Современное строение земли и ее химический состав. Строение и состав земли. Решения плоской и пространственной задач консолидации и их приложения

Результатом геологического развития Земли стало формирование самых верхних оболочек - атмосферы, гидросферы и литосферы. Это произошло в результате остывания поверхности Земли и привело к образованию первичной базальтовой или близкой к ней по составу коры Земли. Почти одновременно за счет конденсации водяных паров образовалась водная оболочка планеты - гидросфера.

Образование и строение литосферы. Земная кора образована горными породами, имеющими различные формы залегания. Породы лежат горизонтальными слоями или нарушены разломами и смяты складками. Залегание горных пород чаще всего обусловлено внутренними (эндогенными) силами. Строение земной коры, созданное эндогенными процессами, называется тектоническим строением, или тектоникой.

Современный рельеф планеты складывался на протяжении многих сотен миллионов лет и продолжает видоизменяться под влиянием совместного действия на ее поверхности тектонических, гид-росферных, атмосферных и биологических процесов. Начало этому было положено около 3,5 млрд. лет назад, когда начали формироваться вулканические дуги. Формирование вулканических дуг происходило на первичной остаточной или вторичной коре, образованной при растяжении океанической коры над зонами подлезания (столкновения литосферных плит и подлезания их друг под друга с образованием вулканической дуги). В результате примерно 2,7-2,5 млрд. лет назад возникли значительные площади континентальной коры, которые, по-видимому, соединились в единый суперконтинент - первую Пангею в истории Земли. Толщина этой коры уже достигала современной толщины в 35-40 км. Ее нижняя часть под влиянием высоких давлений и температур испытывала значительные превращения, а на средних уровнях произошло выплавление больших масс гранита.

Следующий важный момент в развитии Земли имел место примерно 2,5 млрд. лет назад. Возникший на предыдущем этапе суперконтинент - первая Пангея - претерпел существенные изменения и 2,2 млрд. лет назад распался на отдельные, относительно неболь-


шие континенты, разделенные бассейнами с новообразованной океанической корой. Отдельные следы этих этапов тектоники плит можно обнаружить и сейчас. Первый этап (до возникновения Пан-геи) принято называть эмбриональной тектоникой плит, а второй - тектоникой малых плит. К концу второго периода, около 1,7 млрд. лет назад, континенты вновь слились в единый суперконтинент. Образовалась Пангея-Н. Ее распад начался около 1 млрд. лет назад, хотя частичные разъединения и воссоединения могли иметь место и до этого.

В интервале 1-0,6 млрд. лет назад структурный план Земли претерпел радикальные изменения и существенно приблизился к современному. С этого момента началась полномасштабная тектоника плит. Она связана с тем, что литосфера Земли разделена на ограниченное число крупных (5 тыс. км) и средних (1 тыс. км) по размерам поперечника жестких и монолитных плит, которые расположены на более пластичной и вязкой оболочке - астеносфере. Литосферные плиты стали двигаться по астеносфере в горизонтальном направлении, образуя раздвижения и подлезания, которые в среднем компенсируют друг друга в масштабах планеты. Таким образом, в истории Земли как планеты неоднократно происходил процесс формирования и распада Пангеи. Длительность таких циклов составляет 500-600 млн. лет. На эту крупномасштабную периодичность накладывается периодичность меньших масштабов, связанная с растяжением и сжатием земной коры.

В результате тектонической активности рельеф земной поверхности сегодня характеризуется глобальной асимметрией двух полушарий (Северного и Южного): одно из них представляет собой гигантское пространство, заполненное водой. Это океаны, занимающие более 70% всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Глобальная асимметрия в строении поверхности нашей планеты была замечена давно, что позволило планетарный рельеф поделить на две основные области - океаническую и континентальную. Дно океанов и континенты отличаются друг от друга строением земной коры, химическим и петрографическим составом, а также историей геологического развития. Кора имеет повышенную мощность в области континентов и пониженную в областях океанического дна.

Средняя мощность континентальной коры - 35 км. Ее верхний слой богат гранитными породами, нижний - базальтовыми магмами. На дне океанов гранитный слой отсутствует, и земная кора состоит только из базальтового слоя. Ее мощность - 5-10 км. Кроме того, континентальная кора содержит больше радиоактивных элементов, генерирующих тепло, чем тонкая океаническая кора.

Земная кора, образующая верхнюю часть литосферы, в основном состоит из восьми химических элементов: кислорода, кремния, алю-


миния, железа, кальция, магния, натрия и калия. Половина всей массы коры приходится на кислород, который содержится в ней в связанном состоянии, главным образом, в виде окислов металлов.

Земная кора сложена горными породами различного типа и различного происхождения. Более 70% приходится на магматические породы, 20% - на метаморфические, 9% составляют осадочные породы.

Не следует забывать и о том, что поверхность Земли сложена из литосферных плит, число и положение которых менялось от эпохи к эпохе. Плита - это вся масса земной коры и подстилающей мантии, которые движутся как единое целое по поверхности Земли. Сегодня выделяют 8-9 больших плит и более 10 малых. Плиты медленно перемещаются горизонтально (глобальная тектоника плит). В районах рифтовых долин, где вещество мантии выносится наружу, плиты расходятся, а в местах, где горизонтальные смещения соседних плит оказываются встречными, они надвигаются друг на друга. Вдоль границ литосферных плит расположены зоны повышенной тектонической активности. При движении плит сминаются их края, образуя горные хребты или целые горные области. Океанические плиты, берущие свое начало в рифтовых разломах, наращивают толщину по мере приближения к континентам. Они уходят под островные дуги или континентальную плиту, увлекая за собой накопившиеся осадочные породы. Вещество погружающейся плиты достигает в мантии глубин до 500-700 км, где оно начинает плавиться.

Возникновение атмосферы и гидросферы. Составные части атмосферы и гидросферы Земли являются летучими веществами, которые появились в результате ее химической дифференциации. Согласно имеющимся данным, пары воды и газы атмосферы возникли в недрах Земли и поступили на ее поверхность в результате внутреннего разогрева совместно с наиболее легкоплавкими веществами первичной мантии в процессе вулканической активности.

Вода и углекислый газ как компоненты газопылевого облака долго пребывали в виде молекул, когда большая часть твердых конденсатов уже сформировалась. Поэтому оставшиеся газы в какой-то мере поглощались пылевыми частицами путем адсорбции и различных химических реакций. Так летучие вещества внедрились в планеты земного типа. Из недр Земли они поступают на поверхность в результате вулканической деятельности. Кроме того, как считают Альвен и Аррениус, уже в период бомбардировки Земли планетези-малиями, когда шел разогрев и плавление земных пород, выделялись газы и пары воды, содержавшиеся в породах. При этом Земля теряла водород и гелий, но сохраняла более тяжелые газы. Таким образом, именно дегазация земных недр стала источником атмо-


сферы и гидросферы. По некоторым расчетам, от 65 до 80% общего количества летучих компонентов Земли выделилось в результате ударной дегазации.

Мировой океан возник из паров мантийного материала, и первые порции конденсированной воды были кислыми. Затем появились минерализованные воды, а собственно пресные воды образовались значительно позже в результате испарения с поверхности первичных океанов в процессе естественной дистилляции.

Проблема происхождения океана связана с проблемой происхождения не только воды, но и растворенных в ней веществ. Гидросфера Земли, как и атмосфера, также появилась в результате дегазации недр планеты. Материал океана и вещество атмосферы возникли из общего источника.

Океаническая вода представляет собой уникальный природный раствор, содержащий в среднем 3,5% растворенных веществ, что и обеспечивает соленость воды. В воде земных океанов содержится множество химических элементов. Среди них важнейшую роль играют натрий, магний, кальций, хлор, азот, фосфор, кремний. Эти элементы усваиваются живыми организмами, и их концентрация в морской воде контролируется ростом и размножением морских растений и животных. Большую роль в составе морской воды играют растворенные в ней природные газы - азот, кислород, углекислый газ, которые тесно связаны с атмосферой и живым веществом суши и моря.

Как считается сегодня, первичная атмосфера Земли по своему составу была близка к составу вулканических и метеоритных газов. Скорее всего, она напоминала современную атмосферу Венеры. На поверхность Земли поступали вода, углекислый газ, окись углерода, метан, аммиак, сероводород и др. Они и составили первичную атмосферу Земли. В целом первичная атмосфера имела восстановительный характер и была практически лишена свободного кислорода, хотя незначительные его доли образовывались в верхней части атмосферы в результате фотолиза воды.

Таким образом, состав первичной атмосферы Земли, возникшей в результате ударной дегазации и вулканической активности, весьма сильно отличался от состава современной атмосферы. Эти отличия связаны с наличием жизни на Земле, оказывающей самое существенное воздействие на все процессы, протекающие на нашей планете. Таким образом, химическая эволюция атмосферы и гидросферы проходила с неизменным участием живых организмов, причем ведущую роль при этом играли фотосинтезирующие зеленые растения.

Современная азотно-кислородная атмосфера - результат деятельности Жизни на Земле. То же можно сказать и о современном составе вод Мирового океана планеты. Поэтому сегодня на нашей


планете жизнь и преобразованная им окружающая среда образуют самостоятельную оболочку Земли - биосферу.

Геосферы Земли

Формирование Земли сопровождалось дифференциацией вещества, результатом которой явилось разделение Земли на концентрически расположенные слои - геосферы. Геосферы различаются химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное мантией. Из наиболее легких компонентов вещества, выделившихся из мантии, возникла расположенная над мантией земная кора. Это так называемая «твердая» Земля, заключающая в себе почти всю массу планеты. Далее возникли водная и воздушная оболочки нашей планеты. Кроме того, Земля обладает гравитационным, магнитным и электрическими полями.

Таким образом, можно выделить ряд геосфер, из которых состоит Земля: ядро, мантия, литосфера, гидросфера, атмосфера, магнитосфера.

Кроме названных оболочек Земли, ниже мы будем рассматривать биосферу и ноосферу. Кроме того, в литературе можно встретить анализ и других оболочек - антропосферы, техносферы, со-циосферы, но их рассмотрение выходит за рамки естествознания.

Геосферы различаются, главным образом, плотностью составляющих их веществ. Самые плотные вещества сосредоточены в центральных частях планеты. Ядро составляет 1/3 массы Земли, кора и мантия - 2/3.

Все земные оболочки взаимосвязаны и проникают друг в друга. Гидросфера всегда присутствует в литосфере и атмосфере, атмосфера - в литосфере и гидросфере и т.д. С атмосферой, гидросферой и литосферой тесно связаны внутренние оболочки Земли. Кроме того, во всех оболочках, кроме мантии и ядра, присутствует биосфера.

Ядро Земли

Ядро занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра составляет около 3500 км, располагается оно глубже 2900 км. Ядро состоит из двух частей - большого внешнего и малого внутреннего ядер.

Внутреннее ядро Природа внутреннего ядра Земли начиная с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа (80%) и никеля


(20%). Соответствующий сплав при существующем давлении внутри земных недр имеет температуру плавления порядка 4500° С.

Внешнее ядро. Судя по геофизическим данным, внешнее ядро представляет собой жидкость - расплавленное железо с примесью никеля и серы. Это связано с тем, что давление в этом слое меньше. Внешнее ядро представляет собой шаровой слой толщиной 2900-5000 км. Чтобы внутреннее ядро оставалось твердым, а внешнее - жидким, температура в центре Земли не должна превышать 4500° С, но и не быть ниже 3200° С.

С жидким состоянием внешнего ядра связывают представления о природе земного магнетизма. Магнитное поле Земли изменчиво, из года в год меняется положение магнитных полюсов. Палеомаг-нитные исследования показали, что, например, на протяжении последних 80 млн. лет имело место не только изменение напряженности поля, но и многократное систематические перемагничивание, в результате которого Северный и Южный магнитные полюса Земли менялись местами. В периоды смены полярности наступали моменты полного исчезновения магнитного поля. Следовательно, земной магнетизм не может создаваться постоянным магнитом за счет стационарной намагниченности ядра или какой-либо его части. Предполагается, что магнитное поле создается процессом, названным эффектом динамо-машины с самовозбуждением. Роль ротора (подвижного элемента), или динамо, может играть масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси, а система возбуждения образуется токами, создающими замкнутые петли внутри сферы ядра.

Мантия

Мантия - наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев - нижней и верхней мантии. Толщина нижней части мантии - 2000 км, верхней - 900 км. Все слои мантии расположены между радиусами 3450 и 6350 км.

Данное о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты в результате мощных тектонических поднятий с выносом мантийного материала. Материал верхней мантии собран со дна разных участков океана. Плотность и химический состав мантии резко отличаются от соответствующих характеристик ядра. Мантию образуют различные силикаты (соединения на основе кремния), прежде всего, минерал оливин.

Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии со-


ставляет около 2500°С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанные температуры привели бы к его расплавлению.

В расплавленном состоянии находится астеносфера - нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. Литосфера как бы «плавает» в нем. В целом же верхняя мантия обладает интересной особенностью - по отношению к кратковременным нагрузкам она ведет себя как жесткий, а по отношению к длительным нагрузкам - как пластичный материал.

На не слишком вязкую и пластичную астеносферу опирается более подвижная и легкая литосфера. В целом литосфера, астеносфера и остальные слои мантии могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов.

Литосфера

Литосферой называют земную кору с частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но вместе с тем и большой хрупкостью. В верхней части она слагается гранитами, в нижней - базальтами.

Резкая асимметрия строения поверхности нашей планеты была замечена давно. Поэтому планетарный рельеф делится на две основные области - океаническую и континентальную. Средняя мощность континентальной коры - 35 км. Ее верхний слой богат гранитными породами, а нижний - базальтовыми магмами. На дне океанов гранитный слой отсутствует, и земная кора состоит только из базальтового слоя. Мощность океанической коры составляет 5-10 км.

Первые порции вулканического материала имели состав базальтов или близкий к нему. Базальтовая магма, поднимаясь к поверхности, теряла газы, уходившие в атмосферу, и превращалась в базальтовую лаву, которая растекалась по первичной поверхности планеты. При остывании она образовывала твердые покровы - первичную кору океанического типа. Однако процесс выплавления этих масс был асимметричным, и на одном полушарии планеты их сосредоточилось больше, чем на другом. В областях будущих континентов молодая земная кора была динамически неустойчивой и перемещалась вверх и вниз под влиянием внутренних причин, природа которых еще недостаточно хорошо изучена.

При общих колебательных движениях отдельные части первичной коры временами оказывались выше уровня океана и подвергались разрушению под воздействием химически активных газов первичной атмосферы, воды, а также других физических агентов. Про-


дукты разрушения сносились в пониженные участки суши и водоемы, образуя осадочные породы с механической сортировкой частиц по величине и минералогическому составу. Еще более активно эти процессы пошли с появлением биосферы. Области поднятия суши - места будущих континентов - стали обрастать поясами, образованными толщами осадочных пород, возникших за счет разрушения более приподнятых участков суши. Эти пояса впоследствии подвергались складчатости и поднятиям, в них проявлялась вулканическая деятельность. Возникли древние горные цепи вокруг ядер материков, впоследствии также разрушенные геологическими агентами. Так формировалась континентальная часть земной коры.

Океаническая часть, вероятно, редко или совсем не выступала выше уровня Мирового океана, и в ней не происходили процессы дифференциации вещества, не шли отложения осадочных пород.

Геологические особенности земной коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы - трех внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. Благодаря выветриванию и сносу вещество континентальной поверхности полностью обновляется за 80-100 млн. лет. Убыль вещества континентов восполняется поднятиями их коры. Если бы этих поднятий не было, то за несколько геологических периодов вся суша оказалась снесенной в океан, а наша планета покрылась сплошной водной оболочкой.

На поверхности литосферы в результате совокупной деятельности ряда факторов возникает почва. Основоположник почвоведения русский ученый В. В. Докучаев назвал почвой наружные горизонты горных пород, естественно измененных совместным влиянием воды, воздуха и различного рода организмов, включая их остатки. Таким образом, почва - это сложнейшая система, стремящаяся к равновесному взаимодействию с окружающей средой.

Гидросфера

Водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд. км 3 . Из этого количества 97% приходится на соленую морскую воду, 2% составляет замерзшая вода ледников и 1% - пресная вода.

Гидросфера - это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого оценивается в 100 тыс. км 3 . Большая часть воды, испаренной с поверхности морей и океанов, выпадает в виде осадков над ними же,


около 10% - уносится на сушу, падает на нее, а затем или реками уносится в океан, или уходит под землю, или консервируется в ледниках. Круговорот воды в природе не является абсолютно замкнутым циклом. Сегодня доказано, что наша планета постоянно теряет часть воды и воздуха, которые уходят в мировое пространство. Поэтому с течением времени встанет проблема сохранения воды на нашей планете.

Вода - вещество, обладающее многими уникальными физическими и химическими свойствами. В частности, вода имеет высокую теплоемкость, теплоту плавления и испарения и в силу этих качеств является важнейшим климатообразующим фактором на Земле. Вода - хороший растворитель, поэтому в ней содержится множество химических элементов и соединений, необходимых для поддержания жизни. Не случайно именно Мировой океан стал колыбелью Жизни на нашей планете.

Мировой океан. Большую часть поверхности Земли занимает Мировой океан (71% поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Антарктиду) и острова. Океан делится материками на четыре части: Тихий (50% площади Мирового океана), Атлантический (25), Индийский (21) и Северный Ледовитый (4%) океаны. Мировой океан часто называют «печкой планеты». В теплое время года вода согревается медленнее суши, поэтому она охлаждает воздух, зимой же, наоборот, теплая вода согревает холодный воздух.

В Мировом океане постоянно происходят поступательные движения масс воды - морские течения. Они образуются под влиянием господствующих ветров, приливных сил Луны и Солнца, а также из-за существования слоев воды разной плотности. Под влиянием вращения Земли все течения в Северном полушарии отклоняются вправо, а в Южном полушарии - влево. Огромную роль в морях и океанах играют приливы и отливы, вызывающие периодические колебания уровня воды и смену приливных течений. В открытом океане высота прилива достигает одного метра, у берегов - до 18 метров. Самые высокие приливы наблюдаются у берегов Франции (14,7 м) и в Англии, в устье реки Северн (16,3 м), в России - в Мензен-ском заливе Белого моря (10 м) и в Пенжинской губе Охотского моря (11 м).

Огромны продовольственные, энергетические и минеральные запасы Мирового океана.

Реки. Важной частью гидросферы Земли являются реки - водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока с их бассейнов. Реки с притоками образуют речную систему. Течение и расход воды в них зависят от уклона русла. Обычно выделяют горные реки с быстрым те-


чением и узкими речными долинами и равнинные реки с медленным течением и широкими речными долинами.

Реки являются важной частью круговорота воды в природе. Их суммарный годовой сток в Мировой океан составляет 38,8 тыс. км 3 . Реки - это источники питьевой и промышленной воды, источник гидроэнергии. В реках обитает большое количество растений, рыб и других пресноводных организмов. Самые большие реки на планете - Амазонка, Миссисипи, Енисей, Лена, Обь, Нил, Амур, Янцзы, Волга.

Озера и болота - также часть гидросферы Земли. Озера - это заполненные водой водоемы, вся поверхность которых открыта атмосфере и которые не имеют уклонов, создающих течения, а также не связаны с морем иначе, чем через реки и протоки. Понятие «озера» включает в себя большой круг водоемов, в том числе пруды (небольшие мелкие озера), водохранилища, а также болота и трясины со стоячей водой. По происхождению озера могут быть ледниковыми, проточными, термокарстовыми, солеными. С геологической точки зрения озера имеют малую продолжительность жизни. Как правило, они постепенно исчезают из-за нарушения равновесия между притоком и стоком воды из озера. К числу крупнейших озер относятся: Каспийское и Аральское моря, Байкал, озера Верхнее, Гурон и Мичиган в США и Канаде, Виктория, Ньянза и Танганьика в Африке.

Подземные воды - еще одна часть гидросферы. Подземными являются все воды, находящиеся под земной поверхностью. Существуют подземные реки, свободно текущие по подземным каналам - трещинам и пещерам. Есть также фильтрующиеся воды, просачивающиеся через рыхлые породы (песок, гравий, гальку). Самый ближний к поверхности земли горизонт подземных вод называют грунтовыми водами.

Вода, попавшая в грунт, доходит до водоупорного слоя, накапливается на нем и пропитывает вышележащие породы. Так образуются водоносные горизонты, могущие служить источниками воды. Иногда водоупорный слой может создавать вечная мерзлота.

Ледники, образующую ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают площадь, равную 16 млн. км 2 , что примерно составляет 1/10 часть поверхности планеты. Именно в них содержатся основные запасы пресной воды (3/4). Если бы льды, находящиеся в ледниках, вдруг растаяли, уровень Мирового океана повысился бы на 50 метров.

Ледяные массивы образуются там, где возможно не только накопление снега, выпавшего за зиму, но и сохранение его в течение лета. Со временем такой снег уплотняется до состояния льда и может закрыть собой всю местность как ледниковый покров или ледяная шапка. Места, где может происходить накопление многолет-


него льда, определяются географической широтой и высотой над уровнем моря. В полярных районах граница многолетнего льда лежит на уровне моря, в Норвегии - на высоте 1,2-1,5 км над уровнем моря, в Альпах - на высоте 2,7 км, а в Африке - на высоте 4,9 км.

Гляциологи различают материковые покровы, или щиты, и горные ледники. Самые мощные материковые ледниковые покровы расположены в Антарктиде и Гренландии. В некоторых местах толщина льда достигает 3,2 км. Постепенно сползающие к океану толщи льда рождают ледяные горы - айсберги. Горные ледники - это ледяные реки, спускающиеся по склонам гор, хотя их движение идет очень медленно - со скоростью от 3 до 300 м в год. При своем движении ледники меняют картину ландшафта, увлекая за собой валуны, обдирая склоны гор и обламывая при этом значительные куски породы. Продукты разрушения уносятся ледником по склону и оседают по мере его таяния.

Вечная мерзлота. Частью криосферы Земли помимо ледников являются многолетнемерзлые грунты (вечная мерзлота). Толщина таких грунтов в среднем достигает 50-100 м, а в Антарктиде доходит до 4 км. Вечная мерзлота занимает огромные территории в Азии, Европе, Северной Америке и Антарктиде, ее общая площадь составляет 35 млн. км 2 . Вечная мерзлота возникает в местах, где среднегодовые температуры имеют отрицательные значения. В ней содержится до 2% общего объема льда на Земле.

Атмосфера

Атмосфера - это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. По химическому составу атмосфера представляет собой смесь газов, состоящую из 78% азота, 21% кислорода, а также инертных газов, водорода, углекислого газа, паров воды, на которые приходится около 1% объема. Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности Земли.

Масса атмосферы довольно велика и составляет 5,15 10 18 кг. Это значит, что каждый кубический метр окружающего нас воздуха весит около 1 кг. Вес воздуха, давящего на нас, называют атмосферным давлением. Среднее атмосферное давление на поверхности Земли равно 1 атм, или 760 мм ртутного столба. Это означает, что на каждый квадратный сантиметр нашего тела давит груз атмосферы массой в 1 кг. С высотой плотность и давление атмосферы быстро убывают.

В атмосфере есть районы с устойчивыми минимумами и максимумами температур и давлений. Так, в районе Исландии и Алеут-


ских островов располагается такая область, являющаяся традиционным местом рождения циклонов, определяющих погоду в Европе. А в Восточной Сибири область низкого давления летом сменяется областью высокого давления зимой. Неоднородность атмосферы вызывает перемещение воздушных масс - так появляются ветры.

Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера - это нижний слой атмосферы, определяющий погоду на нашей планете. Его толщина - 10-18 км. С высотой падает давление и температура, опускаясь до -55°С. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.

Следующий слой атмосферы - это стратосфера, простирающаяся до 50 км в высоту. Нижняя часть стратосферы имеет постоянную температуру, в верхней части наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера - эта часть атмосферы, которая начинается с высоты 50 км. Ионосфера состоит из ионов - электрически заряженных частиц воздуха. Ионизация воздуха происходит под действием Солнца. Ионосфера обладает повышенной электропроводностью и в силу этого отражает короткие радиоволны, позволяя осуществлять дальнюю связь.

С высоты в 80 км начинается мезосфера, роль которой состоит в поглощении озоном, водяным паром и углекислым газом ультрафиолетовой радиации Солнца.

На высоте 90 - 200-400 км находится термосфера. В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений. На высоте более 250 км постоянно дуют ураганные ветры, причиной которых считают космические излучения.

Верхняя область атмосферы, простирающаяся от 450-800 км до 2000-3000 км, называется экзосферой. В ней содержится атомарный кислород, гелий и водород. Часть этих частиц постоянно уходит в мировое пространство.

Результатом саморегулирующихся процессов в атмосфере Земли является климат нашей планеты. Это не то же самое, что погода, которая может меняться каждый день. Погода очень изменчива и зависит от колебаний тех взаимосвязанных процессов, в результате которых она формируется. Это - температура, ветры, давление, осадки. Погода в основном является результатом взаимодействия атмосферы с сушей и океаном.


Климат - это состояние погоды какого-либо региона за длительный промежуток времени. Он формируется в зависимости от географической широты, высоты над уровнем моря, воздушных потоков. Меньше влияют рельеф и тип почвы. Выделяют ряд климатических зон мира, обладающих комплексом сходных характеристик, относящихся к сезонным температурам, количеству осадков и силе ветра:

зона влажного тропического климата - среднегодовые температуры больше 18°С, холодов не бывает, осадков выпадает больше, чем испаряется воды;

зона сухого климата - область малого количества осадков. Сухой климат может быть жарким, как в тропиках, или свежим, как в континентальной Азии;

зона теплого климата - средние температуры в самое холодное время здесь не опускаются ниже -3°С, и хотя бы один месяц имеет среднюю температуру больше 10°С. Хорошо выражен переход от зимы к лету;

зона холодного северного таежного климата - в холодное время средняя температура опускается ниже - 3°С, но в теплое время она выше 10°С;

зона полярного климата - даже в самые теплые месяцы средние температуры здесь ниже 10°С, поэтому в этих районах прохладное лето и очень холодные зимы;

зона горного климата - районы, отличающиеся по климатическим характеристикам от той климатической зоны, в которой они находятся. Появление таких зон связано с тем, что с высотой падают средние температуры и сильно меняется количество осадков.

Климат Земли имеет ярко выраженную цикличность. Самым известным примером цикличности климата являются периодически случавшиеся на Земле оледенения. За два последних миллиона лет наша планета пережила от 15 до 22 ледниковых периодов. Об этом свидетельствуют исследования осадочных пород, накопившихся на дне океанов и озер, а также исследования образцов льда из глубин Антарктического и Гренландского ледниковых покровов. Так, в последний ледниковый период Канада и Скандинавия были покрыты гигантским ледником, а Северо-Шотландское нагорье, горы Северного Уэльса и Альпы имели огромные ледяные шапки.

Сейчас мы живем в период глобального потепления. С 1860 г. средняя температура Земли поднялась на 0,5°С. В наши дни увеличение средних температур идет еще более быстрыми темпами. Это грозит серьезнейшими изменениями климата на всей планете и другими последствиями, которые более подробно будут рассмотрены в главе, посвященной проблемам экологии.


Магнитосфера

Магнитосфера - самая внешняя и протяженная оболочка Земли - представляет собой область околоземного пространства, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. С дневной стороны она простирается на 8-24 земных радиусов, с ночной - доходит до нескольких сотен радиусов и образует магнитный хвост Земли. В магнитосфере находятся радиационные пояса.

Магнитное поле Земли образуется во внешней оболочке ядра благодаря циркуляции электрических токов. Поэтому Земля представляет собой огромный магнит с четко выраженными магнитными полюсами. Северный магнитный полюс находится в Северной Америке на полуострове Ботия, Южный магнитный полюс - в Антарктиде на станции Восток.

В настоящее время установлено, что магнитное поле Земли не является неизменным. Его полярность в истории существования Земли менялась несколько раз. Так, 30 000 лет назад Северный магнитный полюс находился на Южном полюсе. Кроме того, периодически происходят возмущения магнитного поля Земли - магнитные бури, главной причиной возникновения которых является колебание солнечной активности. Поэтому особенно часты магнитные бури в годы активного Солнца, когда на нем появляется много пятен, а на Земле возникают полярные сияния.

Введение

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в xviii веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Эммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под действием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы.

Таким образом, возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаровидные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газообразного вещества.

1. История земли

Земля - это третья от Солнца планета Солнечной системы. Она обращается вокруг звезды по эллиптической орбите (очень близкой к круговой) со средней скоростью 29.765 км/с на среднем расстоянии 149.6 млн. км за период равный 365.24 суток. Земля имеет спутник - Луну, обращающуюся вокруг Солнца на среднем расстоянии 384400 км. Наклон земной оси к плоскости эклиптике составляет 66033`22``. Период вращения планеты вокруг своей оси 23 ч 56 мин 4.1 сек. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года. Форма Земли - геоид, приближенно - трехосный эллипсоид, сфероид. Средний радиус Земли составляет 6371.032 км, экваториальный - 6378.16 км, полярный - 6356.777 км. Площадь поверхности земного шара 510 млн. км2, объем - 1.083 * 1012 км2, средняя плотность 5518 кг/м3. Масса Земли составляет 5976 * 1021 кг. Земля обладает магнитным и тесно связанным с ним электрическим полями. Гравитационное поле Земли обуславливает её сферическую форму и существование атмосферы.

По современным космогоническим представлениям, Земля образовалась примерно 4.7 млрд. лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества, Земля, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34.6%), кислород (29.5%), кремний (15.2%), магний (12.7%). Земная кора, мантия и внутренняя чаять ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Давление в центре планеты 3.6 * 1011 Па, плотность около 12.5 * 103 кг/м3, температура колеблется от 50000 до

60000 С. Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Большая часть Земли занята Мировым океаном (361.1 млн. км2 ;70.8%), суша составляет 149.1 млн.км2 (29.2%), и образует шесть материков и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомолунгма), горы занимают свыше 1/3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Средняя глубина мирового океана около 3800 м (наибольшая глубина 11020 м - Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн. км3, средняя соленость 35 г/л.

Атмосфера Земли, общая масса которой 5.15 * 1015 т, состоит из воздуха - смеси в основном азота (78.08%) и кислорода (20.95%), остальное - это водяные пары углекислый газ, а также инертный и другие газы. Максимальная температура поверхности суши 570-580 С (в тропических пустынях Африки и Северной Америки), минимальная - около -900 С (в центральных районах Антарктиды).

Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древних горных пород составляет свыше 3.5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий примерно 5/6 всего геологического летоисчисления (около 3 млрд. лет), и фанерозой, охватывающей последние 570 млн. лет. Около 3-3.5 млрд. лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы. Совокупность всех населяющих ее живых организмов, так называемое живое вещество Земли, оказала значительное влияние на развитие атмосферы, гидросферы и осадочной оболочки. Новый

фактор, оказывающий мощное влияние на биосферу - производственная деятельность человека, который появился на Земле менее 3 млн. лет назад. Высокий темп роста населения Земли (275 млн. чел в 1000 году, 1.6 млрд. чел в 1900 году и примерно 6.3 млрд. чел в 1995 году) и усиление влияния человеческого общества на природную среду выдвинули проблемы рационального использования всех природных ресурсов и охраны природы.

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра .

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны , которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Внутреннее ядро , имеющее радиус 1225 км, твердое и обладает большой плотностью - 12,5 г/см3. Внешнее ядро жидкое, его плотность 10 г/см3. На границе ядра и мантии отмечается резкий скачок не только в скорости продольных волн, но и в плотности. В мантии она снижается до 5,5 г/см3. Слой D", находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре значительно превышают температуры мантии. Местами данный слой порождает огромные, направленные к поверхности Земли сквозь мантийные тепломассопотоки, называемые плюмами . Они могут проявляться на планете в виде крупных вулканических областей, как, например, на Гавайских островах, в Исландии и других регионах.

Верхняя граница слоя D" неопределенна; ее уровень от поверхности ядра может варьировать от 200 до 500 км и более. Таким образом, можно

заключить, что данный слой отражает неравномерное и разноинтенсивное поступление энергии ядра в область мантии.

Границей нижней и верхней мантии в рассматриваемой схеме служит сейсмический раздел, лежащий на глубине 670 км. Он имеет глобальное распространение и обосновывается скачком сейсмических скоростей в сторону их увеличения, а также возрастанием плотности вещества нижней мантии. Этот раздел является также и границей изменений минерального состава пород в мантии.

Таким образом, нижняя мантия , заключенная между глубинами 670 и 2900 км, простирается по радиусу Земли на 2230 км. Верхняя мантия имеет хорошо фиксирующийся внутренний сейсмический раздел, проходящий на глубине 410 км. При переходе этой границы сверху вниз сейсмические скорости резко возрастают. Здесь, как и на нижней границе верхней мантии, происходят существенные минеральные преобразования.

Верхнюю часть верхней мантии и земную кору слитно выделяют как литосферу, являющуюся верхней твердой оболочкой Земли, в противоположность гидро- и атмосфере. Благодаря теории тектоники литосферных плит термин "литосфера" получил широчайшее распространение. Теория предполагает движение плит по астеносфере - размягченном, частично, возможно, жидком глубинном слое пониженной вязкости. Однако сейсмология не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных слоев, расположенных по вертикали, а также прерывистость их по горизонтали. Особенно определенно их чередование фиксируется в пределах континентов, где глубина залегания астеносферных слоев (линз) варьирует от 100 км до многих сотен.

Под океанскими абиссальными впадинами астеносферный слой лежит на глубинах 70-80 км и менее. Соответственно нижняя граница литосферы фактически является неопределенной, а это создает большие трудности для теории кинематики литосферных плит, что и отмечается многими исследователями. Таковы основы представлений о строении Земли , сложившиеся к настоящему времени. Далее обратимся к новейшим данным в отношении глубинных сейсмических рубежей, представляющих важнейшую информацию о внутреннем строении планеты.

3. Геологическое строение Земли

История геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса образования Земли.

Фаза 1 (4,7 – 4 млрд. лет). Происходит образование земли из газа, пыли и планетезималей. В результате энергии, выделяющейся в процессе распада радиоактивных элементов, и столкновения планетезималей Земля постепенно разогревается. Падение на Землю гигантского метеорита приводит к выбросу материала, из которого образуется Луна.

Согласно другой концепции Протолуна, находящаяся на одной из гелиоцентрических орбит, была захвачена Протоземлей, в результате чего образовалась двойная система Земля – Луна.

Дегазация Земли приводит к началу образования атмосферы, состоящей в основном из углекислоты, метана и аммиака. В конце рассматриваемой фазы за счет конденсации водяного пара начинается образование гидросферы.

Фаза 2 (4 – 3,5 млрд. лет). Возникают первые острова, протоконтиненты, сложенные из горных пород, содержащих преимущественно кремний и алюминий. Протконтиненты незначительно возвышаются над еще очень мелководными океанами.

Фаза 3 (3,5 – 2,7 млрд. лет). Железо собирается в центре Земли и образует ее жидкое ядро, которое обусловливает возникновение магнитосферы. Создаются предпосылки для появления первых организмов, бактерий. Продолжается формирование континентальной коры.

Фаза 4 (2,7 – 2,3 млрд. лет). Образуется единый суперконтинент. Пангея, которому противостоит суперокеан Панталасса.

Фаза 5 (2,3 – 1,5 млрд. лет). Охлаждение коры и литосферы приводит к распаду суперконтинента на блоки-микроплиты, пространства между которыми заполняют осадки и вулканы. В результате возникают складчато-надводные системы и образуется новый суперконтинент – Пангея I. Органический мир представлен сине-зелеными водорослями, фотосинтезирующая деятельность которых способствует обогащению атмосферы кислородом, что ведет к дальнейшему развитию органического мира.

Фаза 6 (1700 – 650 млн. лет). Происходит деструкция Пангеи I, образование бассейнов с корой океанского типа. Формируются два суперконтинента: Гондавана, куда вошли Южная Америка, Африка, Мадагаскар, Индия, Австралия Антарктида, и Лавразия, включающая Северную Америку, Гренландию, Европу и Азию (кроме Индии). Гондвану и Лавразию разделяет море Титс. Наступают первые ледниковые эпохи. Органический мир стремительно насыщается многоклеточными бесскелетными организмами. Появляются первые скелетные организмы (трилобиты, моллюски и др.). происходит нефтеобразование.

Фаза 7 (650 – 280 млн. лет). Горный пояс Аппалачей в Америке соединяет Гондвану с Лавразией – образуется Пангея II. Обозначаются контуры

палеозойских океанов – Палеоантлантического, Палеотетиса, Палеоазиатского. Гондвану дважды охватывает покровное оледенение. Появляются рыбы, позднее – амфибии. Растения и животные выходят на сушу. Начинается интенсивное углеобразование.

Фаза 8 (280 – 130 млн. лет). Пангея II пронизывает все более густой сетью континентальных рифов, щелевидных ровообразных растяжений земной коры. Начинается раскалывание суперконтинента. Африка отделяется от Южной Америки и Индостана, а последний – от Австралии и Антарктиды. Наконец Австралия отделяется от Антарктиды. Покрытосеменные растения осваивают значительные пространства суши. В животном мире господствуют пресмыкающиеся и земноводные, появляются птицы и примитивные млекопитающие. В конце периода погибают многие группы животных, в том числе огромные динозавры. Причины этих явлений обычно видят либо в столкновении Земли с крупным астероидом, либо в резком усилении вулканической деятельности. То и другое могло привести к глобальным изменениям (увеличению содержания углекислоты в атмосфере, возникновению крупных пожаров, позолоданию), несовместимым с существование многих видов животных.

Фаза 9 (130 млн. лет – 600 тыс. лет). Крупным изменения подвергается общая конфигурация материков и океанов, в частности Евразия отделяется от Северной Америки, Антарктида – от Южной Америки. Распределение материков и океанов стало весьма близким к современному. В начале рассматриваемого периода климат на всей Земле теплый и влажный. Конец периода характеризуется резкими климатическими контрастами. Вслед за оледенением Антарктиды происходит оледенение Арктики. Складывается фауна и флора, близкие к современным. Появляются первые предки современного человека.

Фаза 10 (современность). Между литосферой и земным ядром поднимаются и опускаются потоки магмы, сквозь щели в коре они прорываются наверх. Обломки океанической коры опускаются вплоть до самого ядра, а затем всплывают и, возможно, образуют новые острова. Литосферные плиты сталкиваются друг с другом и находятся под постоянным воздействием потоков магмы. Там, где плиты расходятся, образуются новые сегменты литосферы. Постоянно происходит процесс дифференциации земного вещества, который преобразует состояние всех геологических оболочек Земли, в том числе и ядра.

Заключение

Земля выделена самой природой: в Солнечной системе только на этой планете существуют развитые формы жизни, только на ней локальное упорядочение вещества достигло необычайно высокой ступени, продолжая общую линию развития материи. Именно на Земле пройден сложнейший этап самоорганизации, знаменующий глубокий качественный скачок к высшим формам упорядоченности.

Земля – самая большая планета в своей группе. Но, как показывают оценки, даже такие размеры и масса оказываются минимальными, при которых планета способна удерживать свою газовую атмосферу. Земля интенсивно теряет водород и некоторые другие лёгкие газы, что подтверждают наблюдения за так называемым шлейфом Земли.

Атмосфера Земли кардинально отличается от атмосфер других планет: в ней низкое содержание углекислого газа, высоко содержание молекулярного кислорода и относительно велико содержание паров воды. Две причины создают выделенность атмосферы Земли: вода океанов и морей хорошо поглощает углекислый газ, а биосфера насыщает атмосферу молекулярным кислородом, образующимся в процессе растительного фотосинтеза. Расчёты показывают, что если освободить всю поглощённую и связанную в океанах углекислоту, убрав одновременно из атмосферы весь накопленный в результате жизнедеятельности растений кислород, то состав земной атмосферы в своих основных чертах стал бы подобен составу атмосфер Венеры и Марса.

В атмосфере Земли насыщенные водяные пары создают облачный слой, охватывающий значительную часть планеты. Облака Земли входят важнейшим элементом в круговорот воды, происходящий на нашей планете в системе гидросфера – атмосфера - суша.

Тектонические процессы активно протекают на Земле и в наши дни, её геологическая история далека от завершения. Время от времени отголоски планетной деятельности проявляются с такой силой, что вызывают локальные катастрофические потрясения, отражающиеся на природе и человеческой цивилизации. Палеонтологи утверждают, что в эпоху ранней молодости Земли её тектоническая активность была ещё выше. Современный рельеф планеты сложился и продолжает видоизменятся под влиянием совместного действия на её поверхности тектонических, гидросферных, атмосферных и биологических процессов.

Список литературы

1. В.Ф. Тулинов «Концепции современного естествознания»: Учебник для вузов.- М.: ЮНИТИ-ДАНА, 2004 г.

2. А.В. Бялко «Наша планета – Земля»- М. Наука, 1989 г.

3. Г.В. Войткевич «Основы теории происхождения Земли» - М Недра, 1988 г.

4. Физическая энциклопедия. Тт. 1-5. – М. Большая Российская энциклопедия, 1988-1998 .

Введение………………………………………………………………………..3

1. История Земли…………………………………………..………………4

2. Сейсмическая модель строения Земли………………………………...6

3. Геологическое строение Земли………………………………………...9

Заключение…………………………………………………………………….13

Список литературы……………………………………………………………15

ИНСТИТУТ ЭКОНОМИКИ И ПРЕДПРИНИМАТЕЛЬСТВА

Заочное отделение

РЕФЕРАТ

По предмету «Концепции современного естествознания»

на тему «Строение Земли»

Студента группы 06-Н11з Сурковой В.В.

Научный руководитель Пермяков Е.М.

У земного шара есть несколько оболочек: — воздушная оболочка, — водная оболочка, — твердая оболочка.

Третья за отдаленностью от Солнца планета- Земля имеет радиус 6370 км, среднюю плотность- 5,5 г/см2. Во внутреннем строении Земли принято различать следующие слои:

земная кора — верхний слой Земли, в котором могут существовать живые организмы. Толщина земной коры может быть от 5 до 75 км.

мантия — твердый слой, который находится ниже земной коры. Его температура достаточно высока, однако вещество находится в твердом состоянии. Толщина мантии порядка 3 000 км.

ядро — центральная часть земного шара. Его радиус приблизительно 3 500 км. Температура внутри ядра очень высока. Считается, что ядро состоит в основном из расплавленного металла,
предположительно — железа.

Земная кора

Выделяют два основных типа земной коры — континентальный и океанический, плюс промежуточный, субконтинентальный.

Земная кора тоньше под океанами (около 5 км) и толще — под материками (до 75 км.). Она неоднородна, различают три слоя: базальтовый (залегает ниже всего), гранитный и осадочный (верхний). Континентальная кора состоит из трех слоев, тогда как в океанической гранитный слой отсутствует. Земная кора формировалась постепенно: сначала был сформирован базальтовый слой, затем — гранитный, осадочный слой продолжает формироваться и в настоящее время.

— вещество, из которого состоит земная кора. Горные породы подразделяются на следующие группы:

1. Магматические горные породы. Они образуются при затвердевании магмы в толще земной коры или на поверхности.

2. Осадочные горные породы. Они образуются на поверхности, формируются из продуктов разрушения или изменения других пород, биологических организмов.

3. Метаморфические горные породы. Они образуются в толще земной коры из других горных пород под действием определенных факторов: температуры, давления.

Астрономы изучают космос, получают инфор-мацию о планетах и звездах несмотря на их огром-ную удалённость. При этом на самой Земле не меньше тайн, чем во Вселенной. И сегодня учёные не знают, что внутри нашей планеты. Наблюдая, как выливается лава при извержении вулкана, можно подумать, что внутри Земля тоже расплав-ленная. Но это не так.

Ядро. Центральная часть земного шара называ-ется ядром (рис. 83). Его радиус составляет около 3 500 км. Учёные полагают, что внешняя часть ядра находится в расплавленно-жидком состоя-нии, а внутренняя — в твёрдом. Температура в нём достигает +5 000 °С. От ядра к поверхности Земли температура и давление постепенно снижаются.

Мантия. Ядро Земли покрыто мантией. Её толща составляет приблизительно 2 900 км. Мантию, как и ядро, никто никогда не видел. Но предполага-ют, что чем ближе к центру Земли, тем давление в ней выше, а температура — от нескольких сотен до -2 500 °С. Считают, что мантия твёрдая, но одно-временно раскалённая.

Земная кора. Поверх мантии наша планета покрыта корой. Это верхний твёрдый слой Зем-ли. По сравнению с ядром и мантией земная кора очень тонкая. Её толща составляет лишь 10-70 км. Но это та земная твердь, по которой мы ходим, те-кут реки, на ней построены города.

Земная кора образована различными вещества-ми. Она состоит из минералов и горных пород. Не-которые из них вам уже известны (гранит, песок, глина, торф и др.). Минералы и горные породы раз-личаются по цвету, твёрдости, строению, темпе-ратуре плавления, растворимости в воде и другим свойствам. Многие из них человек широко исполь-зует, например как топливо, в строительстве, для получения металлов. Материал с сайта

Гранит
Песок
Торф

Верхний слой земной коры видно в отложениях на склонах гор, крутых берегах рек, карьерах (рис. 84). А заглянуть в глубь коры помогают шахты и буровые скважины, которые используют для добычи полез-ных ископаемых, например, нефти и газа.

Основным объектом изучения геологии является земная кора, внешняя твердая оболочка Земли, имеющая важнейшее значение для осуществления жизни и деятельности человека. При исследованиях состава, строения и истории развития Земли и земной коры, в частности, геологи используют: наблюдения; опыт или эксперимент, включающий различные как собственные, так и применяемые в других естественных науках методы исследований, например, физико-химические, биологические и др.; моделирование; метод аналогий; теоретический анализ; логические построения (гипотезы) и т. д.

В данном разделе рассматривается вопрос происхождения Земли, ее форма и строение, состав, история развития земной коры (геохронология); тектонические движения земной коры, формы поверхности (рельеф).

ПРОИСХОЖДЕНИЕ, ФОРМА И СТРОЕНИЕ ЗЕМЛИ ПРОИСХОЖДЕНИЕ ЗЕМЛИ

Солнечная система состоит из небесных тел. В нее входят: Солнце, девять больших планет, в том числе Земля, и десятки тысяч малых планет, комет и множество метеорных тел. Солнечная система - сложный и многообразный мир, далеко еще не изученный.

Вопрос о происхождении Земли - важнейший вопрос естествознания. Более 100 лет пользовалась признанием гипотеза Канта - Лапласа, согласно которой Солнечная система образовалась из огромной раскаленной газоподобной туманности, вращавшей-

ся вокруг оси, а Земля вначале была в жидком состоянии, а потом стала твердым телом.

Дальнейшее развитие науки показало несостоятельность этой гипотезы. В 40-х годах XX в. акад. О.Ю. Шмидт выдвинул новую гипотезу происхождения планет Солнечной системы, в том числе и Земли, согласно которой Солнце на своем пути пересекло и захватило одно из пылевых скоплений Галактики, поэтому планеты образовались не из раскаленных газов, а из пылевидных частиц, вращающихся вокруг Солнца. В этом скоплении со временем возникли уплотненные сгустки материи, давшие начало планетам.

Земля, по О.Ю. Шмидту, первоначально была холодной. Разогрев ее недр начался, когда она достигла больших размеров. Это произошло за счет выделения теплоты в результате распада имеющихся в ней радиоактивных веществ. Недра Земли приобрели пластическое состояние, более плотные вещества сосредоточились ближе к центру планеты, более легкие у ее периферии. Произошло расслоение Земли на отдельные оболочки. По гипотезе О.Ю. Шмидта, расслоение продолжается до настоящего времени. По мнению ряда ученых, именно это является основной причиной движений в земной коре, т. е. причиной тектонических процессов.

Заслуживает внимания гипотеза В.Г. Фесенкова, который считает, что в недрах звезд, в том числе и Солнца, протекают ядерные процессы. В один из периодов это привело к быстрому сжатию и увеличению скорости вращения Солнца. При этом образовался длинный выступ, который потом оторвался и распался на отдельные планеты. Обзор гипотез о происхождении Земли и наиболее вероятная схема ее происхождения детально рассмотрена в книге И.И. Потапова «Геология и экология сегодня» (1999).

КРАТКИЙ ОЧЕРК ГЛОБАЛЬНОЙ ЭВОЛЮЦИИ ЗЕМЛИ

Происхождение планет Солнечной системы и их эволюция активно изучались в XX в. в фундаментальных работах О.Ю. Шмидта, В.С. Сафронова, X. Аль-вена и Г. Аррениуса, А.В. Витязева, А. Гингвуда, В.Е. Хайна, О.Г. Сорохтина, С.А. Уманова, Л.М. Наймарка, В. Эльзассера, Н.А. Божко, А. Смита, Дж. Юрай-дена и др. Согласно современным космологическим представлениям, заложенным О.Ю. Шмидтом, Земля и Луна, равно как и другие планеты Солнечной системы, образовались за счет аккреции (слипания и дальнейшего роста) твердых частиц газопылевого протопланетного облака. На первом этапе рост Земли шел в ускоряющемся режиме аккреции, но по мере исчерпания запасов твердого вещества в околоземном рое планетезималей протопланетного облака этот рост постепенно замедлился. Процесс аккреции Земли сопровождался выделением колоссального количества гравитационной энергии, примерно 23,3 10 й эрг. Такое количество энергии способно было не только расплавить вещество, но даже растворить его, но большая часть этой энергии выделялась в приповерхностной части Протоземли и терялась в виде теплового излучения. На то чтобы Земля сформировалась на 99 % ее современной массы, потребовалось 100 млн лет.

На первом этапе молодая Земля сразу же после образования была относительно холодным телом, и температура ее недр не превышала температуры плавления земного вещества, в силу того что при формировании планеты происходил не только нагрев за счет падающих планетезималей, но и остывание за счет теп-лопотерь в окружающее пространство, кроме того, Земля имела однородный состав. Дальнейшая эволюция Земли обусловлена ее составом, теплозапасом и историей взаимодействия с Луной. Влияние состава сказывается прежде всего через энергию распада радиоактивных элементов и гравитационную дифференциацию земного вещества.

До формирования планетной системы звезда Солнце представляла собой практически классический красный гигант. Звезды этого типа в результате внутренних ядерных реакций водородного горения формируют более тяжелые химические элементы с выделением огромного количества энергии и возникновением сильного светового давления с поверхности на газообразную атмосферу. В результате комбинационного воздействия этого давления и огромного притяжения атмосфера звезды испытывала попеременное сжатие и расширение. Этот процесс в условиях динамического увеличения массы газовой оболочки продолжался до тех пор, пока в результате резонанса внешняя газовая оболочка, оторвавшись от Солнца, не превратилась в планетарную туманность.

Под воздействием силового магнитного поля звезды ионизированное вещество планетарной туманности подверглось электромагнитной сепарации слагающих его химических элементов. Постепенная потеря тепловой энергии и электрических зарядов газов привело их к слипанию. При этом под воздействием магнитного поля звезды обеспечивалась эффективная передача момента вращения к образовавшимся в результате аккреции планетезималям, которые послужили началом формирования всех планет Солнечной системы. При потере заряда ионизированными химическими элементами последние превращались в молекулы, реагировавшие друг с другом, образуя простейшие химические соединения: гидриды, карбиды, оксиды, цианиды, сульфиды и хлориды железа и др.

Процесс постепенного уплотнения, разогревания и дальнейшей дифференциации вещества в образовавшихся планетах происходил с захватом частиц из окружающего пространства. В центре формирующейся протопланеты концентрировались металлы за счет гравитационного разделения вещества. Вокруг этой зоны собирались карбиды железа и никеля, сернистое железо и оксиды железа. Таким образом образовалось внешнее жидкое ядро, которое в своей оболочке содержало гидриды и оксиды кремния и алюминия, воду, метан, водород, оксиды магния, калия, натрия, кальция и другие соединения. При этом происходила зонная плавка образовавшейся оболочки и сокращение поверхности и уменьшение объема планеты. Следующими этапами было формирование мантии, протокоры и выплавление астеносферы. Протокора дробилась за счет упомянутого выше сокращения объема и поверхности. За счет этого на поверхность изливались базальты, которые после остывания вновь погружались в глубинную часть мантии и подвергались следующей переплавке; затем часть базальтовой коры постепенно трансформировалась в гранитную.

Поверхностные слои Земли на этапе формирования состояли из мелкопористого реголита, который активно связывал выделявшиеся воду и углекислый газ за счет своего ультраосновного состава. Общий теплозапас Земли и распределение температуры в ее недрах определялись скоростью роста планеты. В целом, в отличие от Луны, Земля никогда не плавилась полностью, а процесс формирования земного ядра растянулся приблизительно на 4 млрд лет.

Примерно 600 млн лет продолжалось состояние холодной и тектонически пассивной Земли. В это время медленно разогревались недра планеты и примерно 4 млрд лет назад на Земле проявилась активная гранитизация и сформировалась астеносфера. При этом Луна как самый массивный спутник «вычищал» из околоземного пространства все имевшиеся там меньшие спутники и микролуны,

а на самой Луне произошла вспышка базальтового магматизма, что совпало с началом тектонической активности на Земле (период продолжался от 4,0 до 3,6 млрд лет назад). В этот же момент в недрах Земли возбуждается процесс гравитационной дифференциации земного вещества - главного процесса, поддерживавшего тектоническую активность Земли во все последующие геологические эпохи и приведшего к выделению и росту плотного оксидно-железного земного ядра.

Так как в криптотектоническую эпоху (катархее) земное вещество никогда не плавилось, то не могли развиваться процессы дегазации Земли, поэтому первые 600 млн лет существования Земли на ее поверхности полностью отсутствовала гидросфера, а атмосфера была исключительно разряженной и состояла из благородных газов. В это время рельеф Земли был сглаженным, состоявшим из темно-серого реголита. Все освещалось желтым слабогреюшим Солнцем (светимость была на 30 % меньше современной) и непомерно большим без пятен диском Луны (она приблизительно в 300-350 раз превышала современную видимую площадь диска Луны). Луна была еще горячей планетой и могла обогревать Землю. Стремительным было движение Солнца - всего за 3 ч оно пересекало небосвод, чтобы через 3 ч вновь взойти с востока. Гораздо медленнее двигалась Луна, так как она быстро вращалась вокруг Земли в ту же сторону, так что и фазы Луны проходили все стадии за 8-10 ч. Луна обращалась вокруг Земли по орбите с радиусом 14-25 тыс. км (сейчас радиус 384,4 тыс. км). Интенсивные приливные деформации Земли вызывали вслед движению Луны непрерывную (через каждые 18-20 ч) череду землетрясений. Амплитуда лунных приливов составляла 1,5 км.

Постепенно, примерно через миллион лет после образования, за счет осуществлявшегося отталкивания лунные приливы снизились до 130 м, еще через 10 млн лет до 25 м, а через 100 млн лет - до 15 м, к концу катархея - до 7 м, а сейчас в подлунной точке современные приливы твердой Земли составляют 45 см. Приливные землетрясения в то время были исключительно экзогенного характера, так как никакой тектонической деятельности еще не было. В архее, в самом начале, дифференциация земного вещества происходила путем выплавления из него металлического железа на уровне верхней мантии. В связи с исключительно высокой вязкостью холодной сердцевины молодой Земли возникшая гравитационная неустойчивость могла быть компенсирована путем выжимания этой сердцевины к земной поверхности и затекания на ее место выделившихся ранее тяжелых расплавов, т. е. путем формирования у Земли плотного ядра. Этот процесс завершился к концу архея около 2,7-2,6 млрд лет назад; в это время все оборобленные до этого континентальные массивы стремительно начали двигаться к одному из полюсов и объединились в первый на планете суперконтинент Моногея. Ландшафты Земли изменились, контрастность рельефа не превышала 1-2 км, все понижения рельефа постепенно заполнялись водой и в позднем архее образовался мелководный (до 1 км) единый Мировой океан.

В начале архея Луна удалилась от Земли на 160 тыс. км. Земля вращалась вокруг своей оси с большой скоростью (в году было 890 суток, а сутки продолжались 9,9 ч). Лунные приливы амплитудой до 360 см деформировали поверхность Земли через каждые 5,2 ч; к концу архея вращение Земли существенно замедлилось (в году стало 490 суток по 19 ч), а Луна перестала влиять на тектоническую активность Земли. Атмосфера в архее пополнилась азотом, углекислым газом и парами воды, но кислород отсутствовал, так как он мгновенно связывался свободным (металлическим) железом мантийного вещества, постоянно поднимавшегося через рифтовые зоны к поверхности Земли.

В протерозое за счет перераспределения конвективных движений под суперконтинентом Моногея восходящий поток привел к его распаду (примерно 2,4-3,3 млрд лет назад). Последовавшие затем формирования и дробления суперконтинентов Мегагеи, Мезогеи и Пангеи проходили с образованием сложнейших тектонических структур и продолжались вплоть до кембрия и ордовика (уже в палеозое). К этому времени масса воды на поверхности Земли стала настолько

большой, что уже проявилось в формировании более глубоководного Мирового океана. Океанская кора подверглась гидратации и этот процесс сопровождался усилением поглощения углекислого газа с образованием карбонатов. Атмосфера продолжала оставаться обедненной кислородом за счет продолжавшегося связывания его выделявшимся железом. Этот процесс завершился только к началу фане-розоя, и с этого времени земная атмосфера стала активно насыщаться кислородом, постепенно приближаясь к ее современному составу.

В этой новой ситуации произошла резкая активизация жизненных форм, обмен веществ которых был построен на реакциях обратного окисления органических веществ, синтезируемых растениями. Так появились организмы царства животных, но это уже к концу кембрийского периода, в фанерозое, и это привело к возникновению всех типов скелетных и бесскелетных животных, сказавшихся на многих геологических процессах в поверхностной зоне Земли в последующие геологические эпохи. Геологическая эволюция фанерозоя изучена гораздо подробнее, чем другие эпохи, и можно коротко описать ее следующим образом. В это наиболее близкое нам время, как было выявлено, происходили трансгрессии и регрессии океана, глобальные изменения климата, в частности, чередование ледниковых и практически безледниковых периодов, кстати, первым, как предполагается, на Земле было Гуронское оледенение в протерозое.

Процессы трансгрессий и регрессий океана при мощном развитии жизненных форм, активная эродирующая деятельность ледников и эрозионная деятельность ледниковых вод привели к значительной переработке пород, слагавших поверхностную зону земной коры, накоплению терригенного материала на океанском дне, седиментационным процессам накопления органогенного и хемо-генного материала в водных бассейнах.

Пространственное расположение материков и океанов постепенно менялось и было весьма различным относительно экватора: попеременно, то северное, то южное полушарие было континентальным или океаническим. Климат также неоднократно менялся, находясь в тесной связи с эпохами оледенений и межледниковий. Активно от палеозоя до кайнозоя (и в нем) происходили изменения глубин, температуры и состава вод Мирового океана; развитие жизненных форм привело к выходу их из водной среды и постепенному освоению суши, а также эволюции жизненных форм вплоть до известных. На основании анализа геологической истории фанерозоя следует вывод, что все главные рубежи (разделение геохронологической шкалы на эры, периоды и эпохи) в значительной степени обусловлены столкновениями и расколами материков в процессе глобального перемещения «ансамбля» литосферных плит.

ФОРМА ЗЕМЛИ

Форма Земли обычно именуется земным шаром. Установлено, что масса Земли равна 5976 10 21 кг, объем 1,083 10 12 км 3 . Средний радиус 6371,2 км, средняя плотность 5,518 кг/м 3 , среднее ускорение силы тяжести 9,81 м/с 2 . Форма Земли близка к трехосному эллипсоиду вращения с полярным сжатием: у современной Земли полярный радиус 6356,78 км, а экваториальный 6378,16 км. Длина земного меридиана составляет 40008,548 км, длина экватора 40075,704 км. Полярное сжатие (или «сплюснутость») обусловлена вращением Земли вокруг полярной оси и величина этого сжатия связана со скоростью вращения Земли. Иногда форму Земли именуют сфероидом, но для Земли есть и

собственное наименование формы, а именно геоид. Дело в том, что земная поверхность изменчива и значительна по высоте; есть высочайшие горные системы более чем в 8000 м (например, гора Эверест - 8842 м) и глубокие океанические впадины более чем в

11 000 м (Марианская впадина - 11 022 м). Геоид вне континентов совпадает с невозмущенной поверхностью Мирового океана, на континентах поверхность геоида рассчитана по гравиметрическим исследованиям и с помощью наблюдений из космоса.

Земля обладает сложноорганизованным магнитным полем, которое можно описать как поле, создаваемое намагниченным шаром или магнитным диполем.

Поверхность земного шара на 70,8% (361,1 млн км 2) занята поверхностными водами (океанами, морями, озерами, водохранилищами, реками и т. д.). Суша составляет 29,2 % (148,9 млн км 2).

СТРОЕНИЕ ЗЕМЛИ

В общем виде, как установлено современными геофизическими исследованиями на основании, в частности, оценок скоростей распространения сейсмических волн, изучения плотности земного вещества, массы Земли, результатов космических экспериментов по определению распределения воздушного и водного пространств и другими данными, Земля сложена как бы несколькими концентрическими оболочками: внешними - атмосфера (газовая оболочка), гидросфера (водная оболочка), биосфера (область распространения живого вещества, по В.И. Вернадскому) и внутренними, которые называют собственно геосферами (ядро, мантия и литосфера) (рис. 1).

Непосредственному наблюдению доступны атмосфера, гидросфера, биосфера и самая верхняя часть земной коры. С помощью буровых скважин человеку удается изучать глубины в основном до 8 км. Проходка сверхглубоких скважин осуществляется в научных целях в нашей стране, США и Канаде (в России на Кольской сверхглубокой скважине достигнута глубина более

12 км, что позволило отобрать образцы горных пород для непосредственного прямого изучения). Основной целью сверхглубокого бурения является достижение глубинных слоев земной коры - границ «гранитного» и «базальтового» слоев или верхних границ мантии. Строение более глубоких недр Земли изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические. Изучение вещества, поднятого с границ мантии, должно внести ясность в проблему строения Земли. Особый интерес представляет мантия, так как

Рис. 1. Схематическое изображение строения Земли (а) и земной коры (б):

Л - ядро; В у С - мантия; О - земная кора; Е - атмосфера (по М. Васичу); 1 - покровные отложения; 2 - гранитоподобный слой; 3 - базальтовый слой; 4-верхняя мантия; 5-мантия

земная кора со всеми полезными ископаемыми образовалась в конечном счете из ее вещества.

Атмосфера по распределенной в ней температуре снизу вверх подразделяется на тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Тропосфера составляет около 80 % всей массы атмосферы и достигает высоты 16-18 км в экваториальной части и

8-10 км в полярных областях. Стратосфера простирается до высоты 55 км и имеет у верхней границы слой озона. Далее идут до высоты 80 км мезосфера, до 800-1000 км термосфера и выше располагается экзосфера (сфера рассеивания), составляющая не более 0,5 % массы земной атмосферы. В состав атмосферы входят азот (78,1 %), кислород (21,3 %), аргон (1,28 %), углекислота (0,04 %) и другие газы и почти весь водяной пар. Содержание озона (0 3) равно 3,1 10 15 г, а кислорода (0 2) 1,192 10 2! г. С удалением от поверхности Земли температура атмосферы резко понижается и на высоте 10-12 км она уже составляет около -50 °С. В тропосфере происходит образование облаков и сосредоточиваются тепловые движения воздуха. У поверхности Земли наиболее высокая температура была отмечена в Ливии (+58 °С в тени), на территории бывшего СССР в районе г. Термез (+50 °С в тени).

Наиболее низкая температура зафиксирована в Антарктиде (-87 °С), а на территории России - в Якутии (-71 °С).

Стратосфера - следующий над тропосферой слой. Присутствие озона в данном атмосферном слое обусловливает повышение температуры в нем до +50 °С, но на высоте 8-90 км температура снова понижается до -60...-90 °С.

Среднее давление воздуха на уровне моря равно 1,0132 бар (760 мм рт. ст.), а плотность 1,3 10 3 г/см. В атмосфере и ее облачном покрове поглощается 18 % излучения Солнца. В результате радиационного баланса системы «Земля-атмосфера» средняя температура на поверхности Земли положительная (+15 °С), хотя ее колебания в разных климатических зонах могут достигать 150 °С.

Гидросфера - водная оболочка, которая играет большую роль в геологических процессах Земли. В ее состав входят все воды Земли (океаны, моря, реки, озера, материковые льды и т. д.). Гидросфера не образует сплошного слоя и покрывает земную поверхность на 70,8 %. Средняя мощность ее около 3,8 км, наибольшая - свыше 11 км (11 022 м - Марианская впадина в Тихом океане).

Гидросфера Земли значительно моложе самой планеты. На первых этапах своего существования поверхность Земли была полностью безводной, да и в атмосфере водяного пара практически не было. Образование гидросферы обусловлено процессами отделения воды из вещества мантии. Гидросфера в настоящее время составляет неразрывное единство с литосферой, атмосферой и биосферой. Именно для последней - биосферы - весьма важное значение имеют уникальные свойства воды как химического соединения, например, изменения в объеме при переходе воды из одного фазового состояния в другое (при замерзании,

при испарении); высокая растворяющая способность по отношению почти ко всем соединениям на Земле.

Именно наличие воды по своей сути обеспечивает существование жизни на Земле в известной нам форме. Из воды, как простого соединения, и углекислоты растения способны под воздействием солнечной энергии и в присутствии хлорофилла образовывать сложные органические соединения, что собственно и является процессом фотосинтеза. Вода на Земле распределена неравномерно, большая ее часть сосредоточена на поверхности. По отношению же к объему земного шара общий объем гидросферы не превышает 0,13 %. Основную часть гидросферы составляет Мировой океан (94 %), площадь которого 361059 км 2 , а общий объем-1370 млн км 3 . В континентальной земной коре 4,42 10 23 г воды, в океанической -3,61 10 23 г. В табл. 1 приведено распределение воды на Земле.

Таблица 1

Объем гидросферы и интенсивность водообмена

^Активному водообмену и использованию могут быть подвергнуты всего лишь 4000 тыс. км 3 подземных вод, расположенных на небольших глубинах.

Температура воды в океане меняется не только в зависимости от широты местности (близость к полюсам или экватору), но и от глубины океана. Наибольшей изменчивостью температур отличается поверхностный слой до глубины 150 м. Самая высокая температура воды в верхнем слое отмечена в Персидском заливе (+35,6 °С), а наиболее низкая - в Северном Ледовитом океане (-2,8 °С).

Химический состав гидросферы весьма разнообразен: от весьма пресных до очень соленых вод, типа рассолов.

Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и некоторых озер, ^гтатеке минера пизпуян-

ные подземные воды. Общий объем пресной воды на Земле равен 28,25 млн км 3 , что составляет всего лишь около 2 % общего объема гидросферы, при этом наибольшая часть пресных вод сосредоточена в материковых льдах Антарктиды, Гренландии, полярных островов и высокогорных областей. Это вода в настоящее время малодоступна для практического использования человеком.

В Мировом океане содержится 1,4-10 2 диоксида углерода (С0 2), что почти в 60 раз больше, чем в атмосфере; кислорода в океане растворено 8 10 18 г или почти в 150 раз меньше, чем в атмосфере. Ежегодно реки сносят в океаны около 2,53 10 16 г терри-генного материала с суши, из них почти 2,25 10 16 г приходится на взвесь, остальное - растворимые и органические вещества.

Соленость (средняя) морской воды равна 3,5 % (35 г/л). В морской воде кроме хлоридов, сульфатов и карбонатов содержатся также йод, фтор, фосфор, рубидий, цезий, золото и другие элементы. В воде растворено 0,48 10 23 г солей.

Глубоководные исследования, проведенные в последние годы, позволили установить наличие горизонтальных и вертикальных течений, существование форм жизни во всей толще воды. Органический мир моря разделяется на бентос, планктон, нектон и др. К бентосу относятся организмы, обитающие на грунте и в грунте морских и континентальных водоемов. Планктон - совокупность организмов, населяющих толщу воды, не способных противостоять переносу течением. Нектон - активно плавающие, например рыбы, и другие морские животные.

В настоящее время серьезным становится вопрос о дефиците пресной воды, что является одной из составляющих развивающегося глобального экологического кризиса. Дело в том, что пресная вода необходима не только для утилитарных нужд человека (питья, приготовления пищи, умывания и т. п.), но и для большинства промышленных процессов, не говоря уже о том, что только пресная вода пригодна для сельскохозяйственного производства - агротехники и животноводства, так как подавляющее большинство растений и животных сосредоточено на суше и для осуществления своей жизнедеятельности они используют исключительно пресную воду. Рост населения Земли (уже сейчас на планете более 6 млрд человек) и связанное с этим активное развитие промышленности и сельскохозяйственного производства привели к тому, что ежегодно человеком потребляется 3,5 тыс. км 3 пресной воды, причем безвозвратные потери составляют 150 км 3 . Та часть гидросферы, которая пригодна для водоснабжения, составляет 4,2 км 3 , это всего лишь 0,3 % объема гидросферы. В России достаточно большие запасы пресной воды (около 150 тыс. рек, 200 тыс. озер, множество водохранилищ и прудов,

значительные объемы подземных вод), однако распределение этих запасов по территории страны далеко неравномерно.

Гидросфера играет важную роль в проявлении многих геологических процессов, особенно в поверхностной зоне земной коры. С одной стороны, под воздействием гидросферы происходит интенсивное разрушение горных пород и их перемещение, пере-отложение, с другой - гидросфера выступает как мощный созидательный фактор, являясь по существу бассейном для накопления в ее пределах значительных толщ осадков разного состава.

Биосфера находится в постоянном взаимодействии с литосферой, гидросферой и атмосферой, что существенно сказывается на составе и строении литосферы.

В целом под биосферой в настоящее время понимают область распространения живого вещества (живые организмы известных науке форм); это сложноорганизованная оболочка, связанная биохимическими (и геохимическими) циклами миграции вещества, энергии и информации. Академик В. И. Вернадский в понятие биосферы включает все структуры Земли, генетически связанные с живым веществом; прошлой или современной деятельностью живых организмов. Большая часть геологической истории Земли связана с деятельностью живых организмов, особенно в поверхностной части земной коры, например, это весьма мощные осадочные толщи органогенных горных пород - известняков, диатомитов и др. Область распространения биосферы ограничивается в атмосфере озоновым слоем (примерно 18-50 км над поверхностью планеты), выше которого известные на Земле формы жизни невозможны без специальных средств защиты, как это осуществляется при космических полетах за пределы атмосферы и на другие планеты. В недра Земли до последнего времени биосфера распространялась до глубины Марианской впадины в 11 022 м, однако при бурении Кольской сверхглубокой скважины достигнута глубина более 12 км, а это означает, что на данную глубину осуществлено проникновение живого вещества.

Внутреннее строение Земли, по современным представлениям, состоит из ядра, мантии и литосферы. Границы между ними достаточно условны, вследствие взаимопроникновения как по площади, так и по глубине (см. рис. 1).

Земное ядро состоит из внешнего (жидкого) и внутреннего (твердого) ядра. Радиус внутреннего ядра (так называемый слой в) примерно равен 1200-1250 км, переходный слой (Б) между внутренним и внешним ядром имеет мощность около 300-400 км, а радиус внешнего ядра равен 3450-3500 км (соответственно глубина 2870-2920 км). Плотность вещества во внешнем ядре с глубиной возрастает с 9,5 до 12,3 г/см 3 . В центральной части

внутреннего ядра плотность вещества достигает почти 14 г/см 3 . Все это показывает, что масса земного ядра составляет до 32 % всей массы Земли, в то время как объем примерно 16 % объема Земли. Современные специалисты считают, что земное ядро почти на 90 % представляет собой железо с примесью кислорода, серы, углерода и водорода, причем внутреннее ядро имеет, по современным представлениям, железо-никелевый состав, что полностью отвечает составу ряда исследованных метеоритов.

Мантия Земли представляет собой силикатную оболочку между ядром и подошвой литосферы. Масса мантии составляет 67,8 % общей массы Земли (О.Г. Сорохтин, 1994). Геофизическими исследованиями установлено, что мантия, в свою очередь, может быть подразделена (см. рис. 1) на верхнюю мантию (слой Д до глубины 400 км), переходный слой Голицына (слой С на глубине от 400 до 1000 км) и нижнюю мантию (слой В с подошвой на глубине примерно 2900 км). Под океанами в верхней мантии выделяется слой, в котором мантийное вещество находится в частично расплавленном состоянии. Весьма важным элементом в строении мантии является зона, подстилающая подошву литосферы. Физически она представляет собой поверхность перехода сверху вниз от охлажденных жестких пород к частично расплавленному мантийному веществу, находящемуся в пластическом состоянии и составляющему астеносферу.

По современным представлениям, мантия имеет ультраоснов-ной состав (пиролита, как смеси 75 % перидотита и 25 % толери-тового базальта или лерцолита), в связи с чем ее часто называют перидотитовой, или «каменной», оболочкой. Содержание радиоактивных элементов в мантии весьма низко. Так, в среднем 10 -8 % 13; 10~ 7 % ТЬ, 10" 6 % 40 К. Мантия в настоящее время оценивается как источник сейсмических и вулканических явлений, горообразовательных процессов, а также зона реализации магматизма.

Земная кора представляет собой верхний слой Земли, который имеет нижнюю границу, или подошву, по сейсмическим данным, по слою Мохоровичича, где отмечено скачкообразное увеличение ско^ ростей распространения упругих (сейсмических) волн до 8,2 км/с.

Для инженера-геолога земная кора является основным объектом исследований , именно на ее поверхности и в ее недрах возводятся инженерные сооружения, т. е. осуществляется строительная деятельность. В частности, для решения многих практических задач важным является выяснение процессов формирования поверхности земной коры, истории этого формирования.

В целом поверхность земной коры формируется под воздействием направленных противоположно друг другу процессов:

  • эндогенных, включающих в себя тектонические и магматические процессы, которые ведут к вертикальным перемещениям в земной коре - поднятиям и опусканиям, т. е. создают «неровности» рельефа;
  • экзогенных, вызывающих денудацию (выполаживание, выравнивание) рельефа за счет выветривания, эрозии различных видов и гравитационных сил;
  • седиментационных (осадконакопление), как «выполняющих» осадками все созданные при эндогенезе неровности.

В настоящее время выделяются два типа земной коры: «базальтовая» океаническая и «гранитная» континентальная.

Океаническая кора достаточно проста по составу и представляет собой некое трехслойное формирование. Верхний слой, мощность которого колеблется от 0,5 км в срединной части океана до 15 км у глубоководных дельт рек и материковых склонов, где накапливается практически весь терригенный материал, в то время как в других зонах океана осадочный материал представлен карбонатными осадками и бескарбонатными красными глубоководными глинами. Второй слой сложен подушечными лавами базальтов океанического типа, подстилаемый долеритовыми дайками того же состава; общая мощность этого слоя составляет 1,5-2 км. Третий слой в верхней части разреза представлен слоем габбро, который вблизи от срединных океанических хребтов подстилается серпентинитами; общая мощность третьего слоя лежит в пределах от 4,7 до 5 км.

Средняя плотность океанической коры (без осадков) равна 2,9 г/см 3 , ее масса - 6,4 10 24 г, объем осадков - 323 млн км 3 . Океаническая кора образуется в рифтовых зонах срединно-океанических хребтов за счет происходящего под ними выделения базальтовых расплавов из астеносферного слоя Земли и излияния толеритовых базальтов на океанское дно. Установлено, что ежегодно из астеносферы поступает 12 км 3 базальтов. Все эти грандиозные тектоно-магматические процессы сопровождаются повышенной сейсмичностью и не имеют себе равных на континентах.

Континентальная кора резко отличается от океанической по мощности, строению и составу. Ее мощность меняется от 20-25 км под островными дугами и участками с переходным типом коры до 80 км под молодыми складчатыми поясами Земли, например под Андами или Альпийско-Гималайским поясом. Мощность континентальной коры под древними платформами составляет в среднем 40 км. Континентальная кора сложена тремя слоями, верхний из которых осадочный, а два нижних представлены кристаллическими породами. Осадочный слой сложен глинистыми осадками и карбонатами мелководных морских бас-

сейнов и имеет весьма различную мощность от 0 на древних щитах до 15 км в краевых прогибах платформ. Под осадочным слоем залегают докембрийские «гранитные» породы, зачастую преобразованные процессами регионального метаморфизма. Далее залегает базальтовый слой. Отличием океанической коры от континентальной является наличие в последней гранитного слоя. Далее океаническая и континентальная кора подстилаются породами верхней мантии.

Земная кора имеет алюмосиликатный состав, представленный, главным образом, легкоплавкими соединениями. Из химических элементов преобладающими являются кислород (43,13 %), кремний (26 %) и алюминий (7,45 %) в форме силикатов и оксидов (табл. 2).

Таблица 2

Средний химический состав земной коры

Химический состав земной коры, %, следующий: кисло

род - 46,8; кремний - 27,3; алюминий - 8,7; железо -5,1; кальций - 3,6; натрий - 2,6; калий - 2,6; магний - 2,1; другие - 1,2.

Как показывают последние данные, состав океанической коры настолько постоянен, что его можно считать одной из глобальных констант, так же как состав атмосферного воздуха или среднюю соленость морской воды. Это является свидетельством единства механизма ее образования.

Важным обстоятельством, отличающим земную кору от других внутренних геосфер, является наличие в ней повышенного содержания долгоживущих радиоактивных изотопов урана 232 и, тория 237 ТЬ, калия 40 К, причем их наибольшая концентрация отмечена для «гранитного» слоя континентальной коры, в океанической же коре радиоактивных элементов ничтожно мало.

Р и с. 3. Блок-диаграмма трансформного разлома океанической

литосферы

Вулканы

Перемятые


Континентальная

литосфера

Магматические интрузии

Плавление

Рис. 2. Схематический разрез зоны пододвигания океанической литосферы

под континентальную

Литосфера - это оболочка Земли, объединяющая земную кору и часть верхней мантии. Характерным признаком литосферы является то, что в нее входят породы в твердом кристаллическом состоянии и она обладает жесткостью и прочностью. Вниз по разрезу от поверхности Земли наблюдается рост температуры. Расположенная под литосферой пластичная оболочка мантии - астеносфера, в которой при высоких температурах вещество частично расплавлено, и вследствие этого в отличие от литосферы астеносфера не обладает прочностью и может пластично деформироваться, вплоть до способности течь даже под действием очень малых избыточных давлений (рис. 2, 3). В свете современных представлений, согласно теории тектоники литосферных плит, установлено, что литосферные плиты, которые слагают внешнюю оболочку Земли, образуются за счет остывания и полной кристаллизации частично расплавленного вещества астеносферы, подобно тому, как это происходит, например, на реке при замерзании воды и образовании льда в морозный день.

Следует отметить, что слагающий верхнюю мантию лерцо-лит обладает сложным составом, в связи с чем вещество астеносферы, находясь в твердом состоянии, механически

ослаблено настолько, что способно проявлять ползучесть. Это показывает, что астеносфера в масштабах геологического времени ведет себя как вязкая жидкость. Таким образом, литосфера способна к движению относительно нижней мантии за счет ослабленности астеносферы. Важным фактом, подтверждающим возможность перемещения литосферных плит, является то, что астеносфера выражена глобально, хотя ее глубина, мощность и физические свойства варьируют в широких пределах. Мощность литосферы меняется от нескольких километров под рифтовыми долинами срединных океанических хребтов до 100 км под периферией океанов, а под древними щитами мощность литосферы достигает 300-350 км.