Сопутствующее расстояние противоположно расстоянию углового диаметра. Видим ли мы вселенную

Доктор педагогических наук Е. ЛЕВИТАН, действительный член Российской академии естественных наук

Наука и жизнь // Иллюстрации

Одна из лучших современных астрофизических обсерваторий - Европейская южная обсерватория (Чили). На снимке: уникальный инструмент этой обсерватории - "Телескоп новых технологий" (NТТ).

Фотография обратной стороны 3,6-метрового главного зеркала "Телескопа новых технологий".

Спиральная галактика NGC 1232 в созвездии Эридана (расстояние до нее около 100 млн световых лет). Размер - 200 световых лет.

Перед вами огромный, возможно, раскаленный до сотен миллионов градусов по Кельвину газовый диск (его диаметр около 300 световых лет).

Странный, казалось бы, вопрос. Разумеется, мы видим и Млечный Путь и другие, более близкие к нам звезды Вселенной. Но вопрос, поставленный в заглавии статьи, на самом-то деле не так уж прост, а потому постараемся разобраться в этом.

Яркое Солнце днем, Луна и звездная россыпь на ночном небе всегда привлекали к себе внимание человека. Судя по наскальным рисункам, на которых древнейшие живописцы запечатлели фигуры наиболее приметных созвездий, уже тогда люди, по крайней мере наиболее любознательные из них, вглядывались в таинственную красоту звездного неба. И уж конечно проявляли интерес к восходу и заходу Солнца, к загадочным изменениям вида Луны... Вероятно, так зарождалась "примитивно-созерцательная" астрономия. Произошло это на много тысяч лет раньше, чем возникла письменность, памятники которой стали для нас уже документами, свидетельствующими о зарождении и развитии астрономии.

Сначала небесные светила, может быть, были только предметом любопытства, потом - обожествления и, наконец, стали помогать людям, выполняя роль компаса, календаря, часов. Серьезным поводом для философствования о возможном устройстве Вселенной могло стать открытие "блуждающих светил" (планет). Попытки разгадать непонятные петли, которые описывают планеты на фоне якобы неподвижных звезд, привели к построению первых астрономических картин или моделей мира. Апофеозом их по праву считается геоцентрическая система мира Клавдия Птолемея (II век н. э.). Древние астрономы пытались (в основном безуспешно) определить (но еще не доказать!), какое место Земля занимает по отношению к семи известным тогда планетам (таковыми считались Солнце, Луна, Меркурий, Венера, Марс, Юпитер и Сатурн). И только Николаю Копернику (1473-1543) это наконец удалось.

Птолемея называют создателем геоцентрической, а Коперника - гелиоцентрической системы мира. Но принципиально эти системы отличались только содержащимися в них представлениями о расположении Солнца и Земли по отношению к истинным планетам (Меркурию, Венере, Марсу, Юпитеру, Сатурну) и к Луне.

Коперник, по существу, открыл Землю как планету, Луна заняла подобающее ей место спутника Земли, а центром обращения всех планет оказалось Солнце. Солнце и движущиеся вокруг него шесть планет (включая Землю) - это и была Солнечная система, какой ее представляли в XVI веке.

Система, как мы теперь знаем, далеко не полная. Ведь в нее кроме известных Копернику шести планет входят еще Уран, Нептун, Плутон. Последний был открыт в 1930 году и оказался не только самой далекой, но и самой маленькой планетой. Кроме того, в Солнечную систему входят около сотни спутников планет, два пояса астероидов (один - между орбитами Марса и Юпитера, другой, недавно открытый, - пояс Койпера - в области орбит Нептуна и Плутона) и множество комет с разными периодами обращения. Гипотетическое "Облако комет" (что-то вроде сферы их обитания) находится, по разным оценкам, на расстоянии порядка 100-150 тысяч астрономических единиц от Солнца. Границы Солнечной системы соответственно многократно расширились.

В начале 2002 года американские ученые "пообщались" со своей автоматической межпланетной станцией "Пионер-10", которая была запущена 30 лет назад и успела улететь от Солнца на расстояние 12 млрд километров. Ответ на радиосигнал, посланный с Земли, пришел через 22 ч 06 мин (при скорости распространения радиоволн около 300 000 км/сек). Учитывая сказанное, "Пионеру-10" еще долго придется лететь до "границ" Солнечной системы (конечно, достаточно условных!). А дальше он полетит к ближайшей на его пути звезде Альдебаран (самая яркая звезда в созвездии Тельца). Туда "Пионер-10", возможно, домчится и доставит заложенные в нем послания землян только через 2 млн лет...

От Альдебарана нас отделяют не менее 70 световых лет. А расстояние до самой близкой к нам звезды (в системе a Центавра) всего 4,75 светового года. Сегодня даже школьникам надлежит знать, что такое "световой год", "парсек" или "мегапарсек". Это уже вопросы и термины звездной астрономии, которой не только во времена Коперника, но и много позже просто не существовало.

Предполагали, что звезды - далекие светила, но природа их была неизвестна. Правда, Джордано Бруно, развивая идеи Коперника, гениально предположил, что звезды - это далекие солнца, причем, возможно, со своими планетными системами. Правильность первой части этой гипотезы стала совершенно очевидной только в XIX веке. А первые десятки планет около других звезд были открыты лишь в самые последние годы недавно закончившегося XX века. До рождения астрофизики и до применения в астрономии спектрального анализа к научной разгадке природы звезд просто невозможно было приблизиться. Вот и получалось, что звезды в прежних системах мира почти никакой роли не играли. Звездное небо было своеобразной сценой, на которой "выступали" планеты, а о природе самих звезд особо не задумывались (иногда упоминали о них, как... о "серебряных гвоздиках", воткнутых в твердь небесную). "Сфера звезд" была своеобразной границей Вселенной и в геоцентрической и в гелиоцентрической системе мира. Вся Вселенная, естественно, считалась видимой, а то, что за ее пределами, - "царствие небесное"...

Сегодня мы знаем, что невооруженным глазом видна лишь ничтожная часть звезд. Белесоватая полоса, протянувшаяся через все небо (Млечный Путь), оказалась, как догадывались еще некоторые древние греческие философы, множеством звезд. Наиболее яркие из них Галилей (в начале XVII века) различил даже с помощью своего весьма несовершенного телескопа. По мере увеличения размеров телескопов и их совершенствования астрономы получали возможность постепенно проникать в глубь Вселенной, как бы зондируя ее. Но далеко не сразу стало понятно, что звезды, наблюдаемые в разных направлениях неба, имеют какое-то отношение к звездам Млечного Пути. Одним из первых, кому удалось это доказать, был английский астроном и оптик В. Гершель. Поэтому с его именем связывают открытие нашей Галактики (ее иногда так и называют - Млечный Путь). Однако увидеть целиком нашу Галактику простому смертному, видимо, не дано. Конечно, достаточно заглянуть в учебник астрономии, чтобы обнаружить там ясные схемы: вид Галактики "сверху" (с отчетливой спиральной структурой, с рукавами, состоящими из звезд и газово-пылевой материи) и вид "сбоку" (в этом ракурсе наш звездный остров напоминает двояковыпуклую линзу, если не вдаваться в некоторые детали строения центральной части этой линзы). Схемы, схемы... А где же хотя бы одна фотография нашей Галактики?

Гагарин был первым из землян, кто увидел нашу планету из космического пространства. Теперь, наверное, каждый видел фотографии Земли из космоса, переданные с борта искусственных спутников Земли, с автоматических межпланетных станций. Сорок один год минул со времени полета Гагарина, и 45 лет со дня запуска первого ИСЗ - начала космической эры. Но и поныне никто не знает, сможет ли когда-нибудь человек увидеть Галактику, выйдя за ее пределы... Для нас это вопрос из области фантастики. А потому вернемся к реальности. Но только при этом, пожалуйста, подумайте о том, что всего лишь лет сто назад нынешняя реальность могла показаться самой невероятной фантастикой.

Итак, открыты Солнечная система и наша Галактика, в которой Солнце - одна из триллионов звезд (невооруженным глазом на всей небесной сфере видно около 6000 звезд), а Млечный Путь - проекция части Галактики на небесную сферу. Но подобно тому, как в XVI веке земляне поняли, что наше Солнце - самая рядовая звезда, мы теперь знаем, что наша Галактика - одна из множества ныне открытых других галактик. Среди них, как и в мире звезд, есть гиганты и карлики, "обычные" и "необычные" галактики, относительно спокойные и чрезвычайно активные. Они находятся на громадных расстояниях от нас. Свет от самой близкой из них мчится к нам почти два миллиона триста тысяч лет. А ведь эту галактику мы видим даже невооруженным глазом, она в созвездии Андромеды. Это очень большая спиральная галактика, похожая на нашу, и поэтому ее фотографии в какой-то степени "компенсируют" отсутствие снимков нашей Галактики.

Почти все открытые галактики удается рассмотреть лишь на фотографиях, полученных с помощью современных наземных телескопов-гигантов или космических телескопов. Применение радиотелескопов и радиоинтерферометров помогло существенно дополнить оптические данные. Радиоастрономия и внеатмосферная рентгеновская астрономия приоткрыли завесу над тайной процессов, происходящих в ядрах галактик и в квазарах (самых далеких из известных ныне объектов нашей Вселенной, почти неотличимых от звезд на фотографиях, полученных с помощью оптических телескопов).

В чрезвычайно огромном и практически скрытом от глаз мегамире (или в Метагалактике) удалось открыть его важные закономерности и свойства: расширение, крупномасштабную структуру. Все это несколько напоминает другой, уже открытый и во многом разгаданный микромир. Там исследуются совсем близкие к нам, но тоже невидимые кирпичики мироздания (атомы, адроны, протоны, нейтроны, мезоны, кварки). Познав устройство атомов и закономерности взаимодействия их электронных оболочек, ученые буквально "оживили" Периодическую систему элементов Д. И. Менделеева.

Самое важное то, что человек оказался способным открыть и познать непосредственно не воспринимаемые им миры различных масштабов (мегамир и микромир).

В этом контексте астрофизика и космология вроде бы не оригинальны. Но тут мы приближаемся к самому интересному.

"Занавес" издавна известных созвездий открылся, унося с собой последние потуги нашего "центризма": геоцентризма, гелиоцентризма, галактикоцентризма. Мы сами, как и наша Земля, как Солнечная система, как Галактика, - всего лишь "частицы" невообразимой по обыденным масштабам и по сложности структуры Вселенной, именуемой "Метагалактика". Она включает в себя множество систем галактик разной сложности (от "двойных" до скоплений и сверхскоплений). Согласитесь, что при этом осознание масштаба собственной ничтожной величины в необъятном мегамире не унижает человека, а, наоборот, возвышает мощь его Разума, способного открыть все это и разобраться в том, что было открыто ранее.

Казалось бы, пора и успокоиться, поскольку современная картина строения и эволюции Метагалактики в общих чертах создана. Однако, во-первых, она таит в себе много принципиально нового, ранее неведомого для нас, а во-вторых, не исключено, что кроме нашей Метагалактики есть и другие мини-вселенные, образующие пока еще гипотетическую Большую Вселенную...

Может быть, на этом стоит пока остановиться. Потому что нам бы сейчас, как говорится, со своей Вселенной разобраться. Дело в том, что она в конце ХХ века преподнесла астрономии большой сюрприз.

Тем, кто интересуется историей физики, известно, что в начале ХХ века некоторым великим физикам показалось, будто бы их титанический труд завершен, ибо все главное в этой науке уже открыто и исследовано. Правда, на горизонте оставалась пара странных "облачков", но мало кто предполагал, что они вскоре "обернутся" теорией относительности и квантовой механикой... Неужели что-то подобное ожидает астрономию?

Вполне вероятно, потому что наша Вселенная, наблюдаемая с помощью всей мощи современных астрономических инструментов и вроде бы уже довольно основательно изученная, может оказаться лишь вершиной вселенского айсберга. А где же его остальная часть? Как могло возникнуть столь дерзкое предположение о существовании еще чего-то громадного, материального и совершенно доселе неизвестного?

Вновь обратимся к истории астрономии. Одной из ее триумфальных страниц было открытие планеты Нептун "на кончике пера". Гравитационное воздействие какой-то массы на движение Урана натолкнуло ученых на мысль о существовании неизвестной еще планеты, позволило талантливым математикам определить ее местоположение в Солнечной системе, а потом точно указать астрономам, где ее искать на небесной сфере. И в дальнейшем гравитация оказывала астрономам подобные услуги: помогала открывать разные "диковинные" объекты - белых карликов, черные дыры. Так вот и теперь исследование движения звезд в галактиках и галактик в их скоплениях привело ученых к выводу о существовании таинственного невидимого ("темного") вещества (а может быть, вообще какой-то неведомой нам формы материи), и запасы этого "вещества" должны быть колоссальными.

По наиболее смелым оценкам, все то, что мы наблюдаем и учитываем во Вселенной (звезды, газово-пылевые комплексы, галактики и т. д.), составляет лишь 5 процентов от массы, которая "должна была бы быть" по расчетам, основанным на законах гравитации. Эти 5 процентов включают весь известный нам мегамир от пылинок и распространенных в космосе атомов водорода до сверхскоплений галактик. Некоторые астрофизики относят сюда даже всепроникающие нейтрино, считая, что, несмотря на их небольшую массу покоя, нейтрино своим бессчетным количеством вносят определенный вклад все в те же 5 процентов.

Но, может быть, "невидимое вещество" (или по крайней мере часть его, неравномерно распределенная в пространстве) - это масса потухших звезд или галактик либо таких невидимых космических объектов, как черные дыры? В какой-то мере подобное допущение не лишено смысла, хотя недостающие 95 процентов (или, по другим оценкам, 60-70 процентов) восполнить не удастся. Астрофизики и космологи вынуждены перебирать различные другие, в основном гипотетические, возможности. Наиболее фундаментальные идеи сводятся к тому, что значительная часть "скрытой массы" - это "темное вещество", состоящее из не известных нам элементарных частиц.

Дальнейшие исследования в области физики покажут, какие элементарные частицы кроме тех, которые состоят из кварков (барионы, мезоны и др.) или являются бесструктурными (например, мюоны), могут существовать в природе. Разгадать эту загадку будет, вероятно, легче, если объединить силы физиков, астрономов, астрофизиков, космологов. Немалые надежды возлагаются на данные, которые могут быть получены уже в ближайшие годы в случае успешных запусков специализированных космических аппаратов. Например, планируется запустить космический телескоп (диаметр 8,4 метра). Он сможет зарегистрировать огромное число галактик (до 28-й звездной величины; напомним, что невооруженным глазом видны светила до 6-й звездной величины), а это позволит построить карту распределения "скрытой массы" по всему небу. Из наземных наблюдений тоже можно извлечь определенную информацию, поскольку "скрытое вещество", обладая большой гравитацией, должно искривлять лучи света, идущие к нам от далеких галактик и квазаров. Обрабатывая на компьютерах изображения таких источников света, можно зарегистрировать и оценить невидимую гравитирующую массу. Подобного рода обзоры отдельных участков неба уже сделаны. (См. статью академика Н. Кардашева "Космология и проблемы SETI", недавно опубликованную в научно-популярном журнале президиума РАН "Земля и Вселенная", 2002, № 4.)

В заключение вернемся к вопросу, сформулированному в названии данной статьи. Думается, что после всего сказанного вряд ли на него можно уверенно дать положительный ответ... Древнейшая из самых древних наук - астрономия только начинается.

Обычно, когда говорят о размерах Вселенной, подразумевают локальный фрагмент Вселенной (Мироздания) , который доступен нашему наблюдению.

Это так называемая наблюдаемая Вселенная – область пространства, видимая для нас с Земли.

А так как возраст Вселенной около 13 800 000 000 лет, то независимо от того в каком мы направлении смотрим, мы видим свет, который достиг нас за 13,8 миллиарда лет.

Так что, исходя из этого, логично думать, что наблюдаемая Вселенная должна быть 13,8 х 2 = 27 600 000 000 световых лет в поперечнике.

Но это не так! Потому что с течением времени космос расширяется. И те далекие объекты, которые испустили свет 13,8 млрд. лет назад, за это время улетели еще дальше. Сегодня они уже более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет.

Таким образом, реальный диаметр наблюдаемой вселенной составляет 93 млрд. св. лет.

Визуальное (в виде сферы) представление трёхмерной структуры наблюдаемой Вселенной, видимой с нашей позиции (центр круга).

Белыми линиями обозначены границы наблюдаемой Вселенной.
Пятнышки света - это скопления скоплений галактик – суперкластеры (supercluster) – самые большие известные структуры в космосе.
Масштабная линейка: одно деление сверху - 1 миллиард световых лет, снизу – 1 миллиард парсек.
Наш дом (в центре) здесь обозначен как Сверхскопление Девы (Virgo Supercluster) – это система, включающая десятки тысяч галактик, в том числе нашу собственную – Млечный Путь (Milky Way).

Более наглядное представление о масштабах обозримой Вселенной даёт следующее изображение:

Схема расположения Земли в наблюдаемой Вселенной – серия из восьми карт

слева направо верхний ряд: Земля – Солнечная система – Ближайшие звезды – Галактика Млечный Путь, нижний ряд: Местная группа галактик – Скопление Девы – Местное Сверхскопление – Обозримая (наблюдаемая) Вселенная.

Чтобы лучше прочувствовать и осознать, о каких колоссальных, не сопоставимых с нашими земными представлениями, масштабах идет речь, стоит посмотреть увеличенное изображение этой схемы в медиа просмотрщике .

А что можно сказать о всей Вселенной? Размер всей Вселенной (Мироздания, Метавселенной), надо полагать, гораздо больше!

Но, вот какая она эта вся Вселенная и как устроена, это пока остается для нас загадкой…

А как насчет центра Вселенной? Наблюдаемая Вселенная имеет центр - это мы! Мы находимся в центре наблюдаемой Вселенной, потому что наблюдаемая Вселенная - это просто участок космоса, видимый нам с Земли.

И подобно тому, как с высокой башни мы видим круглую область с центром в самой башне, также мы видим область космоса с центром от наблюдателя. На самом деле, если говорить точнее, каждый из нас - центр своей собственной наблюдаемой Вселенной.

Но это не значит, что мы находимся в центре всей Вселенной, как и башня - отнюдь не центр мира, а только центр того кусочка мира, который с нее видно - до горизонта.

То же и с наблюдаемой Вселенной.

Когда мы смотрим в небо, мы видим свет, который 13,8 миллиарда лет летел к нам из мест, которые уже в 46,5 миллиардах световых лет от нас.

Мы не видим то, что за этим горизонтом.

В предлагаемой работе на основе общепризнанных данных приводится прямое, численное определение видимого радиуса Вселенной, который отличается от общепризнанного. Известные на сегодняшний день инфляционные модели Большого Взрыва предсказывают различные значения начального размера Вселенной после завершения этапа инфляции:

«… период «раздувания» … называется инфляционным периодом. За это вре¬мя размеры Вселенной увеличились в 10^50 раз, от миллиардной доли размера протона до размеров спичечного коробка» .

«В конце инфляционного периода наша Вселенная приобрела размер около 1 см в диаметре…» .

«Вселенная расширилась на 50 порядков – была меньше протона, а стала размером с грейпфрут» .

«к окончанию инфляционного периода вселенная приобрела размер примерно 1 см» .

«зародыш Вселенной вырос от нуля до размеров мячика для игры в пинг-понг» .

Сам процесс инфляционного раздувания длится мельчайшую долю секунды, после чего начинается многомиллиардный в годах процесс хаббловского расширения Вселенной. До настоящего времени Вселенная по приведённым ниже оценкам расширилась от 10^8 до 10^30 метров. Сейчас принято, что после инфляционного расширения прошло порядка 10^17 секунд или 13,8 млрд. лет.

В соответствии со стандартной моделью Большого Взрыва начальный радиус Вселенной должен был быть порядка нескольких сантиметров, а дальнейшее расширение было линейным. Инфляция позволяла устранить некоторые проблемы, возникающие в стандартной модели Большого Взрыва. Однако, первые инфляционные сценарии также не были лишены недостатков, что привело к дальнейшему их развитию и появлению новых инфляционных моделей, в которых на стадии инфляции Вселенная расширилась существенно сильнее.

Например, в приводится величина расширения пространства в 10 в степени 10^5 – 10^12 раз, что практически означает размер Вселенной точно с этими же числовыми значениями: 10 в степени 10^5 – 10^12 см. Число 10^12 – это 10 в степени триллион. Наибольший размер Вселенной по завершению стадии инфляции из этого диапазона предсказывает новая инфляционная теория А.Линде:

«Главное отличие инфляционной теории от старой космологии становится очевидным, если посчитать размер типичной инфляционной области в конце инфляции. Даже если начальный размер инфляционной вселенной был очень мал (порядка планковской длины lp~10^ 33 см), после 10^-35 секунды инфляции вселенная достигает огромных размеров – l~10^1`000`000`000`000 см» .

«Согласно некоторым моделям раздувания, масштаб Вселенной (в см) достигнет 10 в степени 10^12» .

Такой разброс размеров Вселенной, очевидно, должен привести к различным итоговым параметрам Вселенной.

Радиус наблюдаемой Вселенной

«Наблюдаемая Вселенная – понятие в космологии Большого Взрыва, описывающее часть Вселенной, являющуюся абсолютным прошлым относительно наблюдателя. С точки зрения пространства, это область, из которой материя (в частности, излучение, и, следовательно, любые сигналы) успела бы за время существования Вселенной достичь нынешнего местоположения (в случае человечества – современной Земли), то есть быть наблюдаемыми» .

По имеющимся общепризнанным данным возраст вселенной составляет T=13,8 млрд. лет. Из этого следует, как считается, что до Земли уже должны долетать фотоны, рождённые в момент возникновения Вселенной. Другими словами, любой фотон реликтового излучения провёл в пути Т лет. Однако, в связи с расширением Вселенной также очевидно, что до Земли должны долететь и фотоны, которые излучены с меньшего расстояния, чем Т световых лет. Действительно, на протяжении этого времени Земля постоянно удалялась от источника излучения. Поэтому дошедшие до Земли фотоны, имея возраст Т лет, рождены на удалении от Земли, меньшем, чем Т световых лет.

Расчеты показывают, что в начальный момент времени (после того, как были сформированы галактики) самый удалённый от Земли источник, фотоны от которого в настоящее время достигли Земли, находился от Земли на расстоянии приблизительно 5х10^9 св. лет.

В вычислениях мы исходили из следующих вполне приемлемых допущений. Основное допущение – это принятие за истину закона Хаббла.

Второе допущение - за всё время пост-инфляционного расширения Вселенной постоянная Хаббла была не менее принятой ныне величины. Причём, чем больше средняя величина постоянной Хаббла, тем меньше будет фактический радиус наблюдаемой Вселенной. Поэтому, в связи с открытием ускоренного расширения Вселенной, полученный результат следует считать несколько завышенным, поскольку ранее постоянная Хаббла, по всей видимости, была меньше. То есть, Земли достигли фотоны от источников, удалённых несколько более чем на 5 млрд. световых лет.

Третье допущение – это приблизительное постоянство постоянной Хаббла, её независимость от времени. Это приемлемое, можно сказать, общепринятое допущение, поскольку это следует из графиков расширения Вселенной практически всех авторитетных исследователей и теоретиков.

Из приведённых доводов должно следовать, что в астрономических наблюдениях невозможно «увидеть» галактики, удалённые более чем на 5 млрд. световых лет. Фотоны от любой галактики в возрасте, близком к возрасту Вселенной, достигшие Земли, были испущены, когда галактика находилась не дальше 5 млрд. световых лет.

Далее из этого должно следовать, что никакое красное смещение не может соответствовать удалённости более чем на это расстояние и приводимые в космологической литературе сведения о том, что обнаружены галактика или квазар, удалённые на 10-12 млрд. световых лет, вызывают недоверие.

Собственно говоря, это достаточно очевидное обстоятельство. Поскольку возраст Вселенной 14 млрд. лет, любой фотон мог быть в пути не дольше этого времени. Если фотон двигался к Земле из точки с удалённостью 12-14 млрд. лет, то со скоростью света он прошёл бы это расстояние и достиг бы Земли за время жизни Вселенной только в случае, если бы Земля не удалялась. Но Земля удалялась, причём с достаточно высокой скоростью, как показано на прилагаемой к статье анимации.

Анимацию и упомянутые выше расчеты можно увидеть в интернете по адресу URL: http://samlib.ru/p/putenihin_p_w/rw99.shtml

Поскольку Земля удаляется от Звезды, фотон за время жизни Вселенной достигнет только точки, где Земля находилась в момент его испусканий (бледный синий кружок) – на расстоянии 13,7 млрд. световых лет. Это очевидно, поскольку за это время в 13,7 млрд. лет Земля удалится от этой точки. Достичь Земли смогут только фотоны, удалённые от неё в момент излучения не более чем на 5 млрд. световых лет (приблизительно). Это расстояние, видимо, и следует считать наблюдаемой границей Вселенной.

Тем не менее, в космологической литературе указывается радиус наблюдаемой Вселенной, близкий по величине к её возрасту – около 14 млрд. световых лет. Как показано в выше приведённых расчетах, за 13 с лишним миллиардов световых лет свет от таких галактик, видимо, не мог достичь Земли. То есть, получается, наблюдать галактики на таком удалении от Земли вряд ли возможно.

Это значит, что космологические способы вычисления расстояний до галактик, вызывают определённые сомнения. Более того, очевидно, что за 14 млрд. лет фотоны от галактик, удалённых на 14 млрд. световых лет, достичь Земли могли лишь в случае стационарной (не расширяющейся) Вселенной.

По-видимому, полученный вывод о радиусе видимой Вселенной в 5 млрд. световых лет является очередным космологическим парадоксом, поскольку ставятся под сомнения множество общепризнанных теорий и выводов: общая теория относительности, закон Хаббла, теория Большого взрыва…

Литература

1. Большой взрыв: Инфляционная модель, Студопедия, 2014, URL:
(дата обращения 11.12.2015)
2. Гусев А., Как возникла Вселенная?, 2008, URL:
http://shkolazhizni.ru/archive/0/n-14628/ (дата обращения 11.12.2015)
3. Инфляционная стадия расширения Вселенной. Элементы, URL:
http://elementy.ru/trefil/21082?context=20444 (дата обращения 11.12.2015)
4. Казютинский В.В., Инфляционная космология: теория и научная картина мира, URL: http://maxpark.com/community/5654/content/2561589 (дата обращения 11.12.2015)
5. Кокин А.В. Стандартная модель вселенной. Модель Большого взрыва, 2011, URL: http://www.avkokin.ru/documents/584 (дата обращения 11.12.2015)
6. Левин А., Всемогущая инфляция, «Популярная механика» №7, 2012, URL:
http://www.sibai.ru/vsemogushhaya-inflyacziya.html (дата обращения 11.12.2015)
7. Левин А., Теория инфлантонов, 2012, URL:
8. Линде А.Д., Инфляция, квантовая космология и антропный принцип, 2002, URL:
http://www.astronet.ru/db/msg/1181084 (дата обращения 11.12.2015)
9. Линде А.Д., Многоликая Вселенная (презентация), 2007, URL:
http://elementy.ru/lib/430484 (дата обращения 11.12.2015)
http://www.myshared.ru/slide/380143/
10. Метагалактика, Википедия, 2015, URL:
https://ru.wikipedia.org/wiki/Метагалактика (дата обращения 11.12.2015)
11. Модель инфляционной вселенной, База документов Reftrend.ru, URL:
http://reftrend.ru/685191.html (дата обращения 11.12.2015)
12. Раздувающаяся вселенная, Физическая энциклопедия, URL:
http://dic.academic.ru/dic.nsf/enc_physics/4465/РАЗДУВАЮЩАЯСЯ (дата обращения 11.12.2015)
13. Эймос Дж., Обнаружена гравитационная волна Большого взрыва, 2014, URL:
(дата обращения 11.12.2015)

На заре космологии – науки, изучающей Вселенную, – было принято считать, что ученые часто ошибаются в мелочах, но никогда не сомневаются глобально. В наше время ошибки в расчетах удалось свести к минимуму, а вот сомнения разрослись до размеров изучаемого объекта. Десятилетиями космологи строили новые телескопы, придумывали хитроумные детекторы, задействовали суперкомпьютеры и в результате с уверенностью могут утверждать, что Вселенная зародилась 13820 миллионов лет назад из крошечного пузырька в пространстве, по размеру сравнимого с атомом. Впервые ученые с точностью до десятой доли процента создали карту космического микроволнового фона – реликтового излучения, возникшего через 380 тысяч лет после Большого взрыва.

До сих пор неизвестно, что такое темная материя. Темная энергия – еще б?льшая загадка.
Космологи также пришли к выводу, что видимые нам звезды и галактики составляют всего 5% от состава наблюдаемой Вселенной. Большая часть приходится на невидимые темную материю (27%) и темную энергию (68%). По предположению ученых, темная материя формирует структуру Вселенной, связывая воедино разбросанные по разным ее уголкам сгустки материи, хотя до сих пор неизвестно, что такое эта самая темная материя. Темная энергия – еще б?льшая загадка, этим термином принято обозначать неведомую силу, ответственную за постоянно ускоряющееся расширение Вселенной. Первым намеком на существование всепроникающей темной материи стали исследования швейцарского астронома Фрица Цвикки. В 1930-е годы в обсерватории Маунт-Вилсон на юге Калифорнии Цвикки измерял скорости галактик в скоплении Волосы Вероники, вращающихся относительно центра скопления. Он пришел к выводу, что галактики должны были давно разлететься в космическом пространстве, если бы их не удерживала какая-то невидимая человеческому глазу материя. Скопление Волосы Вероники существует как единое целое уже миллиарды лет, из чего Цвикки заключил, что неведомая «темная материя заполняет Вселенную с плотностью, в разы превосходящей ее видимого собрата». Дальнейшие исследования показали, что гравитационное поле темной материи сыграло решающую роль в образовании галактик на первых этапах существования Вселенной – именно сила притяжения собрала воедино облака «строительного материала», жизненно необходимого для рождения первых звезд. Темная материя – не просто замаскировавшаяся обыкновенная барионная (состоящая из протонов и нейтронов) материя: в космическом пространстве ее попросту слишком мало. Безусловно, есть множество небесных тел, ничего не излучающих: черные дыры, тусклые карликовые звезды, холодные скопления газа и планеты-сироты, по какой-то причине вытолкнутые за пределы родных звездных систем. Однако их суммарная масса никак не может более чем пятикратно превышать массу обычной видимой материи. Это дает ученым основание полагать, что темная материя состоит из каких-то более экзотических частиц, пока не наблюдавшихся в экспериментах. Ученые, занимающиеся построением суперсимметричной квантовой теории, предположили существование различных частиц, которые вполне могут подходить на роль заветной темной материи. Подтверждение того, как слабо темная материя взаимодействует не только с барионной, но и с самой собой, космологи обнаружили в трех миллиардах световых лет от Земли в скоплении Пуля, на самом деле являющемся двумя сталкивающимися друг с другом галактическими скоплениями. Астрономы выявили массивные облака горячего газа в центре скопления, которые обычно образуются при столкновении облаков барионной материи. Для дальнейшего изучения исследователи создали карту гравитационного поля скопления Пуля и идентифицировали две области с высокой концентрацией массы поодаль от зоны столкновения – по одной в каждом из сталкивающихся галактических кластеров. Наблюдения показали: в отличие от барионной материи, бурно реагирующей в момент непосредственного контакта, их более тяжелые грузы из темной материи невозмутимо минуют место катастрофы в целости и сохранности, никак не взаимодействуя с царящим в округе хаосом. Конструируемые учеными детекторы для поиска темной материи невероятно изящны с инженерной точки зрения – тут они чем-то напоминают яйца Фаберже, от одного взгляда на которые даже у мастеров-ювелиров захватывает дух. Один из таких детекторов – магнитный альфа-спектрометр стоимостью два миллиарда долларов, установленный на Международной космической станции, ведет сбор данных о возможных столкновениях частиц темной материи друг с другом. Большинство же детекторов нацелены на поиск следов взаимодействия между частицами темной и барионной материи, и попытки зафиксировать их предпринимаются уже на Земле, а точнее, под землей: для минимизации помех, вносимых прилетающими из космического пространства высокоэнергетическими частицами космических лучей, размещать исследовательские комплексы приходится глубоко под земной поверхностью. Детекторы представляют собой массивы кристаллов, охлажденных до сверхнизких температур, другие выглядят как огромные емкости, заполненные жидким ксеноном или аргоном, окруженные датчиками и упакованные в многослойную «луковицу» – обертку из самых разных (от полиэтилена до свинца и меди) экранирующих материалов. Интересный факт: недавно выплавленный свинец обладает небольшой радиоактивностью, что недопустимо при строительстве высокочувствительных детекторов. В экспериментах используется переплавленный свинцовый балласт, который подняли с затонувших кораблей времен Римской империи. За два тысячелетия, которые металл пролежал на дне моря, его радиоактивность заметно снизилась. Вам кажется, что по поводу темной материи полно вопросов? Сущие пустяки по сравнению с нашими представлениями о загадочной темной энергии! Лауреат Нобелевской премии по физике 1979 года Стивен Вайнберг считает ее «центральной проблемой современной физики». Астрофизик Майкл Тёрнер ввел в обиход термин «темная энергия», после того как две группы астрономов в 1998 году объявили об открытии ускоряющегося расширения Вселенной. Они пришли к такому выводу в процессе изучения сверхновых звезд типа Ia, обладающих одинаковой максимальной светимостью, благодаря чему их можно использовать для измерения расстояний до удаленных галактик. Гравитационное взаимодействие между галактиками в их скоплениях должно ограничивать расширение Вселенной, и астрономы ожидали увидеть замедление скорости изменения расстояний между звездными кластерами. Представьте их удивление, когда они выяснили, что все как раз наоборот: Вселенная расширяется, и скорость расширения со временем возрастает. А начался этот процесс, как предполагают ученые, пять-шесть миллиардов лет назад. В последние годы астрономы заняты тщательным картированием Вселенной с беспрецедентно высокой точностью. Это поможет получить больше информации о точном моменте возникновения темной энергии и определить, остается ли она постоянной или изменяется со временем. Но возможности телескопов и цифровых детекторов небезграничны, а значит, чтобы вывести более точную космологическую теорию, необходимо разработать и построить новые инструменты – принцип остается неизменным с момента зарождения астрономии. Для построения такой карты запущено несколько проектов вроде «Спектроскопического обзора барионных осцилляций» (BOSS, Baryon Oscillation Spectroscopic Survey), в рамках которого при помощи 2,5-метрового телескопа в американской обсерватории Апачи-Пойнт ведется измерение расстояний в космосе со сверхвысокой (до процента) точностью. Проект «Обзор темной энергии» (DES, Dark Energy Survey) занимается сбором и изучением информации о 300 миллионах (!) галактик, наблюдения ведутся на 4-метровом телескопе имени Виктора Бланко, расположенном в чилийских Андах. Европейское космическое агентство ESA на 2020 год планирует запуск орбитального телескопа «Евклид», который позволит заглянуть в прошлое и понять, как менялась динамика расширения Вселенной на протяжении нескольких миллиардов лет. А с запуском Большого обзорного телескопа (LSST, Large Synoptic Survey Telescope), строящегося в нескольких километрах от телескопа Бланко, у космологов появятся огромные массивы уникальных данных. Относительно небольшой (диаметр зеркала – 8,4 метра), но достаточно быстрый при съемке, LSST будет оснащен сверхсовременной цифровой камерой в 3,2 гигапикселя, позволяющей разом охватить изрядную часть неба. С помощью такого арсенала технически сложных инструментов ученые надеются измерить скорость расширения Вселенной, выяснить, изменилась ли она с момента возникновения темной энергии, и понять, каково место последней в устройстве мироздания. Это позволит сделать выводы ни много, ни мало о том, что ждет Вселенную в будущем и о том, как нам продолжить ее изучение. Если она будет расширяться со все возрастающей скоростью, всецело находясь во власти темной энергии, большинство галактик окажутся отброшенными из поля зрения друг друга, не оставив астрономам будущего ни одного объекта для наблюдения, кроме ближайших соседей и зияющей космической бездны. Для того чтобы понять природу темной энергии , нам придется переосмыслить фундаментальные представления о самом пространстве. Долгое время космические просторы между звездами и планетами считались абсолютно пустыми, хотя еще Исаак Ньютон говорил, что ему чрезвычайно сложно представить, как гравитация может удерживать Землю, вращающуюся по орбите вокруг Солнца, если между ними нет ничего, кроме вакуума. В XX веке квантовая теория поля показала, что на самом деле пространство не является пустым, а, напротив, повсюду пронизано квантовыми полями. Основные «строительные кирпичики», из которых состоит материя – протоны, электроны и другие частицы, – по сути, являются лишь возмущениями квантовых полей. Когда энергия поля находится на минимальном уровне, пространство выглядит пустым. Но если поле возмущено, все вокруг оживает, заполняясь видимой материей и энергией. Математик Лучано Бой сравнивает пространство с поверхностью воды в альпийском пруду: она становится заметной, когда налетает легкий бриз, покрывая пруд дрожащей рябью. «Пустое пространство на самом деле не пусто, – сказал американский физик Джон Арчибальд Уиллер, – в нем таится настоящая физика, полная сюрпризов и неожиданностей». Темная энергия вполне может подтвердить глубокую пророческую силу слов Уиллера. Стремясь понять механизмы, ответственные за непрекращающееся «раздувание» Вселенной – которое, как оказалось, еще и продолжает ускоряться, – ученые полагаются на эйнштейновскую общую теорию относительности, появившуюся сотню лет назад. Она отлично работает на объектах большого масштаба, но спотыкается на микроуровне, где балом правит квантовая теория и где таится разгадка постоянно ускоряющегося расширения космического пространства. Для объяснения темной энергии может понадобиться нечто принципиально новое – что-то вроде квантовой теории пространства и гравитации. Современная наука бьется над, казалось бы, простой задачей: сколько энергии – темной или какой-либо другой – содержится в заданной ограниченной области пространства? Если в расчетах положиться на квантовую теорию, получается невообразимо большое значение. А если привлечь к проблеме астрономов, их оценка, основанная на наблюдениях за темной энергией, окажется несоизмеримо мала. Разница между двумя числами ошеломляет: 10 в 121-й степени! Это единица со 121 нулем – больше, чем количество звезд в наблюдаемой Вселенной и всех песчинок на нашей планете. Это самый существенный перекос в истории науки, вызванный несогласованностью теории и фактических наблюдений. Очевидно, мы упускаем какое-то фундаментально важное свойство пространства, а значит, и всего, что нас окружает и является его частью, – галактик, звезд, планет и нас самих. Ученым только предстоит выяснить, насколько велик пробел в наших знаниях.

Вселенная… Слово-то какое страшное. Масштабы того, что обозначается эти словом, не поддаются никакому осмыслению. Для нас проехать 1000 км - это уже расстояние, а что они значат в сравнении с гигантской цифрой, которая обозначает минимально возможный, с точки зрения учёных, диаметр нашей Вселенной.

Эта цифра не просто колоссальна - она ирреальна. 93 миллиарда световых лет! В километрах это выражается следующим числом 879 847 933 950 014 400 000 000.

Что такое Вселенная?

Что же такое Вселенная? Как объять разумом сие необъятное, ведь это же, как писал Козьма Прутков, никому не дано. Давайте обопрёмся на всем нам знакомые, простые вещи, способные путём аналогий привести нас к искомому постижению.

Из чего состоит наша Вселенная?

Чтобы разобраться в этом вопросе, пойдите прямо сейчас на кухню и возьмите поролоновую губку, которую вы используете для мытья посуды. Взяли? Так вот, вы держите в руках модель Вселенной. Если вы через лупу рассмотрите структуру губки поближе, то увидите, что она представляет собой множество открытых пор, ограниченных даже не стенками, а скорее перемычками.

Нечто подобное представляет собой и Вселенная, но только в качестве материала для перемычек используется не поролон, а… … Не планет, не звёздных систем, а галактик! Каждая из этих галактик состоит из сотен миллиардов звёзд, вращающихся вокруг центрального ядра, и каждая может иметь размер до сотен тысяч световых лет. Расстояние между галактиками обычно составляет около миллиона световых лет.

Расширение Вселенной

Вселенная не просто большая, она ещё вдобавок постоянно расширяется. Этот установленный с помощью наблюдения красного смещения факт, лёг в основу теории Большого взрыва.


Согласно данным НАСА возраст Вселенной с момента Большого взрыва, положившего ей начало, составляет приблизительно 13,7 миллиардов лет.

Что означает слово «Вселенная»?

Слово «Вселенная» имеет старославянские корни и, фактически, является калькой с греческого слово ойкумента (οἰκουμένη) , происходящего от глагола οἰκέω «населяю, обитаю» . Изначально этим словом обозначалась вся обитаемая часть мира. В церковном языке и по сей день сохраняется подобное значение: например, Константинопольский Патриарх в своём титуле имеет слово «Вселенский».

Термин происходит от слова «вселение» и только лишь созвучен слову «всё».

Что находится в центре Вселенной?

Вопрос о центре Вселенной - крайне запутанная штука и однозначно ещё не решён. Проблема в том, что непонятно, есть он вообще или его нет. Логично предположить, что, раз был Большой взрыв, из эпицентра которого и начали разлетаться бесчисленные галактики, значит, проследив траекторию каждой из них, можно на пересечении этих траекторий найти центр Вселенной. Но дело в том, что все галактики удаляются друг от друга приблизительно с равной скоростью и из каждой точки Вселенной наблюдается практически одна и та же картина.


Натеоретизировано здесь столько, что любой академик свихнётся. Даже привлекалось не раз четвёртое измерение, будь оно неладно, но особой чёткости в вопросе нет и по сей день.

Если же нет внятного определения центра Вселенной, то говорить о том, что находится в этом самом центре, мы считаем пустым занятием.

Что находится за пределами Вселенной?

О, это вопрос очень интересный, но такой же неопределённый, как и предыдущий. Вообще неизвестно, есть ли у Вселенной пределы. Возможно, их нет. Возможно, они есть. Возможно, кроме нашей Вселенной есть и другие с иными свойствами материи, с отличными от наших законами природы и мировыми константами. Никто не может доказательно дать ответ на подобный вопрос.

Проблема заключается в том, что мы имеем возможность наблюдать Вселенную лишь на расстоянии в 13,3 миллиарда световых лет. Почему? Очень просто: мы же помним, что возраст Вселенной составляет 13,7 миллиардов лет. Учитывая, что наше наблюдение происходит с задержкой, равной времени, потраченному светом на прохождение соответствующего расстояния, мы не можем наблюдать Вселенную ранее того момента как она, собственно, появилась на свет. На этом расстоянии мы видим Вселенную ясельного возраста…

Что ещё мы знаем о Вселенной?

Очень много и ничего! Мы знаем о реликтовом свечении, о космических струнах, о квазарах, чёрных дырах и о многом и многом другом. Некоторая часть этих знаний может быть обоснована и доказана; кое-что является лишь теоретическими выкладками, которые не могут быть подтверждены доказательно, а что-то - лишь плод богатой фантазии псевдоучёных.


Но одно мы знаем наверняка: никогда не настанет момент, в который мы сможем, облегчённо вытерев пот со лба, сказать: «Фу-у-х! Вопрос, наконец-то полностью изучен. Здесь больше ловить нечего!»