ab), анортит (An). Выделяют два изоморфных ряда: альбит (Ab) - ортоклаз (Or) и альбит (Ab) - анортит (An). Минералы первого из них могут содержать не более 10 % An, а второго - не более 10 % Or. Лишь в натриевых полевых шпатах, близких к Ab, растворимость Or и An возрастает. Члены первого ряда называются щелочными (К-Na полевые шпаты), второго - плагиоклазами (Са-Na полевые шпаты). Непрерывность ряда Ab-Or проявляется лишь при высоких температурах, при низких - происходит разрыв смесимости с образованием пертитов.

Наряду с санидином, являющимся высокотемпературным, выделяются низкотемпературные калиевые полевые шпаты - микроклин и ортоклаз.

Полевые шпаты - наиболее распространенные породообразующие минералы, они составляют около 50 % от массы земной коры.

Слоевые силикаты – представляют непрерывные слои, где тетраэдры связаны ионами кислорода, а между слоями связь осуществляется через катионы. Общий радикал в формуле 4– Эта группа объединяет минералы-слюды: биотит, тальк, мусковит, серпентин.

В составе катионов в силикатах наиболее часто присутствуют: Mg, Fe, Mn, Al, Ti, Ca, K, Na, Be, реже Zr, Cr, B, Zn редкие и радиоактивные элементы. Необходимо отметить, что часть кремния в тетраэдрах может замещаться Al и тогда мы относим минералы к алюмосиликатам.

Сложный химический состав и разнообразие кристаллической структуры в сочетании дают большой разброс показателей физических свойств. Даже на примере шкалы Мооса видно, что твердость у силикатов от 1 до 9.

Спайность от весьма совершенной до несовершенной. Об окраске и говорить нечего – широчайший спектр цветов и оттенков.

В тоже время, внутри каждой структурной группы свойства близки и всегда есть какой-то один или два признака, по которым можно определить минерал. Например, слюды определяют по спайности и низкой твердости.

Часто силикаты группируются по окраске – темноокрашенные, светлоокрашенные. Особенно широко это применяется к силикатам – породообразующим минералам.

Силикаты образуются в основном при формировании магматических и метаморфических пород в эндогенных процессах. Большая группа глинистых минералов (каолин и др.) образуется в экзогенных условиях при выветривании силикатных горных пород.

Многие силикаты являются полезными ископаемыми. Это строительные материалы, облицовочные, поделочные и драгоценные камни (топаз, гранаты, изумруд, турмалин и др.), руды металлов (Ве, Zr, Al) и не, это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, металлов (В), редкоземельных элементов. Они находят применение в резиновой, бумажной промышленности, как огнеупоры и керамическое сырье.

СИЛИКАТЫ. ОБЩАЯ ХАРАКТЕРИСТИКА

На долю силикатов приходится примерно одна треть всего числа известных в природе минеральных видов. Силикаты являются породообразующими минералами всех магматических горных пород и подавляющего большинства метаморфических горных пород. Силикаты входят в состав осадочных горных пород, являясь для многих из них также породообразующими минералами, например, для различных глин.

Значительную роль силикаты играют в минеральном составе почти всех месторождений полезных ископаемых, в ряде случаев являясь носителями ценных металлов - Ni, Zn, Be, Zr, Li, Cs, Rb, U, TR и др. Силикаты широко представляют и неметаллические полезные ископаемые – асбест, каолин, отбеливающие глины, полевые шпаты (как сырье для огнеупоров), сырье для керамики, различные строительные материалы. Ряд силикатов - изумруд, аквамарин, турмалин, топаз, родонит, нефрит и др., издавна используется в качестве драгоценных и поделочных камней.

Главнейшие элементы, входящие в состав силикатов: Na, К, Li, Ca, Mg, Fe 2+ , Mn 2+ , Be, Si, Zr, Ti, Al, Fe 3+ , а также О 2 , F, H в виде H 1+ , [ОН] 1- и H 2 O.

Многие элементы, такие как Rb, Cs, Ba, Sr, Pb, Zn, Ni, Со, Cu, Bi, Sb, Cr, V, Sc, Y, TR, Th, Sn, U, Nb, S, Cl, С в виде 2- , P и др., присутствуют в силикатах в отдельных относительно редких минеральных видах.

Рентгенометрические исследования силикатов позволили установить особенности кристаллических структур этих соединений.

Рис. 1 Типы групп кремнекислородных тетраэдров (в двух изображениях): а - единичный изолированный тетраэдр 4- ; б - группа из двух связанных общей вершиной тетраэдров [ Si 2 O 7 ] 6- ; в - группа из трех тетраэдров, связанных в кольцо 6- ; г - группа из четырех тетраэдров, связанных в кольцо 8- ; д - группа из шести тетраэдров, связанных в кольцо 12-

Во всех силикатах каждый ион Si 4+ всегда находится в окружении четырех ионов

О 2- , располагающихся в углах по тетраэдру вокруг него (рис. 1). Химическая связь ионов кислорода с кремнием гораздо сильнее, чем связь кислорода с другими катионами в кристаллических структурах силикатов. Таким образом, кремнекислородный тетраэдр, т. е. группа 4- , является основной структурной единицей всех силикатов.

Кремнекислородные тетраэдры в кристаллических решетках силикатов могут находиться либо в виде изолированных друг от друга структурных единиц 4- , либо сочленяться друг с другом разными способами, образуя сложные комплексные анионные радикалы. При этом сочленение совершается только через углы тетраэдров с образованием общих вершин, но не через ребра или грани. Наиболее полный случай такого сочленения имеет место тогда, когда все четыре вершины каждого тетраэдра одновременно являются общими и для окружающих четырех тетраэдров SiO 4 . Такой случай процессами минералообразования реализован для кристаллических структур минералов группы кварца (класс минералов – окислы и гидроокислы - кварц, халцедон и т.д.) с общей химической формулой SiO 2 .

В зависимости от того как происходит сочленение кремнекислородных тетраэдров, образуются различные формы комплексных анионных радикалов:

Комплексный анион представлен изолированными тетраэдрами 4- (рис. 1,а), удерживаемыми в решетке с помощью катионов других металлов. Общий отрицательный заряд каждой такой группы равен четырем (каждый ион кислорода отдает кремнию лишь половину своего отрицательного заряда, равного двум). Этот тип структуры широко представлен в силикатах, например, цирконе Zr, форстерите Mg 2 , гранате Ca 3 Al 2 3 и т. д. В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к островным силикатам ;

Комплексный анионный радикал представлен изолированными группами 6- (рис. 1,б), состоящими из двух связанных друг с другом кремнекислородных тетраэдров SiO 4 с одной общей вершиной. Легко подсчитать, что общий отрицательный заряд этого комплекса равен шести. Кислородный ион, располагающийся в общей вершине, нейтрален. Следовательно, активные кислородные ионы, остаточные отрицательные заряды которых в кристаллической структуре нейтрализуются катионами металлов, располагаются на двух противоположных друг другу концах анионного комплекса. Силикаты, обладающие такими комплексными анионами, не многочисленны. Например, очень редкий минерал тортвейтит - Sc 2 ;

Комплексный анион состоит из трех, четырех, шести кремнекислородных тетраэдров, связанных друг с другом уже через две общие вершины в замкнутые плоские изолированные кольца (рис. 1в, г и д). Комплексные анионы в этих случаях представлены соответственно: 6- , 8- и 12- . Общая валентность каждого такого радикала определяется числом наружных кислородных ионов, каждый из которых обладает одной некомпенсированной отрицательной валентностью. Примерами являются минералы берилл - Be 3 Al 2 и турмалин (химический состав непостоянный, варьирует в зависимости от геохимических условий образования). В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к кольцевым силикатам ;

Комплексные анионы представлены одномерными непрерывными цепочками связанных друг с другом кремнекислородных тетраэдров. В верхней части рис. 2 изображена простая одинарная цепочка. В этой цепочке каждый тетраэдр связан с соседними тетраэдрами двумя углами с инертными ионами кислорода в этих углах. Два активных кислородных иона в каждом тетраэдре расположены таким образом, что один из них находится над ионом Si (в плоскости рисунка), а другой «откинут» попеременно то в верхнюю, то в нижнюю стороны. Между такими линейно-вытянутыми радикалами располагаются катионы металлов.

Рис. 2 Типы одномерных непрерывных цепочек кремнекислородных тетраэдров (в двух изображениях А и Б): а - одинарная цепочка; б - двойная цепочка (лента). Вершины тетраэдров, направленные к наблюдателю, утолщены

В каждом кремнекислородном тетраэдре два иона кислорода целиком принадлежат иону Si, а два остальных (инертные) как бы делятся пополам между соседними тетраэдрами. В сумме на каждый ион Si приходится три иона кислорода, из которых два имеют по одной свободной валентности. Таким образом, состав и валентность таких радикалов могут быть выражены в следующем виде: n 2- , где n = ∞, что означает полимеризацию. Такое строение кислотного радикала характерно для группы пироксенов с общей формулой R 2+ . Однако в природе кристаллических структур с изолированной группой SiO 3 не встречается. Природа реализует данную структуру в виде длины цепочки одного периода в 5,25 Å (рис. 2). Отсюда формула аниона пироксенов - . В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к цепочечным силикатам.

В нижней части (рис. 2,б) приведена лента непрерывно связанных кремнекислородных тетраэдров. Лента может быть получена из одинарной цепочки путем ее отражения в плоскости, перпендикулярной к чертежу и параллельной оси цепочки. Такие ленточные сочленения кремнекислородных тетраэдров характерны для группы амфиболов. Нетрудно подсчитать, что состав и валентность таких радикалов в пределах одного периода 5,25 Å, выражаются формулой 6- . В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к ленточным силикатам ;

Комплексные анионы представлены двумерными слоями кремнекислородных тетраэдров. Строение таких слоистых радикалов характеризуется тем, что тетраэдры соединяются друг с другом тремя общими вершинами и образуют плоский слой непрерывной протяженности в двух измерениях (рис. 3) наподобие гексагональной сетки. Активные ионы кислорода (по одному от каждого тетраэдра) направлены все в одну сторону (вверх или вниз от плоскости чертежа), образуя особый активный лист в слое тетраэдров. Химическая формула такого анионного слоя - 2- . Каждый такой слой активными ионами кислорода через катионы металлов связан с другими, совершенно аналогичными по строению слоями. Примерами кристаллических структур являются структуры пластинчатых минералов, обладающих весьма совершенной спайностью в одном направлении (слюды, тальк, хлориты и т. д.). В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к слоистым (слоевым, листовым) силикатам ;

Рис. 3 Лист кремнекислородных тетраэдров гексагонального строения (в двух изображениях А и Б)

Комплексные анионы образованы непрерывными трехмерными каркасами кремнекислородных тетраэдров, у которых каждый ион кислорода принадлежит одновременно двум тетраэдрам. Нет ни одного угла тетраэдра с активным кислородным ионом. Как уже указывалось, примером таких каркасов являются минералы группы кварца с формулой SiO 2 . Однако подобные же кристаллические решетки наблюдаются и в силикатах (рис. 4). При этом часть ионов Si 4+ всегда бывает заменена ионами Al 3+ с тем же координационным числом (роль алюминия в силикатах рассмотрим немного позднее). Химическая формула комплексных анионов каркасного строения в общем виде может быть выражена в виде радикала [(Si n-x Al x)O 2n ] x- . Вследствие того что какая-то часть ионов Si 4+ заменена ионами Al 3+ (при сохранении общего числа кислородных ионов), этот радикал обладает некоторым остаточным отрицательным зарядом. Примером могут служить полевые шпаты - Na, Ca и многие другие минералы. В современной классификации минералы с охарактеризованным строение кристаллической структуры относятся к каркасным силикатам .

Рис. 4 Алюмокремнекислородный каркас в кристаллической структуре каркасных силикатов

В кристаллической структуре силикатов часть ионов Si в кремнекислородных тетраэдрах нередко бывает заменена ионами Al с координационным числом 4.В этом случае образуются минералы, называемые алюмосиликатами . Алюмосиликаты встречаются в цепочечных, ленточных, слоистых и широко распространены в каркасных силикатах.

Al 3+ в конституции силикатов играет двоякую роль:

Как компонент комплексных анионных радикалов, находясь, так же как и Si 4+ , в четверном окружении ионов кислорода. В этом случае координационное число Al 3+ равно 4 ;

Как отдельный катион, один или вместе с катионами других металлов, нейтрализующими отрицательный заряд анионов. В этом случае координационное число Al 3+ равно 6. В терминологии следует различать образование алюмосиликатов и силикатов алюминия .

Известно немало случаев, когда в одном и том же силикате одни ионы Al входят в состав комплексного аниона, другие находятся среди катионов, занимающих промежутки между отрицательно заряженными комплексными анионными радикалами. Например, широко распространенный минерал роговая обманка (ленточные алюмосиликаты) (Ca,Na) 2-3 (Mg,Al) 5 [(Si,Al) 4 O 11 ] 2 [О,OH] 2 . В комплексном радикале этого минерала отношение Al: Si может меняться от 1: 3 до 0.

В состав многих силикатов входят дополнительные анионы: О 2- , [ОН] 1- , F 1- , Cl 1- , 2- и другие, нейтрализующие избыточный положительный заряд катионов.

В состав ряда силикатов входит H 2 O в большинстве случаев цеолитного характера. Молекулы H 2 O обычно весьма слабо удерживаются кристаллическими решетками в пустых промежутках или каналах.

Цеолитная вода - вода, входящая в состав минерала (внутри молекулы), но не входящая в химический состав минерала. Цеолитная вода удаляется из минерала постепенно (не при определенной температуре). Процесс удаления цеолитной воды обратим, т.е. минералы, при соответствующих условиях, восстанавливают ранее находившуюся в них, но утраченную цеолитную воду.

Среди силикатов и алюмосиликатов очень широко распространено явление изоморфизма , т.е. способности веществ различного химического состава образовывать одинаковые кристаллические структуры. Для изоморфных минералов в геологии часто употребляется термин «минералы образуют твердый раствор». При определенных условиях твердые растворы минералов распадаются на отдельные минеральные индивиды.

Для силикатов и алюмосиликатов наряду с изовалентным изоморфизмом широко распространен гетеровалентный изоморфизм . Классическим примером гетеровалентного изоморфизма является ряд плагиоклазов альбит Na - анортит Ca (каркасные алюмосиликаты). Здесь Na 1+ заменяется Ca 2+ . Происходящее при этом увеличение положительного заряда на единицу сопровождается соответствующей заменой в комплексном анионном радикале: один ион Si 4+ заменяется ионом Al 3+ , или, что тоже самое, анион 4- - анионом 5- , т. е. происходит увеличение отрицательного заряда на единицу. Валентность образующегося при гетеровалентном изоморфизме минерала не изменяется, минерал остается электрически нейтральным.

ОСТРОВНЫЕ СИЛИКАТЫ

Островные силикаты образуют, как правило, хорошо ограненные кристаллы, т.е. обладают высокой степенью идиоморфизма. Окраска островных силикатов обычно обусловлена присутствием в их составе элементов-хромофоров - Fe, Mn, Ti и Cr. Кроме того, атомы Fe 2+ , Fe 3+ , в зависимости от соотношения, обусловливают зелёные (гроссуляр, эпидот), коричневые (андрадит, ставролит, титанит) оттенки цвета. Лишь в редких случаях встречаются бесцветные, белые островные силикаты - это химически чистые гроссуляр, форстерит, топаз и др.

Твердость островных силикатов 6 – 8. Из-за большой твердости эти минералы черты не дают (они сами процарапывают фарфор); даже у густо окрашенных минералов черта чуть заметна.

В природе наибольшее распространение имеют минералы группы оливина – породообразующие минералы ультраосновных и основных пород.

КОЛЬЦЕВЫЕ СИЛИКАТЫ

Подкласс кольцевых силикатов объединяет сравнительно небольшое число редких в природе минералов. Среди кольцевых силикатов только два минерала - берилл и турмалин - играют в некоторых случаях роль второстепенных и, иногда, главных минералов месторождений.

Как было указано в общей характеристике силикатов, тип кристаллических структур рассматриваемого подкласса отличается особыми чертами: кристаллические решетки содержат изолированные группы тетраэдров SiO 4 , связанные в кольца, т. е. подкласс характеризуется комплексными радикалами 6- , 12- и др.

ЦЕПОЧЕЧНЫЕ И ЛЕНТОЧНЫЕ СИЛИКАТЫ

Общая характеристика

Главнейшими представителями силикатов данных подклассов являются пироксены (цепочечные) и амфиболы (ленточные). Несмотря на существенное различие в количественных соотношениях составляющих компонентов, пироксены и амфиболы имеют ряд общих характерных черт: аналогичный облик кристаллов, близкие кристаллические структуры, одинаковая степень проявления спайности, много общего в оптических свойствах, близкие плотности, близкая твердость и т. д. Среди катионов в пироксенах и амфиболах представлены главным образом следующие элементы: Mg 2+ , Fe 2+ , Ca 2+ , Na 1+ , иногда Li 1+ , а также Al 3+ , Fe 3+ , а среди анионов: 4- , иногда 5- , а в амфиболах также [ОН] 1- , F -1 и Cl 1- .

Наибольшим распространением в природе пользуются железо-магнезиальные пироксены и амфиболы, являющиеся важнейшими породообразующими минералами во многих магматических горных породах. Общее их количество по весу в земной коре достигает 16%.

От железо-магнезиальных породообразующих островных силикатов (минералов группы оливина) пироксены и амфиболы отличаются следующими химическими особенностями:

Кроме Mg и Fe, в пироксенах и амфиболах существенную роль играет Ca. В минералах группы оливина роль Са незначительна. В соответствии с близостью размеров ионных радиусов Са и Мg, в пироксенах и амфиболах широко представлены двойные соединения - диопсид CaMg , тремолит Ca 2 Mg 5 2 2 и др.;

Многие пироксены и амфиболы, особенно те, что представлены двойными соединениями, часто содержат примеси Al 2 O 3 , Na 2 O, иногда Fe 2 O 3 и др. Минералы группы оливина характеризуются сравнительной чистотой состава.

Физические свойства цепочечных и ленточных силикатов обусловлены особенностями их кристаллического строения. Кристаллическая структура представляет собой вытянутые в одном направлении (вдоль оси с) анионные комплексы непрерывно связанных друг с другом кремнекислородных тетраэдров (более подробно по данному вопросу – лекция «Силикаты. Общая характеристика»). Главнейшие физические особенности минералов рассматриваемых подклассов сводятся к следующим:

Кристаллические индивиды обычно вытянуты в одном направлении. В отличие от цепочечных и ленточных силикатов минералы группы оливина обладают изометрическим обликом;

По сравнению с минералами группы оливина в цепочечных и ленточных силикатах гораздо четче проявлена спайность. Характерно, что спайность устанавливается по призме согласно вытянутости индивидов;

Показатели преломления и двупреломление по сравнению с минералами группы оливина, как правило, ниже;

Плотность цепочечных и ленточных силикатов, благодаря относительно менее плотной упаковке ионов, несколько меньше, чем у минералов группы оливина.

Между цепочечными и ленточными силикатами, несмотря на многие общие свойства, имеются и существенные отличия. Эти отличия обусловлены различным кристаллическим строением рассматриваемых минералов:

Пироксены характеризуются спайностью по призме под углом 87 0 ;

Амфиболы – спайность по призме под углом 124 0 ;

Кристаллы пироксенов имеют в поперечном сечении псевдотетрагональный облик (рис. 1, а);

Кристаллы амфиболов имеют в поперечном сечении псевдогексагональный облик (рис. 1, б).

Рис. 1 Поперечные сечения кристаллов пироксенов (а) и амфиболов (б)

ЦЕПОЧЕЧНЫЕ СИЛИКАТЫ

Группа пироксенов

Минералы этой группы наиболее широко распространены в природе и подразделяются на моноклинные и ромбические пироксены.

Моноклинные пироксены: диопсид - CaMg ; геденбергит - CaFe ; сподумен - LiAl ; авгит - Ca (Mg, Fe, Al)[(Si, Al) 2 O 6 ]; жадеит - NaAl ; эгирин - NaFe.

Ромбические пироксены: энстатит - Mg 2 ; гиперстен - (Mg, Fe) 2 .

Моноклинные пироксены в природе широко распространены. Среди моноклинных пироксенов программой курса предусмотрено рассмотрение диопсида, геденбергита, сподумена.

Ромбические пироксены также довольно широко распространены в природе. Однако программой рассмотрение ромбических пироксенов в настоящем курсе не предусмотрено.

ЛЕНТОЧНЫЕ СИЛИКАТЫ

Для ленточных силикатов характерно вхождение Al в комплексный анионный радикал. Поэтому среди минералов данного подкласса распространены алюмосиликаты. Кроме того характерны дополнительные анионы , F, CL.

Наиболее распространены в природе минералы данного подкласса – группа амфиболов. Амфиболы подразделяются на моноклинные и ромбические.

Моноклинные амфиболы: - тремолит - Ca 2 Mg 5 2 2 ; - актинолит - Са 2 (Mg,Fe) 5 2 [ОН] 2 ; - роговая обманка - Сa 2 Na(MgFe) 4 (Al,Fe)[(Si,Аl) 4 О 11 ] 2 [ОН] 3 ; - глаукофан - Na 2 (Mg,Fe) 3 Al 2 2 [ОН,F] 2 ; - арфведсонит - Na 3 (Fe,Mg) 4 (Fe,Al) 2 2 .

Ромбические амфиболы - антофиллит -(Mg,Fe) 7 2 2 .

Моноклинные амфиболы в природе распространены шире, чем ромбические. Из моноклинных амфиболов наиболее распространены актинолит и роговая обманка. Другие встречаются реже.

Ромбические амфиболы в настоящем курсе не рассматриваются. Кроме того, не рассматриваются относительно редкие в природе, но входящие в подкласс «ленточные силикаты» довольно многочисленные по номенклатуре минералы.

В виде (OH) 1− или H 2 O и др.

Схемы расположения кремния и кислорода в силикатах.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. из них сложена основная масса горных пород: полевые шпаты , кварц , слюды , роговые обманки , пироксены , оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц , на долю которого приходится около 12 % от всех минералов .

Структурные типы силикатов

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

1. Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал 4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О 2− , ОН 1− , F 1− и др. в) Силикаты со сдвоенными тетраэдрами . Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами. г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 18− . Представители : оливины , гранаты , циркон , титанит , топаз , дистен , андалузит , ставролит , везувиан , каламин, эпидот , цоизит , ортит , родонит , берилл , кордиерит , турмалин и др.

2. Цепочечные силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители : пироксены ромбические (энстатит , гиперстен) и моноклинные (диопсид , салит, геденбергит , авгит , эгирин , сподумен , волластонит , силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.

3. Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры 6− . Представители : тремолит , актинолит , жадеит , роговая обманка .

4. Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители : тальк , серпентин , хризотил-асбест, ревдинскит, полыгорскит, слюды (мусковит , флогопит , биотит), гидрослюды (вермикулит , глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит , хризоколла , гарниерит и др.), мурманит .

5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца . На этом основании его относят не к окислам , а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности , что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

Зависимость облика и свойств от структуры

Силикаты, структура которых представлена обособленными кремнекислородными тетраэдрами, имеют изометрический облик (гранаты), гексагональный берилл имеет обособленные шестерные кольца кремнекислородных тетраэдров, силикаты цепочечной и поясной структур обычно вытянуты (амфиболы, пироксены). Особенно наглядны в этом отношении листовые силикаты (слюды, тальк, хлориты). Слои кремнекислородных тетраэдров являются очень прочными, а их связи друг с другом через катионы менее прочная. Расщепить их легко вдоль слоёв. Этим вызывается их спайность и листоватый облик.

Полезные ископаемые

Силикаты - важные неметаллические полезные ископаемые: асбест, тальк, слюды, каолин, керамическое и огнеупорное сырьё, строительные материалы. Они также являются рудами на бериллий , литий , цезий , цирконий , никель , цинк и редкие земли . Кроме того они широко известны как драгоценные и поделочные камни: изумруд , аквамарин , топаз , нефрит , родонит и др.

Происхождение (генезис)

Эндогенное, главным образом магматическое (пироксены, полевые шпаты), они также характерны для пегматитов (слюды, турмалин, берилл и др.) и скарнов (гранаты, волластонит). Широко распространены в метаморфических породах - сланцах и гнейсах (гранаты, дистен, хлорит). Силикаты экзогенного происхождения представляют собой продукты выветривания или изменения первичных (эндогенных) минералов (каолинит, глауконит, хризоколла)

Литература

Миловский А.В. Минералогия и петрография. - М .: Государственное научно-техническое издательство литературы по геологии и охране недр, 1958. - С. 83-88.


Wikimedia Foundation . 2010 .

Силикаты

природные (от лат. silex - кремень), класс наиболее распространённых минералов; природные химические соединения с комплексным кремнекислородным радикалом. С. слагают более 75% земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород. С. включают около 500 минеральных видов, в том числе важнейшие породообразующие - полевые шпаты, пироксены, амфиболы, слюды и др.

Современная классификация С. основана на кристаллохимических данных, обобщающих результаты химических и рентгенографических исследований структур силикатных минералов (см. Кристаллохимия).

В основе структур всех С. лежит кремнекислородный радикал 4- в форме тетраэдра. Важной особенностью С. является способность к взаимному сочетанию (полимеризации) двух или нескольких кремнекислородных тетраэдров через общий атом кислорода. Характер этого сочетания учитывается при классификации С. Кроме того, в классификации С. учитываются состав радикалов (Si, Al, В, Be, Ti, Zr, U) и состав катионов (К, Na, Ca, Mg, Fe, Mn, Al), наличие и характер в составе С. воды или гидроксильных групп, наличие дополнительных анионных групп.

В случаях, когда в структуре С. другие тетраэдрические радикалы играют одинаковую роль с тетраэдрами 4- , выделяют алюмосиликаты, боросиликаты и бериллосиликаты, а также гетерогенные каркасные и слоистые титано- и цирконосиликаты. В номенклатуре С. наряду со структурными обозначениями, связанными с типом сочетаний кремнекислородных тетраэдров, иногда используются названия, сохранившиеся от представлений о них как о солях кремниевых кислот: ортосиликаты - соли ортокремниевой кислоты, метасиликаты - соли метакремниевой кислоты и др.

Структура С. По характеру сочетания кремнекислородных тетраэдров выделяется 5 подклассов С.: островные, кольцевые, цепочечные, слоистые, каркасные.

Островные С. Сюда относятся С. с изолированными тетраэдрами ^» - ортосиликаты, связанные посредством расположенных между ними октаэдрических катионов (рис. , 1), или с изолированными парами тетраэдров 6- - диортосиликаты, которые возникли в результате соединения двух кремнекислородных тетраэдров (рис. , 2).

К ортосиликатам относятся группы Оливин а (MgFe) 2 , Циркон а Zr , Гранат ов, Фенакит а Be 2 и др. (без воды и добавочных анионов), Топаз а Al 2 F 2 , Андалузит а Al 2 O, Титанит а CaTi O и др. (с добавочными анионами F - , O 2- , OH -); к диортосиликатам - группы Бертрандит а Be 4 O (OH) и др.; к ортодиортосиликатам относятся группы Везувиан а Ca 19 Mg 3 Al 10 4 ․ 10 O 2 (OH) 6 , эпидота Са, Ce, Fe 3+ , Fe 2+ , Al 2 ․ O․(OH) и др.

Кольцевые С. характеризуются кольцевой структурой, в которой группы 4- не изолированы, а соединяются общими ионами кислорода в кольца (рис. , 3). При этом различают кольца двух типов - простые и двойные («двухэтажные»). К первым относятся кольца типа 6- - группа волластонита Ca 3 , типа 8- - группа тарамеллита Ba 2 Fe 2 (OH) 2 , типа 12- - группы Берилл а Be 3 Al 2 , Кордиерит а Mg 2 Al 3 и др.; типа 12- - группа мьюкрита Ba 10 CaMnTi 2 ․(Cl, OH, O) 12 ․4H 2 O. Ко вторым относятся кольца типа 12- - группа эканита Ca 2 Th , и типа 12- - группа миларита KCa 2 Be 2 AI .

Цепочечные С. Простейшие и наиболее распространённые из них представлены непрерывными цепочками кремнекислородных тетраэдров, соединённых вершинами, типа 2- или сдвоенными цепочками-лентами типа 6- (рис. , 4 и 5). К ним принадлежат группы пироксенов (См. Пироксены), амфиболов (См. Амфиболы), рамзаита Na 2 O 3 и др.

Слоистые С. характеризуются непрерывными в двух направлениях слоями кремнекислородных тетраэдров, образующими бесконечные двухмерные радикалы, которые в зависимости от пространственного положения кремнекислородных тетраэдров в слое имеют различную формулу; для слоя, состоящего из шестерных колец, характерен радикал типа 4- (рис. , 6); при этом в шестерном кольце тетраэдров слоя каждый из шести атомов кремния принадлежит трём таким кольцам, т. е. по два кремния на каждое кольцо. К этому подклассу относятся Слюды группы Мусковит а и Биотит а K (Mg, Fe 2- 3)․(OH, F) 2 , группы Пирофиллит а Al 2 (OH) 2 и Талька Mg 3 ․(OH) 2 , Каолинит а Al 4 (OH) 8 и Серпентин а Mg 6 (OH) 8 , Галлуазит а Al 4 (H 2 O) 4 (OH) 8 , хлоритов (См. Хлориты); к слоистым относится гадолинит FeY 2 ․; к титаносиликатам - астрофиллит (К, Na) 3 (Mn, Fe) 7 2 ․3H 2 O и др.

Каркасные С. характеризуются трёхмерным бесконечным каркасом кремнекислородных тетраэдров типа 4- , соединённых всеми четырьмя вершинами друг с другом так, что каждый атом кислорода одновременно принадлежит только двум таким тетраэдрам; общая формула m- . К ним относятся минералы группы полевых шпатов (См. Полевые шпаты) Na - K - Ca , Нефелин а KNa 3 , петалита Li , данбурита Ca 3 Cl, гельвина Mn 4 3 S (см. Содалита группа) и др.

В структурах С. установлено значительное число различных типов цепочек, лент, сеток и каркасов из тетраэдров.

По составу тетраэдрических радикалов различаются простые С. с кремнекислородным радикалом 4- и сложные С., в которых вместе с 4- присутствуют тетраэдрические группы алюминия (Алюмосиликаты), бериллия (бериллосиликаты), бора (боросиликаты), титана (титаносиликаты), циркония (цирконосиликаты), урана (ураносиликаты). Наряду с этим выделяются силикаты Al, Be, Ti, Zr, в которых эти элементы играют роль таких же катионов, как Mg, Fe и др., соединяясь с кремнекислородными тетраэдрами не вершинами, а ребрами или через вершины, поделенные между двумя тетраэдрами.

Катионы, входящие в состав С., разделяются прежде всего на 2 группы: малые катионы - Mg 2+ , Al 3+ , Fe 2+ , Mn 2+ и др., частично Ca 2+ , имеющие обычно октаэдрическую координацию (содержащие их соединения составляют первую главу кристаллохимии С., по Н. В. Белову, 1961), и крупные катионы - К + , Na + , Ca 2+ , Ba 2+ , Sr 2+ , редкоземельных элементов, образующие соответственно более крупные координационные полиэдры: 8-, 9-, 12-вершинники, ребра которых соизмеримы уже с размерами не одиночных 4- тетраэдров, а групп 6- (с этими соединениями связана вторая глава кристаллохимии С.).

Большинство С. в связи с их сложным строением имеет низкую симметрию: около 45% кристаллизуется в моноклинной, 20% имеют ромбическую симметрию, 9% - триклинную, 7% - тетрагональную, 10% - тригональную и гексагональную и 9% - кубическую.

Свойства С. определяются прежде всего типом кремнекислородного тетраэдра: спайность (несовершенная в островных и кольцевых С., совершенная и зависящая от ориентировки кремнекислородных группировок в цепочечных, слоистых, каркасных С.); твёрдость обычно 5,5-7, кроме слоистых С., в которых она понижается до 2-1; плотность около 2500-3500 кг/м 3 . Цвет большинства С. определяется ионами железа (Fe 2+ - зелёный, Fe 3+ - бурый, красный, жёлтый, Fe 2+ и Fe 3+ - синий и др.), в отдельных группах - ионами Ti 3+ , V 4+ , Cr 3+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ и их сочетаниями с ионами железа и др.; в некоторых минералах - электронно-дырочными центрами. В ряде случаев окраска связана с микровключениями окрашенных минералов.

Большое значение для точной диагностики С. имеют их оптические свойства - преломление, оптическая ориентировка и др., измеряемые с помощью Федорова столика (См. Фёдорова столик), иммерсионного метода и др.

Происхождение С. весьма разнообразно: они возникают при кристаллизации магмы, метаморфических и метасоматических процессах; реже С. образуются в гидротермальных жилах. Крупные кристаллы С. возникают в пегматитах.

Физико-химические особенности образования С. в природных условиях определяются с помощью парагенетического анализа минеральных ассоциаций (см. Парагенезис минералов) с учётом данных детально изученных диаграмм состоянии (См. Диаграмма состояния) силикатных систем. При выветривании происходит разрушение большинства С. с образованием осадочных горных пород, с выщелачиванием основных соединений, освобождением кремнезёма, возникновением за счёт алюмосиликатов водных силикатов алюминия, образованием глинистых минералов, нонтронита, гарниерита и др., а также окислов железа, карбонатов и др.

С. (плагиоклазы, оливин, пироксены и др.) являются также главными минералами лунных пород, входят в состав метеоритов (См. Метеориты). Полагают, что оливин и плотная модификация со Шпинели составляют почти полностью мантию Земли.

Применение С. определяется тем, что многие из них являются важнейшими среди полезных ископаемых. Существенное значение имеют силикатные минералы, составляющие литиевые, бериллиевые руды, руды рассеянных элементов, силикатные никелевые руды. Месторождения нефелина поставляют комплексное сырьё для получения алюминия, поташа, соды. Большую долю составляют С. в нерудных полезных ископаемых (См. Нерудные полезные ископаемые) (полевые шпаты, слюды, асбест, тальк, цеолиты, гранаты, бентонитовые и огнеупорные глины), в драгоценных и поделочных камнях (См. Драгоценные и поделочные камни) (изумруд, аквамарин, топаз, хризолит, турмалин и др.).

Исследование С. как главнейших минералов Земли и Луны, содержащих многие ценные элементы в качестве основных компонентов или примесей, составляет важное направление современной минералогии, тесно связанное с геохимией, литологией, геофизикой и исследованием вещественного состава месторождений полезных ископаемых.

Лит.: Соболев B. С., Введение в минералогию силикатов, Львов, 1949; Белов Н. В., Кристаллохимия силикатов с крупными катионами, М., 1961; Эйтель В., Физическая химия силикатов, пер. с англ., М., 1962; Дир У.-А., Хауи Р.-А., 3усман Дж., Породообразующие минералы, пер. с англ., т. 1-4, М., 1965 - 66; Поваренных А. С., Кристаллохимическая классификация минеральных видов, К., 1966; Минералы. Справочник, т. 3, в. 1, М., 1972; Коржинский Д. С., Теоретические основы анализа парагенезисов минералов, М., 1973; Марфунин А. С., Введение в физику минералов, М., 1974.

А. С. Марфунин.

Основные типы связи кремнекислородных радикалов: 1 - изолированные тетраэдры 4- с октаэдрами Mg, Fe, Ca; 2 - группы 6- из двух тетраэдов; 3 - шестерные кольца 6- ; 4 - цепочки 2- ; 5 - ленты 6- ; 6 - слои из шестерных колец 4- .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .