Все высоты равнобедренного треугольника равны. Равнобедренный треугольник. Подробная теория с примерами (2020). Соблюдение вашей конфиденциальности на уровне компании

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD - биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD - общая сторона, ∠ 1 = ∠ 2, так как AD - биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке .

Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.

Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р - серединный перпендикуляр к отрезку АВ и точка О - середина отрезка АВ (см. рис. 3).

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.

Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).

Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС - общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.

Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

Вычисление высоты треугольника зависит от самой фигуры (равнобедренный, равносторонний, разносторонний, прямоугольный). В практической геометрии сложные формулы, как правило, не встречаются. Достаточно знать общий принцип вычислений для того, чтобы он мог быть универсально применим для всех треугольников. Сегодня мы познакомим вас с базовыми принципами вычисления высоты фигуры, расчетными формулами, основываясь на свойствах высот треугольников.

Что такое высота?

Высота имеет несколько отличительных свойств

  1. Точка, где все высоты соединяются, называется ортоцентром. Если треугольник остроконечный, то ортоцентр находится внутри фигуры, если один из углов тупой, то ортоцентр, как правило, находится снаружи.
  2. В треугольнике, где один угол равен 90°, ортоцентр и вершина совпадают.
  3. В зависимости от вида треугольника есть несколько формул, как найти высоту треугольника.

Традиционные вычисления

  1. Если р – это половина периметра, тогда a, b, c являются обозначением сторон требуемой фигуры, h – высота, то первая и самая простая формула будет выглядеть следующим образом: h = 2/a √p(p-a) (p-b) (p-c).
  2. В школьных учебниках часто можно найти задачи, в которых известно значение одной из сторон треугольника и величина угла между данной стороной и основанием. Тогда формула расчета высоты будет выглядеть так: h = b ∙ sin γ + c ∙ sin β.
  3. Когда дана площадь треугольника – S, а также длина основания – а, то вычисления будут максимально простыми. Высоту находят по формуле: h = 2S/a.
  4. Когда дан радиус окружности, описанной вокруг фигуры, вначале вычисляем длины его двух сторон, а затем приступаем к вычислению заданной высоты треугольника. Для этого используем формулу: h = b ∙ c/2R, где b и c – это две стороны треугольника, которые не являются основанием, а R – радиус.
Как найти высоту равнобедренного треугольника?

Все стороны у данной фигуры равнозначны, их длины равны, поэтому и углы при основании тоже будут равными. Из этого следует, что высоты, которые проводим на основания, тоже будут равны, они же и медианы, и биссектрисы одновременно. Говоря простым языком, высота в равнобедренном треугольнике делит основание надвое. Треугольник с прямым углом, который получился после проведения высоты, будем рассматривать с помощью теоремы Пифагора. Обозначим боковую сторону как а, а основание как b, тогда высота h = ½ √4 a2 − b2.

Как найти высоту равностороннего треугольника?

Формула равностороннего треугольника (фигуры, где все стороны являются равновеликими), можно найти, исходя из предыдущих вычислений. Необходимо только измерить длину одной из сторон треугольника и обозначить её как а. Тогда высота выводится по формуле: h = √3/2 a.

Как найти высоту прямоугольного треугольника?

Как известно, угол в прямоугольном треугольнике равен 90°. Высота, опущенная на один катет, одновременно является и вторым катетом. На них и будут лежать высоты треугольника с прямым углом. Для получения данных о высоте, нужно немного преобразовать имеющуюся формулу Пифагора, обозначив катеты – а и b, а также измерив длину гипотенузы – с.

Найдем длину катета (сторона, которой будет перпендикулярна высота): a = √ (c2 − b2). Длина второго катета находится по точно такой же формуле: b =√ (c2 − b2). После чего можно приступать к вычислению высоты треугольника с прямым углом, предварительно сосчитав площадь фигуры – s. Значение высоты h = 2s/a.

Расчеты с разносторонним треугольником

Когда разносторонний треугольник имеет острые углы, то высота, опускаемая на основание, видна. Если же треугольник с тупым углом, то высота может находиться вне фигуры, и нужно мысленно её продолжить, чтобы получить точку соединения высоты и основания треугольника. Самым простым способом измерить высоту является вычисление её через одну из сторон и величины углов. Формула выглядит следующим образом: h = b sin y + c sin ß.

Равнобедренным является такой треугольник , у которого длины двух его сторон равны между собой.

При решении задач по теме «Равнобедренный треугольник» необходимо пользоваться следующими известными свойствами :

1. Углы, лежащие напротив равных сторон равны между собой.
2.
Биссектрисы, медианы и высоты, проведенные из равных углов, равны между собой.
3.
Биссектриса, медиана и высота, проведенные к основанию равнобедренного треугольника, между собой совпадают.
4.
Центр вписанной и центр описанной окружностей лежат на высоте, а значит и на медиане и биссектрисе, проведенной к основанию.
5.
Углы, которые являются равными в равнобедренном треугольнике всегда острые.

Треугольник является равнобедренным, если у него присутствуют следующие признаки :

1. Два угла у треугольника равны.
2.
Высота совпадает с медианой.
3.
Биссектриса совпадает с медианой.
4.
Высота совпадает с биссектрисой.
5.
Две высоты треугольника равны.
6.
Две биссектрисы треугольника равны.
7.
Две медианы треугольника равны.

Рассмотрим несколько задач по теме «Равнобедренный треугольник» и приведем подробное их решение.

Задача 1.

В равнобедренном треугольнике высота, проведенная к основанию, равна 8, а основание относится к боковой стороне как 6: 5. Найти, на каком расстоянии от вершины треугольника находится точка пересечения его биссектрис.

Решение.

Пусть дан равнобедренный треугольник АВС (рис. 1) .

1) Так как АС: ВС = 6: 5, то АС = 6х и ВС = 5х. ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 6х = 3х.

ВС 2 = ВН 2 + НС 2 ;

(5х) 2 = 8 2 + (3х) 2 ;

х = 2, тогда

АС = 6х = 6 · 2 = 12 и

ВС = 5х = 5 · 2 = 10.

3) Так как точка пересечения биссектрис треугольника является центром вписанной в него окружности, то
ОН = r . Радиус вписанной в треугольник АВС окружности найдем по формуле

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (12 · 8) = 48;

p = 1/2 · (AB + BC + AC); p = 1/2 · (10 + 10 + 12) = 16, тогда ОН = r = 48/16 = 3.

Отсюда ВО = ВН – ОН; ВО = 8 – 3 = 5.

Ответ: 5.

Задача 2.

В равнобедренном треугольнике АВС проведена биссектриса АD. Площади треугольников ABD и ADC равны 10 и 12. Найти увеличенную в три раза площадь квадрата, построенного на высоте этого треугольника, проведенной к основанию АС.

Решение.

Рассмотрим треугольник АВС – равнобедренный, АD – биссектриса угла А (рис. 2).

1) Распишем площади треугольников ВАD и DAC:

S BAD = 1/2 · AB · AD · sin α; S DAC = 1/2 · AC · AD · sin α.

2) Найдем отношение площадей:

S BAD /S DAC = (1/2 · AB · AD · sin α) / (1/2 · AC · AD · sin α) = AB/AC.

Так как S BAD = 10, S DAC = 12, то 10/12 = АВ/АС;

АВ/АС = 5/6, тогда пусть АВ = 5х и АС = 6х.

АН = 1/2 АС = 1/2 · 6х = 3х.

3) Из треугольника АВН – прямоугольного по теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

25х 2 = ВН 2 + 9х 2 ;

4) S A ВС = 1/2 · AС · ВН; S A В C = 1/2 · 6х · 4х = 12х 2 .

Так как S A ВС = S BAD + S DAC = 10 + 12 = 22, тогда 22 = 12х 2 ;

х 2 = 11/6; ВН 2 = 16х 2 = 16 · 11/6 = 1/3 · 8 · 11 = 88/3.

5) Площадь квадрата равна ВН 2 = 88/3; 3 · 88/3 = 88.

Ответ: 88.

Задача 3.

В равнобедренном треугольнике основание равно 4, а боковая сторона равна 8. Найти квадрат высоты, опущенной на боковую сторону.

Решение.

В треугольнике АВС – равнобедренном ВС = 8, АС = 4 (рис. 3).

1) ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 4 = 2.

2) Из треугольника ВНС – прямоугольного по теореме Пифагора ВС 2 = ВН 2 + НС 2 ;

64 = ВН 2 + 4;

3) S ABC = 1/2 · (AC · BH), а так же S ABC = 1/2 · (АМ · ВС), тогда приравняем правые части формул, получим

1/2 · AC · BH = 1/2 · АМ · ВС;

АМ = (AC · BH)/ВС;

АМ = (√60 · 4)/8 = (2√15 · 4)/8 = √15.

Ответ: 15.

Задача 4.

В равнобедренном треугольнике основание и опущенная на него высота, равны 16. Найти радиус описанной около этого треугольника окружности.

Решение.

В треугольнике АВС – равнобедренном основание АС = 16, ВН = 16 – высота, проведенная к основанию АС (рис. 4) .

1) АН = НС = 8 (по свойству равнобедренного треугольника).

2) Из треугольника ВНС – прямоугольного по теореме Пифагора

ВС 2 = ВН 2 + НС 2 ;

ВС 2 = 8 2 + 16 2 = (8 · 2) 2 + 8 2 = 8 2 · 4 + 8 2 = 8 2 · 5;

3) Рассмотрим треугольник АВС: по теореме синусов 2R = AB/sin C, где R – радиус описанной около треугольника АВС окружности.

sin C = BH/BC (из треугольника ВНС по определению синуса).

sin C = 16/(8√5) = 2/√5, тогда 2R = 8√5/(2/√5);

2R = (8√5 · √5)/2; R = 10.

Ответ: 10.

Задача 5.

Длина высоты, проведенной к основанию равнобедренного треугольника, равна 36, а радиус вписанной окружности равен 10. Найти площадь треугольника.

Решение.

Пусть дан равнобедренный треугольник АВС.

1) Так как центр вписанной в треугольник окружности является точкой пересечения его биссектрис, то О ϵ ВН и АО является биссектрисой угла А, а ток же ОН = r = 10 (рис. 5) .

2) ВО = ВН – ОН; ВО = 36 – 10 = 26.

3) Рассмотрим треугольник АВН. По теореме о биссектрисе угла треугольника

АВ/АН = ВО/ОН;

АВ/АН = 26/10 = 13/5, тогда пусть АВ = 13х и АН = 5х.

По теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

(13х) 2 = 36 2 + (5х) 2 ;

169х 2 = 25х 2 + 36 2 ;

144х 2 = (12 · 3) 2 ;

144х 2 = 144 · 9;

х = 3, тогда АС = 2 · АН = 10х = 10 · 3 = 30.

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (36 · 30) = 540;

Ответ: 540.

Задача 6.

В равнобедренном треугольнике две стороны равны 5 и 20. Найти биссектрису угла при основании треугольника.

Решение.

1) Предположим, что боковые стороны треугольника равны 5, а основание – 20.

Тогда 5 + 5 < 20, т.е. такого треугольника не существует. Значит, АВ = ВС = 20, АС = 5 (рис. 6).

2) Пусть LC = x, тогда BL = 20 – x. По теореме о биссектрисе угла треугольника

АВ/АС = ВL/LC;

20/5 = (20 – x)/x,

тогда 4х = 20 – x;

Таким образом, LC = 4; BL = 20 – 4 = 16.

3) Воспользуемся формулой биссектрисы угла треугольника:

AL 2 = AB · AC – BL · LC,

тогда AL 2 = 20 · 5 – 4 · 16 = 36;

Ответ: 6.

Остались вопросы? Не знаете, как решать геометрические задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Из-за двух равных сторон, равнобедренный треугольник обладает рядом специфических свойств, за которые его очень любят составители задач. Рассмотрим, чем же выделяется высота равнобедренного треугольника и как ее лучше найти.

Определение

В общем случае, высота – это перпендикуляр, опущенный из вершины на противолежащую сторону. В равнобедренном треугольнике под высотой обычно подразумевают высоту, опущенную на основание.

Если по условию задачи нужно найти значение высоты равнобедренного треугольника без уточнений, какую именно высоту требуется найти, то имеется в виду высота, опущенная на основание.

Необходимые теоремы

Для решения задач на определение высоты равнобедренного треугольника, нужно знать теорему Пифагора и свойство высоты равнобедренного треугольника.

Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Свойство: в равнобедренному треугольнике высота, проведенная к основанию, является медианой и биссектрисой.

Рис. 1. Иллюстрация свойства.

Из теоремы и свойства следует основная формула высоты равнобедренного треугольника. Рассмотрим равнобедренный треугольник АВС с высотой АН и основанием ВС. Тогда треугольник АВН является прямоугольным. Запишем значение высоты через теорему Пифагора, так как в треугольнике АВН высота АН является катетом.

$$АН=\sqrt{АВ^2-BH^2}=\sqrt{AB^2-({BC\over{2}})^2}$$

$$ВН={1\over2}*ВС$$, так как АН является медианой. Это и есть формула высоты равнобедренного треугольника.

Рис. 2. Рисунок к задаче.

Задача

Решим задачу, где будет задействована не только высота, проведенная к основанию, но другая высота. В равнобедренном треугольнике, как и в любом другом, их три. В задаче также будет применен способ нахождения высоты, который можно использовать для любого треугольника, а не только для равнобедренного.

В Равнобедренном треугольнике АВС с основанием ВС проведены высоты АН и ВР. Синус угла АСВ равен 0,6, а боковая сторона 5. Найти высоту ВР.

Рис. 3. Рисунок к задаче.

Для начала, необходимо найти значение высоты, проведенной к основанию и основания. Для этого обратим внимание на прямоугольный треугольник АСН. Воспользуемся определением синуса.

Синус угла это отношение противолежащего катета к гипотенузе. Нам известно значение синуса, значит:

$${АН\over{АС}}=0,6$$ - из этого отношения выразим значение АН.

$$АН=0,6*АС=0,6*5=3$$

Через теорему Пифагора найдем значение НС:

$$НС=\sqrt{АС^2-AH^2}=\sqrt{25-9}=\sqrt{16}=4$$

Тогда основание равно:

$$ВС=ВН+НС=2*НС=2*4=8$$

Теперь найдем площадь треугольника:

$$S={1\over2}*АН*ВС={1\over2}*3*8=12$$

С другой стороны площадь можно найти и через высоту ВР.

$$S={1\over2}*ВР*АС$$ - так как ВР это высота, проведенная к стороне АС.

Значит верно утверждение:

$${1\over2} *АН*ВС={1\over2}*ВР*АС$$

$$АН*ВС=ВР*АС$$

$$ВР={{АН*ВС}\over{АС}}={{3*8}\over5}={24\over5}=4,8$$

Что мы узнали?

Мы вывели формулу высоты прямоугольного треугольника. Определили, что высота в прямоугольном треугольнике может находиться любым способом, связанным с произвольным треугольником и решили интересную задачу на нахождение высоты треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.4 . Всего получено оценок: 130.

Так как высота равнобедренного треугольника, опущенная на основание, является одновременно и биссектрисой и медианой, следовательно, она делит основание и угол при вершине на две равные части, образуя прямоугольный треугольник со сторонами a и b/2. Из теоремы Пифагора в таком треугольнике можно найти само основание, а затем рассчитать все остальные возможные данные. (рис.88.2) h^2+(b/2)^2=a^2 b=√(a^2-h^2)/2

Чтобы вычислить периметр равнобедренного треугольника, надо к двум боковым сторонам прибавить основание или приведенный выше радикал через высоту. P=2a+b=2a+√(a^2-h^2)/2

Площадь равнобедренного треугольника через высоту и основание по определению вычисляется как половина их произведения. Заменив основание на соответствующее ему выражение, получаем площадь через высоту и боковую сторону равнобедренного треугольника. S=hb/2=(h√(a^2-h^2))/4

В равнобедренном треугольнике равны не только боковые стороны, но и углы при основании, а так как в сумме они дают всегда 180 градусов, то любой из углов можно найти, зная другой. Первый угол вычисляется по теореме косинусов, приведенной для равных боковых сторон, а второй можно найти через разность от 180. (рис.88.1) cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cos⁡β=(a^2+a^2-b^2)/(2a^2)=(2a^2-b^2)/(2a^2) α=(180°-β)/2 β=180°-2α

Центральные медиана и биссектриса, опущенные на основание совпадают с высотой, а боковые медианы, высоты и биссектрисы можно найти по следующим формулам для равнобедренных треугольников. Чтобы вычислить их через высоту и боковую сторону, нужно заменить основание на эквивалентное ему выражение. (рис. 88.3) m_a=√(2a^2+2b^2-a^2)/2=√(a^2+2b^2)/2

Высота, опущенная на боковую сторону, через высоту, опущенную на основание и боковую сторону равнобедренного треугольника. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a=(√(a^2-h^2) √((4a^2-a^2+h^2)))/2a=√((a^2-h^2)(3a^2+h^2))/2

Биссектрисы, направленные в боковые стороны, также могут быть выражены через боковую сторону и центральную высоту треугольника. (рис. 88.4) l_a=√(ab(2a+b)(a+b-a))/(a+b)=√(a(a^2-h^2)(2a+√(a^2-h^2)))/(a+√(a^2-h^2))

Средняя линия проводится параллельно любой стороне треугольника, соединяя середины боковых в ее отношении сторон. Таким образом, она всегда оказывается равна половине параллельной ей стороны. Вместо неизвестного основания в формулу можно подставить используемый радикал, чтобы найти среднюю линию через высоту и боковую сторону равнобедренного треугольника(рис. 88.5) M_b=b/2=√(a^2-h^2)/2 M_a=a/2

Радиус окружности, вписанной в равнобедренный треугольник, начинается от точки на пересечении биссектрис и уходит перпендикулярно в любую из сторон. Чтобы его найти через высоту и боковую сторону треугольника, надо заменить основание в формуле на радикал. (рис. 88.6) r=1/2 √(((a^2-h^2)(2a-√(a^2-h^2)))/(2a+√(a^2-h^2)))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы путем подстановки радикала через высоту и боковую сторону вместо основания. (рис. 88.7) R=a^2/√(3a^2-h^2)