Отличие ферментов от неорганических катализаторов. Отличия ферментов от небиологических катализаторов

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Определение

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.

Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение

Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.

Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.

Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.

Ферменты способны работать в ограниченном диапазоне температур (как правило, 37 0 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.

Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

Выводы сайт

  1. Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
  2. Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
  3. Ферментативные реакции обладают высокой скоростью.

Афанасьев Илья

Катализаторы и ферменты - вещества ускоряющие химические процессы, но сами при этом не расходуются.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сравнение неорганических катализаторов и биологических ферментов Презентацию подготовил Ученик 10В класса МАОУ «Лицей №131» Афанасьев Илья Учитель: Сафонова Эльфия Рустямовна

С чего начать? Академик Георгий Константинович Боресков,советский химик и инженер, однажды в полушуточном стиле описал, что было бы, если бы на Земле вдруг исчезли все катализаторы, суть описания сводилась к тому, что наша планета скоро стала бы безжизненной пустыней, омываемой океаном слабой азотной кислоты .

Но о каких именно катализаторах говорил Академик Боресков? Ведь наравне с неорганическими катализаторами, в химии используются и биологические ферменты, без которых существование нашего организма было бы невозможным. Давайте узнаем, что из себя представляют ферменты и неорганические катализаторы, и в чем их отличия Палладий-один из часто используемых катализаторов Биологические Ферменты

Ферменты Ферменты - биологические катализаторы белковой природы. Термин фермент (от лат. fermentum - закваска) был предложен в начале XVII в. голландским ученым Ван Гельмонтом для веществ, влияющих на спиртовое брожение.

История открытия ферментов Человек, на протяжении жизни, замечал, что что-то какие-то вещества оказывают влияние на производство хлеба, создания вина и молочных изделий. Но только в 1833 году из прорастающих зерен ячменя было выделено вещество, осуществляющее превращение крахмала в сахар и впоследстивии именуем амилазой. Но только в конце 19 века было доказано,что при растирании дрожжевых клеток образуется сок, который обеспечивает процесс спиртового брожения. Амила́за (др.-греч. άμυλον - крахмал

Функции ферментов Ферменты участвуют в осуществлении всех процессов обмена веществ и в реализации генетической информации возможность. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря им Ферменты выделяют из легких углекислый газ Повышают уровень выносливости организма Поддерживают работу иммунной системы для борьбы с инфекциями Именно ферменты осуществляют поиск раковых клеток в организме, впоследствии уничтожая их.

Химические свойства ферментов По химическим свойствам ферменты являются амфотерными электролитами. Они обладают высокой молекулярной массой(48000 Д= 7.970544000006 x 1 0 ^ 23 кг) Они очень видоспецифичны (для каждого органа может быть свой фермент Из этого пункта следует, что для каждого органа требуется своя температура, кислотность, давление и т.д

Примеры реакций с участием ферментов Реакции брожения глюкозы с использованием различных ферментов, в результате которой одна молекула глюкозы преобразуется в 2 молекулы этанола и в 2 молекулы углекислого газа.

Н.Клеман, Ш.Дезорм (1806 г.) Оксиды азота – агенты, способные окисляться кислородом воздуха и передавать кислород сернистому газу Неогранические катализаторы

К.Кирхгоф (1811 г.) Работы Клемана, Дезорма и Кирхгофа инициировали поиск таких уникальных веществ. За 20 лет было найдено множество реакций:

Механизм Катализатора

Универсальные катализаторы Никель Ренея Никель Ренея, иначе «скелетный никель» - твёрдый микрокристаллический пористый никелевый катализатор.Представляет собой серый высокодисперсный порошок (размер частиц обычно 400-800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т. п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Получают никель Ренея сплавлением при 1200 °C никеля с алюминием (20-50 % Ni ; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10 - 35 %; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов - кобальта, меди, железа и т. д.

Универсальные Катализаторы Палладий Палладий - переходный металл серебристо-белого цвета с гранецентрированной кубической решёткой типа Cu Палладий часто применяется как катализатор, в основном, в процессе гидрогенизации жиров и крекинге нефти. Хлорид палладия используется как катализатор и для обнаружения микроколичеств угарного газа в воздухе или газовых смесях

Универсальные катализаторы Платина Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» - прибор, широко применявшийся для получения огня до изобретения спичек.

Сравнение Неорганических Катализаторов и Биологических ферментов Общее между ферментами и неорганическими катализаторами: 1. Увеличивают скорость химических реакций, при этом сами не расходуются. 2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции. 3. Энергия химической системы остается постоянной. 4. В ходе катализа направление реакции не изменяется.

Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей, не обладают неорганические катализаторы

Сравнение Неорганических Катализаторов и Биологических ферментов Признаки Сравнения Неорганические катализаторы Ферменты Химическая природа Низкомолекулярные вещества, образованные одним или несколькими элементами Белки-высокомолекулярные полимеры Видоспецифичность Универсальные катализаторы На каждую реакцию нужен свой фермент Кислотная среда Сильнокислая или щелочная У каждого органа своя кислотная среда Интервалы t Очень широкие 35-42 градуса Цельсия,затем денатурируют Увеличение скорости реакций От 10 ^2 до 10^6 раз От 10^8 до 10^12 раз Стабильность Могут быть побочные эффекты(70%) Почти 100% выход продуктов.

П ерекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью. MnO2+H2O2=>O2+H2O+MnO

В отличие от катализаторов неорганической природы ферменты "работают" в "мягких" условиях: при атмосферном давлении, при температуре 30 - 40°С, при значении рН-среды близком к нейтральному. Скорость ферментативного катализа намного выше, чем небиологического. Единственная молекула фермента может катализировать от тысячи до миллиона молекул субстрата за 1 минуту. Такая скорость недостижима для катализаторов неорганической природы.

Итог Несмотря на то, что и ферменты, и неорганические катализаторы используются для одной цели-ускорять вещества, они обладают довольно разными свойствами. Но не стоит забывать, что без них люди не смогли достичь успехов не только в химии, но и в других науках. Не нужно искать золотую середину в поиске идеального, нужно использовать их для своего случае, где смогут себя проявить по максимуму.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Ферменты –это белковые молекулы, которые катализируют химические реакции в живых системах. Относительная молекулярная масса ферментов от 10 в 5 степени до 10 в 7 степени

Все биохимические реакции являются каталитическими. Катализаторы биохимических реакций имеют белковую природу и называются ферментами.

Ферменты отличаются от обычных катализаторов:

1)Они обладают более высокой каталитической эффективностью. Эффективность работы ферментов выражается молярной активностью – числом молекул субстрата, превращающихся в продукты реакции за единицу времени при условии полного насыщения фермента субстратом.

2)Ферменты высокоспецифичны, т.е. избирательность действия. Различают субстратную и групповую специфичность. Субстратная специфичность включает в себя и стереоспецифичность – проявление каталитической активности только в отношении одного из стереоизомеров данного вещества.

Ферменты с групповой специфичностью обеспечивают превращения разных субстратов, но имеющих определенные структурные фрагменты.

3)Ферменты проявляют максимальную эффективность только в мягких условиях температура (36*-38*), характеризующихся небольшим интервалом температур и значений рН

Ферменты катализируют превращение аминокислот; пищеварительные ферменты расщепляют пептидные связи самих белков; все биохимические реакции осуществимы в присутствии ферментов

Каждый фермент катализирует только определенную химическую реакцию.

Другой случай представляет собой ферменты с широкой специфичностью в отношении субстрата.

Вследствие высокой специфичности ферментов в обратимых процессах при определенных условиях они обычно увеличивают скорость только реакции, идущей в нужном направлении. В этом заключается одно из отличий ферментативного катализа от простого.

В организме для регуляции ферментативных процессов используются активаторы и ингибиторы .

Ингибиторы тормозят действие ферментов. Бывает обратимое и необратимое ингибирование фермента.

Обратимое наблюдается при взаимодействии с катионами металлов-токсикантов:Hg , Pb,Cd или с ингибиторами белковой природы.

При необратимом торможении ингибитор, обладающий структурным сходством с субстратом, блокирует активный центр фермента, надолго выводя его из строя. (отравляющие вещества)

12. Зависимость скорости ферментативной реакции от: а) температуры; б) рН среды; в) концентрации фермента. Ответ поясните с использованием графиков.

При увеличении температуры свыше определенного значения (45*-50*) биохимические реакции резко замедляются, а затем останавливаются, что связано с инактивацией ферментов при высоких температурах. Снижение активности фермента при температуре выше оптимальной связано с тепловой денатурацией белка, которая наступает при 50*-60*,а в некоторых случаях и при 40*



Снижение активности фермента при значенияхрН , отличающихся от оптимального значения, объясняется изменением степени его ионизации изменением характера ион-ионных и других взаимодействий, обеспечивающих стабильность третичной структуры белка. Для большинства ферментов Оптимальное значение рН совпадает с физиологическими значениями (7,3-7,4). Существуют ферменты, для нормального функционирования которых нужна сильно кислая (пепсин 1,5-2,5) или сильно щелочная (аргиназа 9,5-9,9) среда.

При высокой концентрации субстрата, обеспечивающей полное насыщение всех активных центров фермента, скорость реакции перестает зависеть от концентрации субстрата, однако скорость реакции остается зависеть от концентрации фермента

ГРАФИКИ НА СТРАНИЦЕ 227 В КРАСНОМ УЧЕБНИКЕ

Особенности кинетики ферментативной реакции. Графическая зависимость влияния концентрации субстрата на скорость ферментативной реакции (при постоянной концентрации фермента). Уравнение Михаэлиса-Ментен и его анализ.

Для каждой ферментативной реакции промежуточной реакцией является присоединение к активному центру фермента (Е) молекулы субстрата (St) с возникновением фермент-субстратного комплекса () , который в дальнейшем распадается на продукты реакции (Р) и молекулу фермента:

Где k1 , k-1 , k2 - константы скоростей отдельных стадий

Образование фермент-субстратного комплекса приводит к перераспределению электронов в молекуле субстрата. Скорость реакции зависит от концентрации субстрата. При низких концентрациях субстрата реакция имеет по субстрату первый порядок (Nst = 1) , а при высоких – нулевой (Nst = 0) . При этом скорость реакции становится максимальной. Максимальная скорость ферментативной реакции зависит от концентрации фермента в системе.

ГРАФИК СТРАНИЦА 227 КРАСНЫЙ УЧЕБНИК

Впервые кинетическое описание ферментативных процессов сделали Михаэлис и Ментен, которые предположили уравнение:

Км – константа Михаэлиса, учитывающая величины констант скоростей отдельных реакций (К1 , К-1 , К2), численно равна концентрации субстрата, при которой скорость ферментативной реакции равна половине максимальной (U мах /2)

Величина Км для данной ферментативной реакции зависит от типа субстрата, рН реакционной среды, температуры и концентрации фермента в системе. Реакция протекает тем быстрее, чем меньше Км. На скорость ферментативной реакции влияет присутствие активаторов и ингибиторов. Скорость зависит от концентрации субстрата и фермента.

Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

| следующая лекция ==>
Аналіз останніх досліджень і публікацій. Проблеми фінансування регіонів Європейського Союзу і України розглядали такі науковці як: Возняк Г.В., Григор’єва О.Н., Бєліченко А.Ф. |